Topological expansion in isomorphism theorems between matrix-valued fields and random walks - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2022

Topological expansion in isomorphism theorems between matrix-valued fields and random walks

Résumé

We consider Gaussian fields of real symmetric, complex Hermitian or quaternionic Hermitian matrices over an electrical network, and describe how the isomorphisms between these fields and random walks give rise to topological expansions encoded by ribbon graphs. We further consider matrix-valued Gaussian fields twisted by an orthogonal, unitary or symplectic connection. In this case the isomorphisms involve traces of holonomies of the connection along random walk loops parametrized by boundary cycles of ribbon graphs.
Fichier principal
Vignette du fichier
Topo_expansion_isomorphisms_2021.pdf (543.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02266669 , version 1 (15-08-2019)
hal-02266669 , version 2 (25-02-2020)
hal-02266669 , version 3 (02-08-2021)

Identifiants

Citer

Titus Lupu. Topological expansion in isomorphism theorems between matrix-valued fields and random walks. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2022, 58 (2), pp.695-721. ⟨10.1214/21-AIHP1198⟩. ⟨hal-02266669v3⟩
99 Consultations
138 Téléchargements

Altmetric

Partager

More