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COHOMOLOGY OF LINKING SYSTEMS WITH TWISTED
COEFFICIENTS BY A p-SOLVABLE ACTION

REMI MOLINIER
communicated by Nathalie Wahl
Y

Abstract

In this paper we study the cohomology of the geometric real-
ization of linking systems with twisted coefficients. More pre-
cisely, given a prime p and a p-local finite group (S,F, L), we
compare the cohomology of £ with twisted coefficients with the
submodule of F¢-stable elements in the cohomology of S. We
start with the particular case of constrained fusion systems.
Then, we study the case of p-solvable actions on the coeflicients.

1. Introduction

The notion of saturated fusion system was introduced by Puig in the 90s in a con-
text of modular representation theory. Since their introduction, topologists use them
to study classifying spaces of finite groups or, more precisely, their p-completions. A
p-local finite group is a triple (S, F, L) where S is a p-group, F a saturated fusion
system over S and £ an associated linking system. For a p-local finite group (S, F, £),
|L]}) is called its classifying space. The theory of p-local finite groups have been studied
in details by Broto, Levi, Oliver and others (see [BLOZ2], [OV1], [5al] and [5a2]).
The linking system and its geometric realization, even without p-completion, play
here a fundamental and central role. In fact, for a given saturated fusion systems, the
existence and uniqueness of an associated linking system were shown more recently by
Chermak [Ch] (using the theory of partial groups). The proof of this important con-
jecture highlights that linking systems and their geometric realizations form a deep
link between fusion system theory and homotopy theory (we refer to Aschbacher,
Kessar and Oliver [AXKO] for more details about fusion systems in general).

An old and well-known result due to Cartan and Eilenberg (see [CEl Theorem
XI1.10.1]) expresses the cohomology of a finite group G in a Z,)[G]-module as the
submodule of “stable” elements in the cohomology of a Sylow p-subgroup of G. This
submodule of stable elements corresponds to the inverse limit over the “fusion® of
the group cohomology functor. One important result in the theory of p-local finite
groups is an analog of this theorem for p-local finite groups which tells us that the
cohomology of the geometric realization of a linking system can be computed by F-
stable elements. More precisely, there is a natural inclusion of BS into |£| and it
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2 REMI MOLINIER

induces the following isomorphism. Here, F¢ is the full subcategory of F consisting
of F-centric subgroups of S and, for A a finite Z,y-module, H*(F*, A) C H*(S, A)
is the submodule of F-stable elements.

Theorem 1.1. Let (S,F, L) be a p-local finite group and A be a finite Z,)-module.
The inclusion of BS in |L] induces a natural isomorphism

H* (L5, A) = H*(|£], A) — H*(F*, A).

Proof. The case A=TF, is [BLO2| Theorem B] and the general case is proven in
[6a2l Lemma 6.12]. O

One question asked by Oliver in his book with Aschbacher and Kessar [AKO]
is the understanding of the cohomology of |£| with twisted coefficients. Indeed, this
cohomology appears for example in the study of extensions of p-local finite groups or,
more directly, can give more information about the link between the fusion system
and the spaces |£| or |£]}). Recall that, if a space X has a universal covering space

X, the cohomology of X with twisted coefficients in a Z[mr;(X)]-module M is the
cohomology of the chain complex

c* (X, M) = Homz[m(x)] (S* (jz)7 M)u

where S, (X) is the usual singular chain complex of X.

Levi and Ragnarsson [LR] already give some tools along these lines. In an other
paper [Mol], the author extends Theorem [[.T] to the case of nilpotent actions on the
coefficients. The main ingredient is to construct, as in the trivial coeflicient case, an
idempotent of H*(S, M) with image H*(F¢, M).

In this paper, we also want to extend Theorem [[.T] to twisted coefficients but when
the action factors through a p-solvable group. The methods used here are completely
different from the ones used in [Mol] and also more direct. We first have a look at
constrained fusion systems. In that case we are able to prove that, with any coefficient
module, the cohomology of |£| can be computed by stable elements.

Theorem A (see Theorem B.H). Let (S, F, L) be a p-local finite group. If F is con-
strained and M is a Zpy[m1(|£|)]-module, then the inclusion of BS in |L| induces an
isomorphism,

H*(|L],M) = H*(F¢,M).
Next we focus on p-solvable actions. The main ingredients here are p-local finite

subgroups of index a power of p or prime to p and their homotopy properties. We
start by looking at p-local subgroups of index prime to p (see Definition [Z8(b)).

Theorem B (see Theorem 3). Let (S, F, L) be a p-local finite group and denote

by (S, 0" (F),0P (L)) its minimal p-local subgroup of index prime to p. If M is a

Zpy[m1(|L])]-module and if the inclusion of BS in |OP' (L)| induces an isomorphism
H* (|07 (£)|, M) = H*(O" (F)*, M),

then the inclusion of BS in |L] induces an isomorphism

H*(|L|,M) = H*(F°,M).
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This Theorem allows us to prove that if the action on the coeflicients factor through
a p/-group or, even better, a p-nilpotent group, then the cohomology of |£| can be
computed by stable elements.

It is much more complicated to work with p-local finite groups of index a power of p,
especially on the level of stable elements. Indeed, for (Sy, Fo, Lo) a p-local subgroup of
(S, F, L) of index a power of p and M a Z, [ (|£])]-module, it is difficult to compare
H*(F¢, M) and H*(F§, M). The difficulty mostly comes from the fact that we are
working on different p-groups: S and Sy. But when we work with a p-local finite group
realizable by a finite group G, and if G acts ”consistently” on the coefficients it is
possible to get some positive results (see Section [l).

Theorem C (see Corollary BH). Let G be a finite group, S a Sylow p-subgroup of
G and (S, F, L) the associated p-local finite group. Let M be a Zy)[m1(|L])]-module
and assume that G acts consistently on M. If both actions factor through a given
p-solvable T and all the M -essential subgroups (see Definition[5.3) of S are p-centric,
then we have natural isomorphisms,

H* (L], M) = H*(G, M) = H*(F°, M).
All of these results lead us to the following conjecture.

Conjecture A (see Conjecture 5.8). Let (S, F, L) be a p-local finite group and M a
Zpy[m1(|L])]-module. If the action of m1(|L]) on M is p-solvable, then the inclusion
of BS in |L| induces a natural isomorphism

H*(|L|, M) —= H*(F*, M).

We finish this paper with an example for Conjecture which does not follow
from the the other results.

Organization. In Section [2] we give some background on p-local finite groups
and stable elements. Section [3lis dedicated to the case of constrained fusion systems,
Section M to coprime actions and Section[5] to p-solvable actions for a realizable p-local
finite group. Finally, we give in Section [0l an example for Conjecture
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2. Background

We give here a very short introduction to p-local finite groups. The notion of fusion
system was first introduced by Puig for modular representation theory purpose. Later,
Broto, Levi and Oliver developed the notion of linking systems and p-local finite
groups to study p-completed classifying spaces of finite groups and spaces which
have similar homotopy properties. We refer the reader interested in more details to
Aschbacher, Kessar and Oliver [AKOQ].
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2.1. Fusion systems and linking systems

A fusion system over a p-group S is a way to abstract the action of a finite group
G with S € Syl,(G) on the subgroups of S by conjugation. For G a finite group and
g € G, we will denote by ¢, the homomorphism = € G — gzg~! € G and for H, K
two subgroups of G, Homg (H, K) will denote the set of all group homomorphism ¢,
for g € G such that ¢;(H) < K.

Definition 2.1. Let S be a finite p-group. A fusion system over S is a small category
F, where Ob(F) is the set of all subgroups of S and which satisfies the following two
properties for all P,Q < S:

(a) Homg(P,Q) C Morx(P,Q) C Inj(P,Q);
(b) each ¢ € Morx(P, Q) is the composite of an F-isomorphism followed by an inclu-
sion.

A fusion system is saturated if it satisfy two more technical axioms called the satura-
tion axioms (we refer the reader to [AKOI Definition 1.2.1] for a proper definition).

The composition in a fusion system is given by composition of homomorphisms.
We usually write Homx(P, Q) = Morz(P, Q) to emphasize that the morphims in F
are homomorphisms. For P,Q < S, we say that P is F-conjugate to @ if there is an
F-isomorphism between P and Q. We denote by P7 the set of all subgroups of S
which are F conjugate to P.

The typical example of a saturated fusion system is the fusion system Fg(G) of a
finite group G over S € Syl,(G).

For the purpose of this paper, we need to distinguish some collections of subgroups
of S.

Definition 2.2. Let F be a saturated fusion system over a finite p-group S.

(a) A subgroup P < S is F-centric if for every Q € P7, Cs(Q) = Z(Q).

(b) A subgroup P < S is F-radical if Op(Autxz(P)) = Inn(P).

(c¢) A subgroup P < S is F-quasicentric if for each Q < PCg(P) containing P, and
each o € Aut#(Q) such that o|p =1Id, « has a p-power order.

We let F" C F¢ C F9 C F denote the full subcategories of F with objects the F-
centric and F-radical subgroups, the F-centric subgroups and the F-quasicentric
subgroups, respectively.

<
<

If F = Fs(G), a subgroup P < S'is
(a) F-centric if and only if it is p-centric (i.e. Z(P) € Syl,(Ce(P)),

(b) F-radical if P/Z(P) = O,(Ng(P)/Ca(P)).
(c) F-quasicentric if and only if OP(C¢(P)) has order prime to p.

The notion of linking system has been introduced by Broto, Levi and Oliver
IBLO2| and generalized by Broto, Castellana, Grodal and Oliver in [5al]. We refer
the reader to theses papers, or [AKO| Part III], for a proper definition. We recall
here some basic facts about linking systems which will be needed here.

For G a finite group, S € Syl,(G) and H a collection of subgroups of S, the trans-
porter category of G over S with set of objects H is the category T/(G) with objects
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H and for P,Q € H, Morz(P,Q) =Ta(P,Q) ={g € G| P9 < Q}. For F a saturated
fusion system over a p-group S, a linking system associated to F is a certain finite
category with objects a collection H of subgroups of S together with two functors:

THS) > L "> F.

0 is the identity on objects and injective on morphisms and = is injective on objects
and surjective on morphisms. The collection H has to be stable by overgroups and
F-conjugation and the following proposition tell you which collection you can have.

Proposition 2.3. Let F be a saturated fusion system over a p-group S. Let L be a
linking system associated to F.

(a) Ob(Fe") C Ob(L) C Ob(FT), and there exists a linking system L7 associated to
F such that Ob(LT) = Ob(F?), and L is a full subcategory of L1.

(b) For every subset Ob(F") C H C Ob(F?) stable by F-conjugacy and overgroups,
the full subcategory L™ of L7 with set of objects H is also a linking system asso-
ciated to F.

Proof. The first point of (a) can be found for example in [O4] Proposition 4(g)].
For the second statement of (a), you can find a proof in [AKOI Proposition I11.4.8].
Finally, (b) is a consequence of the definition of linking systems. O

If H = Ob(F7), L is called a quasicentric linking system and if H = Ob(F°), L is

called a centric linking system.

Definition 2.4. A p-local finite group is a triple (S, F, L) where F is a saturated
fusion system over S and L is an associated linking system. If (Sp, Fo, Lo) is an other
p-local finite group, we will say that (So, Fo, Lo) is a p-local subgroup of (S,F, L) if
So < S and Fy C F is a subsystem of F. Notice that we do not require that Ly is a
subcategory of L.

The typical example you should have in mind is the following. For G a finite
group and S € Syl (G) let LL(G) be the category with objects the Fs(G)-quasicentric
subgroups of G and, for P,Q € Ob(L),

Moz (P, Q) = Ta(P,Q)/0" (Ca(P)).

Then (S, Fs(G), LL(G)) defines a p-local finite group where L£%(G) is a quasicentric
linking system. We also denote by £&(G) the full subcategory of LL(G) with objects
the p-centric subgroups of S and it is a centric linking system.

We finish with some basic homotopy properties about linking systems which will
be needed in this paper. We refer the reader interested in more details to [AKOl Part
II). For (S,F, L) a p-local finite group, we write |£| for the geometric realization of
L and 7w = 71 (|L]) for its fundamental group. The following Theorem will allow us
to change the set of objects of £ without changing the homotopy type of |L].

Theorem 2.5 ([5all Theorem 3.5]). Let F be a saturated fusion system over a p-
group S. Let Lo C L be two linking systems associated to F with a different set of
objects. Then the inclusion induces a homotopy equivalence of space |Lo| ~ |L].
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2.2. p-local finite subgroups of index a power of p or prime to p

The notions p-local subgroups of index a power of p or prime to p have been
introduced and studied by Broto, Castellana, Grodal, Levi and Oliver [5a2]. Here we
just give the definitions what we need about these p-local subgroups and we refer the
reader to [5a2] for more details.

Definition 2.6. Let (S, F, L) be a p-local finite group and (Sp, Fo, Lo) a p-local

subgroup of (S, F, L). Set hyp(F) = (g7 'a(g) | g€ P < S,a € OF (Aut£(P))) < S.

(a) We say that (So, Fo, Lo) is a p-local subgroup of index a power of p if So = hyp(F)
and, for every P < Sy, OP(Autz(P)) < Aut g, (P).

(b) We say that (So, Fo, Lo) is a p-local subgroup of index prime to p if Sy = S and,
for every P < S, O” (Aut(P)) < Autz, (P).

Notice that hyp(F) is denoted O%(S) in [5a2] Definition 2.1]. These particular
p-local subgroups satisfy the following properties.

Proposition 2.7 ([5a2] Proposition 3.8]). Let (S, F, L) be a p-local finite group and
(S0, Fo, Lo) a p-local subgroup of (S, F,L).

(a) If (So,Fo,Lo) is of index a power of p, then P < Sy is Fo-quasicentric if, and
only if, P is F-quasicentric.

(b) If (So, Fo, Lo) is of index prime to p, then P < S is Fo-centric if, and only if, P
is F-centric.

For an infinite group G, we denote by OF' (@) the intersection of all normal sub-
groups in G of finite index prime to p. For F a fusion system over a p-group S, let

or (F) be the fusion system generated by OF' (Auty(P)) for all P < S and define

Out%(S) = (a € Outx(S) | alp € Homofl(f)(P, S), for some P < S).

Since Autr(S) normalizes or (F), Out%(S) < Outx(S).

Proposition 2.8. Let (S, F, L) be a p-local finite group.
(a) F = (Autz(S),0% (F)).

(b) m and the inclusion of BAutr(S) in |F¢| induce isomorphisms,
0: mz /O (rp) —= 1 (| F¢|) —= Outr(S)/ Out(S).

Proof. The point (a) is proved in [5a2] Lemma 3.4]. For (b), the second isomorphism
is given in [5a2] Proposition 5.2] and the first one in [5a2, Theorem 5.5] and the
comment which follows. O

According to Proposition 2.7] when dealing with p-local subgroups of index prime
to p, we will work with centric linking systems.

Theorem 2.9 (|5a2] Theorem 5.5]). Let (S,F, L) be a p-local finite group with L a
centric linking system. For each subgroup H < Outz(S) containing OutO}-(S), there is
a unique p-local finite subgroup (S, Fu, Lu) of index prime to p such that Outg, (S) =
H and Ly =7 Y(Fg).
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Moreover, |Ly| is homotopy equivalent, via its inclusion in |L|, to the cover-
ing space of |L| with fundamental group H > OV (7z) such that 0(H/OP (xr)) =
H/Out%-(S) (where 0 is the isomorphism given in Proposition [Z8(b)).

Thus, for a p-local finite group (S, F, £), with £ a centric linking system, we can
define the minimal p-local subgroup of index prime to p, (S,OPF (F),OF (L)) corre-
sponding to (S, Fg, Lg) with H = Out%(S) in Theorem 2

2.3. Cohomology and stable elements

The first result about stable elements is due to Cartan and Eilenberg ([CE| Chap
XII, Theorem 10.1]). It also served as a guideline in the establishment of Theorem
[T by Broto, Levi and Oliver. Here we recall the definition of F¢-stable elements in
a context of twisted coefficients. We refer the reader to [Mol] for more details. As in
[Mo1], we will denote by w: £ — m = 71 (|£],S) the functor which maps each object
to the unique object in the target and sends each morphism ¢ € Morz (P, Q) to the
class of the loop tq.¢.Tp where tp = 6(1) € Morz (P, S), tg = 6(1) € Mor(Q, S) and
7p is the edge ¢p followed in the opposite direction.

Let (S, F, L) be a p-local finite group. Recall first that ¢: ’TSOb(ﬁ)(S) — L induces
an inclusion dg: BS — |£|. In particular, it induces a natural map S — m, and thus,
for every Z,)[nc]-module M, we have a natural action of S, or any subgroup of S,
on M. Now, let M be a Z,)[rz]-module, the group cohomology bifunctor H*(—, —)
induces a functor

H* (=, M): F® — Z,)-Mod

(a priori, H*(g, M) is defined for g € Mor(£) but [Moll Proposition 2.2] proves that
H*(—, M) is well defined on F°).

Definition 2.10. Let (S, F, L) be a p-local finite group. An element x € H*(S, M)
is called F-centric stable, or F¢-stable, if for all P € Ob(F¢) and all ¢ € Homz(P, S),
o (x) = Res(a).

We denote by H*(F¢, M) C H*(S, M) the submodule of all F¢-stable elements.

Notice that
H*(F,M)=lim H* (-, M) =lim H*(—, M)
—— —
Fe c
where the last equality holds if £ is a centric linking system.

3. Constrained fusion systems

Let (S, F,L) be a p-local finite group. Here, we assume that F is a constrained
fusion system.

Definition 3.1. Let F be a fusion system over a p-group S. A subgroup @ < S is
normal in F if
() Q <5, and

(ii) for all P,R < S and every ¢ € Homz(P, R), ¢ extends to a morphism @ €
Homx(PQ, RQ) such that 3(Q) = Q.
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We write O,(F) for the maximal subgroup of S which is normal in F. We say that
F is constrained if O,(F) is F-centric.

An important and classical result about constrained fusion systems is the following.

Proposition 3.2 ([6all Proposition 4.3]). Let (S, F, L) be a p-local finite group with
L a centric linking system. If F is constrained, there exists a finite group G such that
(a) S is a Sylow p-subgroup of G,

(b) Ca(0p(G)) < 0p(G),

(c) Fs(G)=F.

Moreover, G = Autz(Op(F)) and L = LG(G).

This group G is called a model of F and it is unique in a precise way (see [AKOL
Theorem II1.5.10]). This model can also be recovered from the homotopy type of the
geometric realization of a linking system associated to F.

Lemma 3.3. Let (S, F, L) be a p-local finite group with L a centric linking system.
If F is constrained, then |L| is a classifying space of a model G of F.

Proof. By Proposition [3.2] we can assume that £ = L§(G). Set
H={PeOb(L) | P> 0,(G)}

and let £* be the full subcategory of £ with set of objects H. By [5all, Proposition
1.6], H contains all F-centric and F-radical subgroups. Thus, by Proposition 2.3 £*
is a linking system associated to F and, by Theorem ZLH [£7| 2 |L|.

It remains to prove that that |£7| = BG. For that purpose, consider, the following
functor.

F: L — lo(@)}
PeflfMm +— 0,Q)
geTa(P,Q) — geNa(0y(G)) =G

It gives us a retraction by deformation of |£*| on the geometric realization of the full
subcategory of £ with unique object Op(G) < S. As Autz(O,(G)) = Ng(0,(GQ)) =
G, this last category is B(G). in particular, its geometric realization is a classifying
space of G. O

Proposition 3.4. Let G be a finite group and S a Sylow p-subgroup of G. If we
have Cq(Op(G)) < Op(G), then, for every Z,)[G]-module M, the inclusion of S in
G induces a natural isomorphism

H*(G,M)= H*(F5(G),M).

Proof. Let (S, F,L) = (S, Fs(G), LL(G)). By assumption, Fs(G) is constrained and
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G is a model of Fg(G). From Cartan-Eilenberg Theorem, we know that
Res§: H*(G,M) — H*(S,M)

is injective and that Im (Res§) = lim H*(—, M). Moreover,

Ts(G)
H*(fc,M)=@H*(—,M)=@H*(—,M): 1(&11 H* (-, M) > 1<£n H*(—,M).
Fe L TS(G) Ts(G)

Thus, it remains to prove that lim H*(—, M) < lim H*(—, M).
— —

75(G) Ts(G)
Let then x € H*(F¢,M) = lim H*(—, M). For P < S and g € Ng(P, S) we have,
T5(G)

in Ts(G), the following commutative diagram

PO,(G) —2= gPg~'0,(G)

T

P gPg~!

where e is the trivial element of G. Hence, as the top part of the diagram is in T§(G)
and z € lim H*(—, M),

Ts(G)
Cy© Res”gpgfl (x) = Resiop(c) ocyo Resgpgflop(g) (x)
R Resi 0
= ResP(z).
Thus z € lim H*(—, M) and this complete the proof. O
Ts(G)

Corollary 3.5. Let (S, F, L) be a p-local finite group. If F is constrained and M is
a Ly [mc]-module, then ds induces a natural isomorphism,

H*(|L|,M) = H*(F°,M).

4. Actions factoring through a p’-group

In this section, for each p-local finite group (S, F, L) we will assume that £ is a
centric linking system.

Lemma 4.1. Let (S, F, L) be a p-local finite group and (S, 0P (F), O (L)) its mini-
mal p-local subgroup of index prime to p. If M is a Zy)[mc]-module, then the inclusion
or’ (L) C L induces the following isomorphism,

H* (€], M) = B (07 (£)], M)7=/©" (),

Proof. By Theorem X3, |OP'(£)] is, up to homotopy, a covering space of |£| with
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fundamental group O () < m. It gives us a fibration sequence
07 (L) = 1£] = B (re /0" (n2)) .
Consider then the Serre spectral sequence associated
H*H(|L], M) = H* (r /07 (r), H'(|OV (£)]. M)

M is a Z,)-module, thus H(|OP'(L£)], M) is also a Zpy-module. As 7 /OF (mz) is a
p’-group, the Fs-page is concentrated in the first column with terms
HY(|07 (L)], M)Te/O" (7e),

Thus the spectral sequence collapses on the Es-page and the Lemma follows. O

Lemma 4.2. Let (S, F, L) be a p-local finite group and (S,0P (F), 0P (L)) its min-
imal p-local subgroup of index prime to p. If M is a Zy)[nc]-module, then

H*(F¢, M) = H*(O7 (F)°, M) Atlor (),
Proof. Notice first that, by Proposition 227, Ob(O? (F)¢) = Ob(F¢). Hence, we are
working with the same underlying set of objects. Thus, by definition, H*(F¢, M) C

H*(OP (F)e, M)Aucf(s)/AutO”' ) On the other hand, by Proposition[Z8] we have
F = (O" (F), Aut#(S)) which gives the converse inclusion. O

Theorem 4.3. Let (S, F, L) be a p-local finite group and (S, O (F), O (L)) its min-
imal p-local subgroup of index prime to p. If M is a Zyy)[rc]-module and if the inclu-
sion dg induces an isomorphism

H*(|0” (L), M) = H*(O" (F)*, M),
then dg induces an isomorphism

H*(|L|,M) = H*(F°,M).

Proof. Recall that, by 20, 71 (|O (£)|) = O (mz). Then we have the following com-
mutative diagram.

B(S) w Bre B(Aut(M))

N

¥ (L) —“~B (OP' (m))

Moreover, by PropositionZ.8 and Theorem[Z9 the projection 7: L —— F induces
an isomorphism

e /O (mr) 2 mi (|F°]) 22 Aut#(S) /At 5 (S).
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Then, by the two previous Lemmas, we obtain

HE (12}, M) = H*(j07 (£)], M)me/©" (<)

Autz(S)/Aut S)

or' ()

= lim H*(—, M)

—
o (F)

>~ H*(F°, M).
For the second isomorphism, we have to be careful with respect to the action of 7,
on the left side of the isomorphism and Autz(S) on the right side. In fact here,
by Definition 2.10] of F“-stable elements, we can see it on the chain level. The map
8%: H*(|OP' (L)], M) — H*(S, M) , induced by ds: BS —= |OP (L)| , gives on
the chain level,

—_~—

Homg,, (s) (C. (107(£)]) , M) —= Homg,, 1z, 1(C.(E(S)]), M)

or' (2)]

fr f

where £(S) is defined as the category with set of object S and for each (s,s') € S,
Morg(5)(s,5") = {s,s} (in particular [£(S)| is a universal covering space of BS).
Then, for ¢ € Autg(F), if we choose a lift ¢ € Aut.(S), ¢ acts on the left side by

C (1€

fr—w(@ ) fw(®),
and on the right side by,
fre=uw(@ fop*.
Finally, the actiongf\c_p;on E(S) corresponds to the action of w(@) on |E(S)| (indeed,

a lift of w(®) in |OP'(L)| joins every vertex s € S of |E(S)] to the vertex ¢(s) and
similarly for higher simplices). Hence, the two actions coincide. o

Corollary 4.4. Let (S, F,L) be a p-local finite group and M be a Z[rc]-module.
If the action of 7z on M factors through a p’-group then ds induces an isomorphism,
H*(|£], M) = H"(F*, M).

Proof. By Theorem [4.3] it is enough to prove that dg induces an isomorphism
H*(|07 (L), M) = H*(O" (F)", M).

But, as the action on M factor through a p/-group, 71 (|OF' (£)|) = OF () acts triv-

ially on M and Theorem [[.1] gives the wanted isomorphism. O

We already know, from a previous article (Mol Theorem 4.3]) that, if M is a
finite Zp)[rc]-module and the action of 72 on M factor through a p-group, then ds
induces an isomorphism

H*(|£], M) = H"(F*, M)
(it is a direct corollary of [Moll Theorem 4.3] because, any action of a p-group on

an abelian p-group is nilpotent). Hence, with the same arguments, we get another
corollary of Theorem
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Corollary 4.5. Let (S,F,L) be a p-local finite group and M be a finite Z,)[nc]-
module. If the action of mp on M factors through an extension of a normal p-group
by a p’'-group then ds induces an isomorphism,

H*(|L|,M) = H*(F°,M).

5. Realizable fusion systems and actions factoring through a
p-solvable group

Consider here a finite group G, S a Sylow p-subgroup of G and let (S, F, L) be
the associated p-local finite group with £ = L%(G). Set T = T§(G) be the centric
transporter category of G, £9 = L%(G) be the quasicentric linking system associated
to G and T9 = TJ(G) be the associated quasicentric transporter category. We also
write 7 = w1 (|T1).

We have a functor

p: Ts(G) —= B(G)

which sends each object in the source to the unique object o in the target and
sends, for every P,Q < S, g € Ta(P,Q) to g € G = Morg(G)(o¢). As |B(G)| = BG,
this induces an homomorphism

px: T — G.

Here for M a Z,)[nc]-module, with action ¢: mz — Aut(M) we will suppose
that we have the following commutative diagram for some homomorphism @: G —

Aut(M).
/ N

Aut(M)

N A

Then, we can compare the cohomology of |£| and the cohomology of G when the
action factors through a p-solvable group. The main ingredients that we will use are
p-local subgroups of index a power of p or prime to p.

The following lemma allows us to compare H*(|£|, M) and H*(|T|, M).

Lemma 5.1. Let G be a finite group and (S, F,L) be an associated p-local finite
group. Let T = TOb L)( G) C T4 be the transporter category associated to G with set
of objects Ob(L). If M is a Zy|nc]-module, then the canonical functor 6: T — L
induces a natural isomorphism H*(|T|, M) = H*(|L|, M).

Proof. This is a consequence of [BLO1, Lemma 1.3] with C =7, C' = L and the
functor T': L°? — Z,)-Mod which sends each object to M, and each morphism to its
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action on M. Then ¢ induces a natural isomorphism lim * (/) = lim *(M). Then

lim

T L

HY(|T], M) = lim " (M) = lim* (M) = H"(|£|, M)
T L

Where the first and last equality is just an interpretation in terms of functor coho-
mology and can be found in [LRJ, Proposition 3.9]. O

Theorem 5.2. Let G be a finite group, S a Sylow p-subgroup of G, L = LL(G) and
T =TS(G). Let M be a Z)[nc]-module and assume that we have the following com-

mutative diagram.

Aut(M)

N A

If p« is surjective and T = Im () = Im (@) is p-solvable, then & and p induce natural
isomorphisms

H*(|£|,M) = H*(|T|,M) = H* (G, M).

Proof. By Lemma .1l we just have to show that p induces a natural isomorphism
H*(|T|,M) = H*(G,M). We prove this by induction on the minimal number n of
extensions by p-groups or p’-groups we need to obtain I'.

If n =0, T =1 and the action of 77 on M is trivial, then it follows from [OV1]
Proposition 4.5]. Assume that, if I is obtained by n extensions, the result is true and
suppose that I" is obtained with n + 1 extensions. Consider then the last one

0—->I,—-T—=-Q—0.

Denote H =@, *(T,). Thus (T, Fu, Ly) = (SN H, Fsnu(H), LS5 (H)) is a p-local
subgroup of (S, F, L) of index a power of p or prime to p.

If Q is a p’-group. In that case, (T, Fp, L) is a p-local finite subgroup of index
prime to p (defined in 26]). Then Ob(F¢) = Ob(F§;), Ta = T$ny(H) C T and, by
[OV1] Proposition 4.1(d)], this inclusion of categories induces, up to homotopy, a
covering space of |T| with covering group G/H = Q. We then have the following
commutative diagram with exact rows (here, ——s= means onto)

0 TTy o 0

NN
e H/

0 H G 0

I

and the following fibration sequences

Ter| — [T — BQ
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BH —— BG —— BQ .

Moreover, p induces a morphism of fibration sequences between these two.

If Q is a p-group. In that case, we have to be more careful on the collection of
subgroups of S we are working with. As in the case when @ is a p’-group we want to
apply [OV1] Proposition 4.1(d)]. This forces us to use the following collection. Let

H ={P e Ob(F!) | PNT € Ob(F%)}.

Since H <G, no element of T'= SN H is G-conjugate to any element of S\ T.
Thus, by [5a2] Lemma 3.5], for every P € Ob(F<"), PNT € Ob(F§) C Ob(F%). In
particular, Ob(F¢") C H C Ob(F9). Hence if L* C L9 is the full subcategory of L?
with set of objects H, by Proposition Z3(b), £7* defines a linking system associated
to F. On the level of transporter systems, the inclusions 7 C 77 O T* induce nat-
ural isomorphisms H*(|7*|, M) ~ H*(|T?, M) ~ H*(|T|, M). Indeed, we have the

following commutative diagram.

T— Tt TH

R

L— (1< [H

The vertical arrows induce isomorphisms in cohomology by Lemma[5.1] and the lower
horizontal one induces an isomorphism since, by Theorem 2.5 the inclusions of cat-
egories £ C £9 D LM induces |£] ~ |£%| ~ |£™|. Hence the upper arrows induce iso-
morphisms H*(|T7|, M) ~ H*(|T4|, M) ~ H*(|T|, M). Finally, By Proposition 2.7,
P € Ob(F}) if and only if P < T and P € H. In particular, 7 C 77*. Thus we can
assume for this part that 7 = T and Ty = T/

We have Ty C T is a transporter system associated to Fy and, by definition of
H, the hypotheses of [OV1], Proposition 4.1(d)], are satisfied. Thus this inclusion
induces a covering space of |T| with covering group G/H = Q. Therefore, We have
the following diagram with exact rows

0 T uos Q 0

A AN A
S s

0 H G Q 0

I'n

and the following fibration sequences

Ter| — [T| — BQ

BH —— BG —— BQ .

Moreover, p induces a morphism of fibration sequences between these two.
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Hence, in both cases, we have the following Serre spectral sequences

H(|T), M) <= H*(Q, H'(| T, M)),

H*(G, M) < H*(Q, H'(H,M)),

and p induces a morphism p* of spectral sequences between these two. By induction,
p* gives an isomorphism on the E5 page and then induces an isomorphism of spectral
sequences. In particular, p induces a natural isomorphism

H*(|T|, M) = H*(G, M).
The result follows by induction. O
Assume the hypotheses of Theorem 5.2l It remains to compare H*(G, M) with the

F-stable elements. This is also not obvious and they are not isomorphic in all cases.
On one hand, by Cartan-Eilenberg Theorem, we have H*(G, M) = lim H*(—, M).

Ts(G)
On the other hand, we have H*(F¢,M) = lim H*(—,M)= lim H*(—, M). Hence,
L5(G) Ts5(G)
it remains to compare lim H*(—,M) and lim H*(—,M). For that we can use a
Ts(G) Ts(G)

result of Grodal [Gx].

Definition 5.3. let G be a finite group, S € Syl (G) and M be a Z,)[G]-module.
Let K be the kernel of G — Aut(M). A subgroup P < S is called M -essential if

(i) the poset of non trivial p-subgroup of Ng(P)/P is empty or disconnected,
(ii) Z(P)N K € Syl,(Ca(P)NK),
(i) Op(Ne(P)/(P(Ca(P)NK))) =1.

The property (ii) looks like the definition of p-centric and (iii) looks like the defi-
nition of F-radical. For the property (i), if P is F-centric and fully normalized in F,
it is equivalent to P = .S or P is F-essential (JAKO) Definition 1.3.2]).

Theorem 5.4 (|[Grl Corollary 10.4]). Let G be a finite group, S a Sylow p-subgroup
of G and M a Z)[G]-module.

Let H be a family of subgroup of S containing S and all the subgroups which are
M -essential.

Then, the inclusion of S in G induce a natural isomorphism,

H*(G,M) = lim H*(—,M).
TH(G)

From this Theorem and Theorem (2] we get the following Corollary.

Corollary 5.5. Let G be a finite group, S a Sylow p-subgroup of G and (S, F, L) the
associated p-local finite group. Let M be a Zy)[mz]-module and assume that we have
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the following commutative diagram,

L
2N
T Aut(M)
G
that ps is surjective and that T := Im (@) = Im (). If T is p-solvable and and all the
M -essential subgroups of S are p-centric, then & and p induce natural isomorphisms,

H* (L], M) = H*(G, M) = H*(F°, M).

We also conjecture that it can be generalized to any abstract p-local finite group
and any Z,)[mc]-module with a p-solvable action.

Conjecture 5.6. Let (S, F, L) be a p-local finite group and let M be a Z,)[m1(|L£])]-
module. If the action of m1(|L]) on M is p-solvable, then the inclusion of BS in |L|
induces a natural isomorphism

H*(|L|, M) — H*(F°, M).

Corollary and Corollary give good evidence for Conjecture to be true.
The next section, which is a bit technical, is dedicated to give an example of
Conjecture where Corollary doesn’t apply (see Remark [6.7]).

6. The p-local structure of wreath products by C,: an example
for Conjecture

Let Gy be a finite group, Sy a Sylow p-subgroup of Gy and (So, Fo, Lo) be the
associated p-local finite group. We are interested in the wreath product G = Gg C),
S =501 C, and the associated p-local finite group (S, F, £). By [CL, Theorem 5.2
and Remark 5.3], we have that |L| ~ |Lo| ! BC) := |Lo|? x¢, EC), and an extension
(mzy )P — mz — Cp. In addition we have a section Cp, — 7, coming from %! BCp —
|Lo|t BCy, and thus mp = mg, 1 C).

We first give a lemma on strongly p-embedded subgroups. For a finite group G, a
subgroup H < G is strongly p-embedded, if p | |H| and for eachz € G\ H, HNxHx ™!
has order prime to p.

Lemma 6.1. Let G be a finite group, Go < G a subgroup of index a power of p. If
G contains a strongly p-embedded subgroup and p | |Gol, then Gy contains a strongly
p-embedded subgroup.

Proof. Let H be a strongly p-embedded subgroup of G. By [AKOL Proposition A.7],
H contains a Sylow p-subgroup of G so, up to conjugacy, we can choose H such that
H contains a Sylow p-subgroup of Gy. Hence Gy N H contains a Sylow p-subgroup of
Go and p | |Gy N H|. We will show that Go N H is a strongly p-embedded subgroup
of Go.
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As [G : H] is prime to p and [G : Go] is a power of p, Go N H is a proper subgroup
of Go.

It remains to show that, for each z € Go\ Go N H, (GoN H)Nx(Gy N H)z™!
has order prime to p. But (GoNH)Na(Go N H)x™! < HNaHxr™ !, thus, as H is
a strongly p-embedded subgroup of G, this last subgroup has order prime to p for
every x € G\ H. In particular, for each z € Go\ Go N H, (Go N H) Nz(Go N H)x™!
has order prime to p and Gy N H is a strongly p-embedded subgroup of Gy. O

We give also a lemma on JFj-essential subgroups for ;3 C F a subsystem of index
a power of p. A proper subgroup P < S is F-essential if P is F-centric and fully
normalized in F, and if Outz(P) contains a strongly p-embedded subgroup.

Lemma 6.2. Let (S, F, L) be a p-local finite group and (S1, F1,L1) a p-local subgroup
of index a power of p. If P < 51 is F-essential, then P is Fi-conjugate to an Fi-
essential subgroup and P is Fi-essential if and only if P is fully normalized in F.

Proof. Let P < S; be an F-essential subgroup. Since Fj is saturated, P is Fi-
conjugate to a subgroup of S; fully normalized in F;. If P is Fj-essential, it is in
particular fully normalized in F;. Thus, it remains to prove that if P is fully nor-
malized in Fi, then P is Fj-essential. For the remaining, we assume that P is fully
normalized in F; and F-essential.

P is Fi-centric: As P is F-centric, Cs(Q) = Z(Q) for all Q € P7. In particular,
for all Q € P71 C PF, Cg,(Q) = Z(Q) and P is Fi-centric.

Outz, (P) contains a strongly p-embedded subgroup: Since P is F-essential, the
group Outz(P) contains a strongly p-embedded subgroup. As F; is a subsystem
of F of index a power of p, Outz, (P) is a subgroup of Outz(P) of index a power
of p. Moreover, as P is a proper subgroup of Si, P < Ng,(P) and, as P is Fi-
centric, every element of Ng, (P) ~ Z(P) induces a non trivial element in Outz, (P).
Hence p | |Outz, (P)| and, by Lemma [61] Outz, (P) contains a strongly p-embedded
subgroup. O

We can easily describe the essential subgroups of a product of fusion systems.

Lemma 6.3. Let (S1,71,L1) and (Sa, Fo, L2) be p-local finite groups and set S =
S1 %X Sy and F = Fy X Fa. The F-essential subgroups of S are of the form Q1 x Sa
with Q1 < S1 Fi-essential or S1 X Q2 with Qo > Sy Fo-essential.

Proof. Let P < S be a F-essential subgroup. By [AKOI Proposition 1.3.3], P is F-
centric and F-radical. Thus, by [AOV] Lemma 3.1], P = P; x P, with P; < S; and
P; F;-centric.

Remark also that, if we have two groups G and G2 such that p divide |G| and
|G2| then G x G cannot contain a strongly p-embedded subgroup. To see that let S;
be a Sylow p-subgroup of G; and set H = (z € G | z(S1 x S2)z7 1N Sy x S2 #1). H
contains G; x {0} and {0} x G2 so that H = G. Thus, by [AKOI Proposition A.7],
this implies that G has no strongly p-embedded subgroups.

We also have that Outz(P) = Outz, (P1) x Outz, (Pz). Hence, the only possibility
for P to be F-essential is that P, = S7 and P, is F»-essential or the contrary. O

Let Gy be a finite group, Sy a Sylow p-subgroup of G and (S, Fo, Lo) be the asso-
ciated p-local finite group. We consider the wreath product G = G 1 Cy, S = Sp 1 ()
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and the associated p-local finite group (S, F, £). Here, for the direct computation, we
will take the notation of Alperin and Fong [AF]: an element of G will be represented
by permutation matrix corresponding to the powers of (1,2,...,p) with entries in
G and the composition will follow the matrix product with the composition in Gy.
Denote by ¢ € G the element

0 0 0 e

e 0 0 0
e®@Pug,.p) =

: 00

0 e O

where e is the trivial element of Gy. Here, we are interested in the F-essential sub-

groups.

Lemma 6.4. Let P < S be an F-essential subgroup.

(E1) If P < S§, then either P = S§ and Ng(P) = Ng,(So) 1 Cp or P is F} -essential
and Ng(P) = Ngg(P).

(Ez) If P £ 5%, then P =2 Q1 C, where Q is Fo-essential and we have Ng(P)/P =
Ng,(Q)/Q through the diagonal map Gy — G.

Proof. Let P < S be an F-essential subgroup.

Assume first that P < SP. If P = S} a direct calculation gives N (P) = Ng,(S0)?
C,. Else, by Lemmal[6.2] we know that P is F{-conjugate to an JF{-essential subgroup
Q < S§. By Lemma [6.3] we have N¢(Q) < G and, in particular, Ng(Q) = Nz (Q).
Thus, since P is F{-conjugate to @, we also have Ng(P) = Ngr (P) and, since P
is fully normalized in F, it is fully normalized in F§. Hence, by Lemma [62, P is
Fo-essential.

Secondly, assume that P & Sj. As all choices of a splitting C), — G are conjugate in
G, we can assume that P = (Py,x) where Py = PN Sy and = = ((x1,22,...,2p),¢)
is such that o € Fy. Up to conjugation in Sy C), we can assume that x is of the
form ((a,1,1,...,1),¢) where a € Ng,(Q) where @ is the projection of Py on the first
factor. If we write Pél) the projection of Py on its ith factor, as x normalizes Py, we
have that Po(l) = PO(J) for all 4,5 and then Py < (Po(l))p =QP.

Notice also that Ng(P) = (Ngr(P),z). If g=(g1,...,9p) € Ngr(P), as g nor-
malizes P N GY = Py, we have, for all 4, g; € Ng,(Q). Moreover, if we denote h =
(h1,y...,hy) = grg~tz=1 € Py, we have, for all i, g;h; = gi—1 (with go = g,). There-
fore, thereis b’ € QP such that g = (¢1,91,--.,01)-h € (Ng,(Q) ® Id, QP) < N (QP).
Hence, every automorphism ¢, € Autz(P) can be extended to an automorphism of
(QP, ). As P is F essential, by [AKOL Proposition 1.3.3], P = (Q?, z). Now, 2P € QP
implies that a € @ so P = (QF,z) = (QP,c) = QU1 ).

Finally, direct computations give that

g 0 - 0

ColP)= Co,@ola={ " ¢ " Tligeca©
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and
Ng(P)/P = Ng,(Q)/Q ®1d = Ng,(Q)/ Q.

In particular, as P is p-centric, Q is Go-centric. Moreover, as Ng(P)/P = Outz(P)
contains a strongly p-embedded subgroup, Outz,(Q) = Ng,(Q)/Q does as well. Up
to conjugacy, we can also assume that @ is fully normalized in Fy and thus @ is
JFo-essential. O

Let us now look at some cohomological results. Recall that for a group G, a sub-
group H < G, and M a F,[H]-module, we define the induced and coinduced F,[G]-
module by,

Indfj (M) = F,[G] @,y M colnd§;(M) = Homg, s (F,[G], M).

Recall also that, when the index of H in G is finite, these two F,[G]-modules are
isomorphic (by [Wel Lemma 6.3.4]).

Lemma 6.5. Let X be a CW complex and denote by G its fundamental group. If Xo
is a covering space of X with fundamental group Go < G of finite index, then, for
every F,[Go]-module M, we have a natural isomorphism of F,[G/Go]-modules,

H*(Xo, Ind, (M)) = H*(Xo, M) ®x, F,[G/Go).
Where, on the right side, G/Gq is only acting by translation on Fp[G/Go].

Proof. This can be easily seen on the chain level. Let X be the universal covering
space of X. As F,[G/Go]-modules, we have the following

Homg, () (C+(X),Ind§ (M)) = €D Homg, g, (C.(X),g.M)
9€[G/Go)

where the action of G/G is permuting the terms in the sum. But, each terms in the
sum is isomorphic, as (trivial) F,[G/Go]-modules, to Homg, g, (C«(X), M). Thus

Homg (g, (Cy(X), Indg, (M)) = Homp, g,) (C«(X), M) ®, F,[G/Go).

This induces the wanted isomorphism in cohomology. O
Proposition 6.6. Let Gy be a finite group and (So, Fo, Lo) be the associated p-local
finite group. Consider G = Go1Cp, S = So 1 Cp, a Sylow p-subgroup of G and (S, F, L)
the associated p-local finite group. Let M be a Fp[m,]-module.

If §s, induce natural isomorphisms

H*(|Lol, M) = H*((Fo)*, M),
and
H*(|Lo[P, colnds (M®P)) = H*((FE)°, colnds (M®P))
) )
then dg induces a natural isomorphism

H*(L], colnd’§ (M®P)) = H*(F*, colnd’s (M®P)).
Lo Lo
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Proof. Write N = colnd™§ (M®P) and, for i € {1,2}, denote by H*(F¥i, N) the sta-
Lo
ble elements of H*(S, N) under the full subcategory of F with objects S and all the
subgroups of S of type (E;) defined in Lemma [6-4
By the Mackey Formula,
ﬂ.P
Resg‘fcp Ind:‘éo = Indgic” ResQ‘;U .

Thus by Shapiro’s Lemma (see for example [Evi Proposition 4.1.3]) and the Kunneth
Formula, for every P = Q1 C, of type (Es), we have a natural isomorphism H*(Q?
Cp, N) = H*(QP, M®?) =~ H*(Q, M)®? and, by the computation of normalizers in
Lemma [6.4]

H*(Q C,,,N)Autf(@ch) o (H*(Q,M)Autfo(Q))(@P'

Hence, applying this to all the subgroups of type (E2) and, by naturality of the
Shapiro isomorphisms, we have that,

H*(F"*,N) = H*(F§, M)®P.

On the other hand, by [CLL Theorem 5.2 and Remark 5.3], |£o|? has the homotopy
type of a covering space of |£| with covering group C,. Then, if we denote by X the
universal covering space of |£] (which is also the universal covering space of |Lo|?),
we have the following isomorphism on the chain level (because Res and colnd are
adjoint functors)

HOIDZ@)[,T?ZO](C*(X), M®P) = HomZ(p)[ﬂ.C](C*(X), N)

which is analogue to the Shapiro isomorphism (see [Evl, Proposition 4.1.3]). By the
Kunneth Formula, it gives us the following isomorphism on cohomology

H*(|Lo|, M)®P = H*(IL], N)

and give the following commutative diagram

H*(Sy, M)®? —~ H*(S, N)

Wl

H*(|Lol, M)®P ——= H*(|£], N)

Thus dg induces an isomorphism
H*(]:EzvN) = H*(]:gvM)@p = H*(|£0|=M)®p = H*(l‘ClvN)

Secondly, by factoring the Shapiro isomorphism (see [Evl Proposition 4.1.3]), the
inclusion of S in S induces an injection H*(S, N) < H*(SF, N). Hence

H*(FE' N) = H*((F})°,N)“» < H*(S}, N).
By assumption, 555 induces an isomorphism
H*((F§)S, N) = H*(|Lo”, N).

Moreover, by Lemma [G.5] this last term is isomorphic to H*(|Lo|P, M®P) @ F,[C,]
and, in particular, it is a projective F,[C}]-module.
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Consider now the Serre spectral sequence associated to the fibration sequence
|Lo|P —— |£] — BC,
with coefficients in V. The Ey page is the following,
Ey" = H*(Cp, H'(|Lol?, N))
and, by projectivity of H!(|Lo|?, N), the F page is concentrated in the Oth column.

Hence, we have that, H*(|Lo[?, N)C» = ES™* =~ H*(|L|, N).
In conclusion,

H*(F¢,N) = H*(FF' NYn H*(F¥2,N) = H*(|L|, N)
and the theorem follows. O

This proposition is a bit technical but we will use it in a specific case. Consider
p =5, the group Go = GLg(F3), the wreath product G = Go ! Cs and (So, Fo, Lo)
and (S, F, L) the associated 5-local finite groups. By |[Rul, Theorem 6.3], we know
that (Sp, Fo, Lo) admits a 5-local subgroup of index 4 which is exotic (Se, Fe, L) and
that we have a fibration sequence

|£e| —_— |£0| —— BC4.

In particular, we have 7. /71'%6 = (C41Cs and we can be interested in comparing
H*(|L],N) and H*(F¢,N) for
N =F5[C42C5] = Ind™ (M®°) = colnd™s (M®?)
Lo Lo
(the action factors through a finite group) with M = F5[Cy].
By Corollary [4.4] we have that dg, and 9 s induce natural isomorphisms

H*(|‘C0|5M) = H*((F0)67M> and
H*(|Lo°, colnd™¢ (M®®)) = H*((F5)°, colnd™ (M®)),
Lo Lo
(for the second isomorphism, notice that [£o|® has the homotopy type of a linking

system associated to F5 by [CLL Proposition 2.17]). Hence, all the hypothesis of
Proposition are satisfied and

H*(|£], N) = H*(F°, N).

Remark 6.7. This gives us an example of isomorphism between the cohomology of
|£] and the stable elements when the action factors through a p-solvable group which
cannot be recovered by a previous result. Notice that, even if the fusion system F
is realizable, as F. is exotic, we cannot find a group G with S € Syl (G) such that
G acts on M in the same way as asked in Section [Bl This example gives us some
additional evidence for Conjecture
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