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Topological expansion in isomorphism theorems between matrix-valued fields and random walks

Titus Lupu

Introduction

It is known since the works of Symanzik [START_REF] Symanzik | Euclidean quantum field theory I: Equations for a scalar model[END_REF][START_REF] Symanzik | Euclidean quantum field theory I. Equations for a scalar model[END_REF][START_REF] Symanzik | Euclidean quantum field theory[END_REF] and Brydges, Fröhlich and Spencer [START_REF] Brydges | The random walk representation of classical spin systems and correlation inequalities[END_REF] that the Gaussian free field (GFF) has representations involving random walks, sometimes referred to as "isomorphisms". For a survey on the subject we refer to [START_REF] Marcus | Markov processes, Gaussian processes and local times[END_REF][START_REF] Sznitman | Topics in occupation times and Gaussian free field[END_REF]. Here we will be interested in a representation that appears in Brydges, Fröhlich, Spencer [START_REF] Brydges | The random walk representation of classical spin systems and correlation inequalities[END_REF] and Dynkin [START_REF] Dynkin | Gaussian and non-Gaussian random fields associated with Markov processes[END_REF][START_REF] Dynkin | Local times and quantum fields[END_REF], that expresses

E " 2r ź k"1 φpx k qF pφ 2 {2q ı ,
for φ a GFF, in terms of pairings of vertices x k -s and random walks joining the pairs. Following [START_REF] Bauerschmidt | The geometry of random walk isomorphism theorems[END_REF], we will call it the BFS-Dynkin isomorphism. Kassel and Lévy considered vector-valued GFFs twisted by an orthogonal or unitary connection [START_REF] Kassel | Covariant Symanzik identities[END_REF]. In this setting isomorphism theorems involve the holonomy of the connection along the random walks. Holonomies along random walk or Brownian loops have been also studied in [START_REF] Le | Markov loops, coverings and fields[END_REF][START_REF] Le | Brownian loops topology[END_REF][START_REF] Camia | Limit theorems for loop soup random variables[END_REF].

In this paper we will consider fields of random Gaussian matrices, real symmetric, complex Hermitian or quaternionic Hermitian, on an electrical network. These are matrix-valued GFFs. The matrix above any vertex of the network is proportional to a GOE, GUE or GSE matrix. Here we will write an isomorphism for (1.1)

A´m pνq ź l"1 Tr ´ν1 `¨¨¨`ν l ź k"ν 1 `¨¨¨`ν l´1 `1 Φpx k q ¯¯F pTrpΦ 2 q{2q E β,n
, where Φ is the matrix-valued GFF, β P t1, 2, 4u, n is the size of the matrices, ν 1 , . . . , ν mpνq are positive integers with |ν| :" ν 1 `¨¨¨`ν mpνq even, and x 1 , . . . , x |ν| vertices on the network. By taking the x k -s equal inside each of the traces, we get symmetric polynomials in the eigenvalues. By expanding the traces and the product above, one can write a BFS-Dynkin's isomorphism for each of the terms of the sum. However, one gets many different terms that give identical contributions, many terms with contributions that cancel out, being of opposite sign, and many terms that give zero contribution. By regrouping the terms surviving to cancellation into powers of n, one gets a combinatorial structure known as a topological expansion. The terms of the expansion correspond to ribbon graphs with mpνq vertices, obtained by pairing and gluing |ν| ribbon half-edges. Each gluing may be straight or twisted. The power of n is then given by the number of cycles formed by the boundary components of the ribbons. It can be also expressed in terms of genera of compact surfaces, orientable or not.

The topological expansion has been introduced by 't Hooft for the study of Quantum Chromodynamics [tH74], and further developed by Brézin, Itzykson, Parisi and Zuber [START_REF] Brézin | Planar diagrams[END_REF][START_REF] Itzykson | The planar approximation[END_REF]. Nowadays there is a broad, primarily physics literature on this topic. In particular, topological expansion of one matrix or several matrix integrals is used for the enumeration of maps on surfaces and other graphical objects [START_REF] Bessis | Quantum field theory techniques in graphical enumeration[END_REF][START_REF] Zvonkin | Matrix integrals and map enumeration: an accessible introduction[END_REF][START_REF] Lando | Graphs on Surfaces and Their Applications[END_REF][START_REF] Eynard | Counting Surfaces[END_REF]. Compared to the case of one matrix integrals, where each ribbon edge comes only with a scalar weight, in our setting each ribbon edge will be associated to a measure on random walk paths between two vertices x k and x k 1 on the network. For an introduction to the topological expansion we refer to [START_REF] Zvonkin | Matrix integrals and map enumeration: an accessible introduction[END_REF][START_REF] Eynard | Random matrices[END_REF].

We will further extend our framework and consider matrix-valued free fields twisted by a connection of orthogonal (β " 1), unitary (β " 2) or symplectic (β " 4) matrices. We rely for this on results of Kassel and Lévy for twisted vector-valued GFFs [START_REF] Kassel | Covariant Symanzik identities[END_REF]. If Φ is the matrix-valued GFF twisted by a connection U and pλ 1 , . . . , λ n q its fields of eigenvalues, then the isomorphism for

A mpνq ź l"1 ´n ÿ i"1 λ i px ν 1 `¨¨¨`ν l q ν l ¯F ´1 2 n ÿ i"1 λ 2 i ¯EU β,n
involves a topological expansion where instead of n to the power the number of cycles in a ribbon graph appears a product of traces of holonomies of the connection, one per each boundary cycle in the ribbon graph. The holonomies are taken along loops made of concatenated random walk paths. Such traces of holonomies along loops are called Wilson loop observables.

Preliminaries

2.1. Quaternions, symplectic matrices and quaternionic Hermitian matrices. H will denote the skew (non-commutative) field of quaternions. Its elements are of the form q " q r `qi i `qj j `qk k, where q r , q i , q j , q k P R, and i, j and k satisfy the relations i 2 " j 2 " k 2 " ´1, ij " ´ji " k, jk " ´kj " i, ki " ´ik " j.

The coefficient q r is the real part Repqq of the quaternion q. The algebra of quaternions has the usual representation over 2 ˆ2 complex matrices:

Cpqq " ¨qr `qi i ´qj ´qk i q j ´qk i q r ´qi i

‹ ‹ ' .
The conjugate of a quaternion is given by q " q r ´qi i ´qj j ´qk k.

The matrix Cpqq is the adjoint of Cpqq for the Hermitian inner product:

Cpqq " Cpqq ˚.

If q 1 , q 2 P H, q 1 q 2 " q2 q1 .

The absolute value |q| is given by

|q| 2 " q 2 r `q2 i `q2 j `q2
k " q q " qq " detpCpqqq. For more on quaternions, we refer to [START_REF] João | Real Quaternionic Calculus Handbook[END_REF].

We will denote by M n pHq the ring of n ˆn matrices with quaternionic entries. The product of matrices is defined in the same way as for matrices over a commutative field:

pABq ij " n ÿ k"1 A ik B kj ,
i, j P t1, . . . , nu.

One can associate to a matrix M P M n pHq a 2n ˆ2n matrix with complex entries, by replacing each entry M ij by a 2 ˆ2 block CpM ij q. The resulting matrix in M 2n pCq will be again denoted CpM q. The map C is then a morphism of rings from M n pHq to M 2n pCq.

The trace of a matrix of quaternions is defined as usually:

TrpM q " n ÿ i"1 M ii .
However, it is more convenient to deal with the real part of the trace, as

RepTrpM qq " 1 2 TrpCpM qq, and for A, B P M n pHq, RepTrpABqq " RepTrpBAqq. Note that in general there is no equality between TrpABq and TrpBAq, since the product of quaternions is not commutative.

The quaternion adjoint of a matrix M P M n pHq, denoted M ˚, extends the notion of adjoint for matrices with complex entries:

pM ˚qij " M ji , i, j P t1, . . . , nu,
where M ji is the quaternion conjugate. We have that

CpM ˚q " CpM q ˚,
where on the left-hand side ˚denotes the quaternion adjoint, and on the right-hand side, The quaternionic unitary group, U pn, Hq is the set of matrices U P M n pHq satisfying U U ˚" I n , I n being the n ˆn identity matrix. The relation above is equivalent to

U ˚U " I n .
If U P U pn, Hq, detpCpU qq " 1, and CpU q P SU p2nq. The image of U pn, Hq by C is the compact symplectic group Sppnq, a subgroup of SU p2nq.

The set of nˆn quaternionic Hermitian matrices H n pHq is composed of matrices M P M n pHq satisfying M ˚" M. A matrix M P M n pHq is quaternionic Hermitian if and only if CpM q is complex Hermitian. The diagonal entries of a quaternionic Hermitian matrix are real. Given M P H n pHq, there exists U P U pn, Hq such that U ˚M U is diagonal with real entries:

U ˚M U " Diagpλ 1 , λ 2 , . . . , λ n q,
with λ 1 ě λ 2 ě ¨¨¨ě λ n P R. The family λ 1 , λ 2 , . . . , λ n is uniquely determined. This is also the family of ordered eigenvalues of CpM q, but the multiplicities have to be doubled. λ 1 , λ 2 , . . . , λ n are the right eigenvalues of M , and form the right spectrum of M , i.e. the set of λ P H, for which the equation M x " xλ has a non-zero solution. There is also a notion of left spectrum, corresponding to the equation M x " λx. But the right and the left spectra do not necessarily coincide, even for quaternionic Hermitian matrices. For details on eigenvalues of quaternionic matrices we refer to [START_REF] Zhang | Quaternions and matrices of quaternions[END_REF][START_REF] João | Real Quaternionic Calculus Handbook[END_REF]. For M P H n pHq, the trace of M also equals TrpM q " RepTrpM qq "

n ÿ i"1 λ i .
2.2. BFS-Dynkin isomorphism. Let G " pV, Eq be a finite undirected connected graph. We do not allow multiple edges or self-loops. Edges tx, yu P E are endowed with conductances Cpx, yq " Cpy, xq ą 0. There also a not identically zero killing measure pκpxqq xPV , with κpxq ě 0. The graph G will be further referred to as an electrical network. Let pX t q tě0 be the Markov jump process to nearest neighbors with jump rates given by the conductances. pX t q tě0 is also killed by κ. Let ζ P p0, `8s be the first time pX t q tě0 gets killed by κ.

Let pGpx, yqq x,yPV be the Green's function:

Gpx, yq " Gpy, xq " E " ż ζ 0 1 tXt"yu dt ˇˇX 0 " x ı .
Let p t px, yq be the transition probabilities of pX t q 0ďtăζ . Then p t px, yq " p t py, xq and Gpx, yq " ż `8 0 p t px, yqdt.

Let P x,y t be the bridge probability measure from x to y, where one conditions by t ă ζ. Let µ x,y be the following measure on paths from x to y in finite time:

(2.1) µ x,y pdγq "

ż `8 0 P x,y t pdγqp t px, yqdt.
The measure µ x,y has total mass Gpx, yq. The image of µ x,y by time reversal is µ y,x . Given x 1 , x 2 , . . . , x 2r P V and p " tta 1 , b 1 u, . . . , ta r , b r uu a partition in pairs of t1, . . . , 2ru, µ x 1 ,x 2 ,...,x 2r p pdγ 1 , . . . , dγ r q will denote the following product measure on r-tuples of paths: µ x 1 ,x 2 ,...,x 2r p pdγ 1 , . . . , dγ r q " r ź i"1 µ xa i ,x b i pdγ i q.

We will sometimes, in particular in Section 3.2, use the convention that a i ă b i . The order of the pairs in p will not be important.

In general, for a path γ and x P V , Lpγq will denote the occupation field of γ, Lpγqpxq "

ż T pγq 0 1 tγptq"xu dt,
where T pγq is the life-time of the path. The (scalar real) Gaussian free field (GFF) pφpxqq xPV will denote here the centered Gaussian process with covariance Erφpxqφpyqs " Gpx, yq. The distribution of pφpxqq xPV is given by (2.2) 1

pp2πq CardpV q det Gq 1 2 exp ´´1 2 ÿ xPV κpxqϕpxq 2 ´1 2 ÿ tx,yuPE
Cpx, yqpϕpyq´ϕpxqq 2 ¯ź xPV dϕpxq.

The following isomorphism relates the square of the GFF pφpxq 2 q xPV and the occupation fields of paths under the measures µ x,y . It first appears in the work of Brydges, Fröhlich and Spencer [START_REF] Brydges | The random walk representation of classical spin systems and correlation inequalities[END_REF] (see also [START_REF] Fröhlich | On the triviality of λφ 4 d theories and the approach to the critical point in d ě 4 dimensions[END_REF][START_REF] Brydges | The random walk representation of classical spin systems and correlation inequalities. II. The skeleton inequalities[END_REF][START_REF] Brydges | A new proof of the existence and non-triviality of the continuum φ 4 2 and φ 4 3 quantum field theories[END_REF]) and then in that of Dynkin [START_REF] Dynkin | Gaussian and non-Gaussian random fields associated with Markov processes[END_REF][START_REF] Dynkin | Local times and quantum fields[END_REF] (see also [START_REF] Dynkin | Polynomials of the occupation field and related random fields[END_REF]). It is also related to earlier works of Symanzik [START_REF] Symanzik | Euclidean quantum field theory I: Equations for a scalar model[END_REF][START_REF] Symanzik | Euclidean quantum field theory I. Equations for a scalar model[END_REF][START_REF] Symanzik | Euclidean quantum field theory[END_REF]. For more on isomorphism theorems, see [START_REF] Marcus | Markov processes, Gaussian processes and local times[END_REF][START_REF] Sznitman | Topics in occupation times and Gaussian free field[END_REF].

Theorem 2.1 (Brydges-Fröhlich-Spencer [START_REF] Brydges | The random walk representation of classical spin systems and correlation inequalities[END_REF], Dynkin [START_REF] Dynkin | Gaussian and non-Gaussian random fields associated with Markov processes[END_REF][START_REF] Dynkin | Local times and quantum fields[END_REF]). Let r P Nzt0u, x 1 , x 2 , . . . , x 2r P V and F a bounded measurable function R

V Ñ R. Then E " 2r ź k"1 φpx k qF pφ 2 {2q ı " ÿ p partition of t1,...,2ru in pairs ż γ 1 ,...γr E " F pφ 2 {2`Lpγ 1 q`¨¨¨`Lpγ r qq ı µ x 1 ,x 2 ,...,x 2r
p pdγ 1 , . . . , dγ r q.

2.3. Connections, gauge equivalence and Wilson loops. Let n P N, n ě 2. Let U be the group of either n ˆn orthogonal matrices Opnq, or unitary matrices U pnq, or quaternionic unitary matrices U pn, Hq. We consider that each undirected edge in E consists of two directed edges of opposite direction. We consider a family of matrices in U, pU px, yqq tx,yuPE , with U py, xq " U px, yq ˚" U px, yq ´1, @tx, yu P E.

pU px, yqq tx,yuPE is our connection on the vector bundle with base space G and fiber respectively R n , C n or H n . Given a nearest-neighbor oriented discrete path γ " py 1 , y 2 , . . . , y j q, the holonomy of U along γ is the product hol U pγq " U py 1 , y 2 qU py 2 , y 3 q . . . U py j´1 , y j q.

If the path γ is a nearest-neighbor path parametrized by continuous time, and does only a finite number of jumps, the holonomy hol U pγq is defined as the holonomy along the discrete skeleton of γ. We will denote by Ð Ý γ the time-reversal of a path γ. We have that

(2.3) hol U p Ð Ý γ q " hol U pγq ˚" hol U pγq ´1.
Given a nearest-neighbor oriented discrete closed path (i.e. a loop) γ " py 1 , y 2 , . . . , y j q, with y j " y 1 , we will consider the observable Trphol U pγqq in the orthogonal and unitary case, and RepTrphol U pγqqq " 1 2 TrpCphol U pγqqq in the quaternionic unitary case. Such observables are called Wilson loops [START_REF] Kenneth | Confinement of quarks[END_REF]. Note that the Wilson loop observable does not depend on where the loop γ is rooted. Indeed, if γ is the loop visiting py i , . . . , y j , y 1 , . . . , y i´1 , y i q pi P t2, . . . , juq, and if γ 1 is the path visiting py 1 , . . . , y i q then hol U pγq " hol U pγ 1 q ´1hol U pγqhol U pγ 1 q.

Given another family of matrices in U, pUpxqq xPV , this time on top of vertices, it induces a gauge transformation on the connection U : pU px, yqq tx,yuPE Þ ÝÑ pUpxq ´1U px, yqUpyqq tx,yuPE .

Two connections related by a gauge transformation are said to be gauge equivalent. A connection is trivial if it is gauge equivalent to the identity connection. A criterion for triviality is that along any nearest-neighbor loop γ " py 1 , y 2 , . . . , y j q, with y j " y 1 , hol U pγq " I n .

In general, any two gauge equivalent connections have the same Wilson loop observables. The converse is also true (but non-obvious): the collection of all possible Wilson loop observables characterizes a connection up to gauge transformations [START_REF] Giles | Reconstruction of gauge potentials from Wilson loops[END_REF][START_REF] Sengupta | Gauge invariant functions of connections[END_REF][START_REF] Lévy | Wilson loops in the light of spin networks[END_REF].

2.4. BFS-Dynkin isomorphism for the Gaussian free field twisted by a connection. In [KL16] Kassel and Lévy introduced the vector-valued GFF twisted by an orthogonal/unitary connection, and generalized the isomorphisms with random walks to this case. Here we will do a less abstract, more computational presentation of the same object. Kassel and Lévy's isomorphisms rely on a covariant Feynman-Kac formula ([BFS79] and Theorem 3.1 in [START_REF] Kassel | Covariant Symanzik identities[END_REF]).

Let us consider on top of the electrical network G " pV, Eq an orthogonal connection pU px, yqq tx,yuPE , U px, yq P Opnq. The Green's function G U associated to the connection U is a function from V ˆV to M n pRq (i.e. the n ˆn matrices with real entries), with the entries given by

G U ij px, yq " ż γ hol U ij pγqµ
x,y pdγq, x, y P V, i, j P t1, . . . , nu,

where the measure on paths µ x,y pdγq is given by (2.1). Since the image of µ x,y by time reversal is µ y,x , and because of (2.3), we have that 

G U ij px, yq " G U ji py, xq, G U ij px, xq " G U ji px,
E " F p} p φ} 2 {2 `Lpγ 1 q `¨¨¨`Lpγ r qq ı r ź i"1 hol U Jpa i qJpb i q pγ i qµ xa i ,x b i pdγ i q,
where the sum runs over the p2rq!{p2 r r!q partitions of t1, . . . , 2ru in pairs.

Next we rewrite slightly the isomorphism above. This will be used in Section 4, in the proofs of Lemmas 4.1 and 4.6. Let p p X piq q iě1 be an i.i.d. family of random Gaussian vectors with n components, following the law N p0, I n q.

Lemma 2.3. Let r P Nzt0u, x 1 , x 2 , . . . , x 2r P V , Jp1q, Jp2q, . . . , Jp2rq P t1, . . . , nu and F a bounded measurable function R

V Ñ R. Then E " 2r ź k"1 p φ Jpkq px k qF p} p φ} 2 {2q ı " ÿ partitions of t1,...,2ru in pairs tta 1 ,b 1 u,...,tar,bruu ż γ 1 ,...γr E " F p} p φ} 2 {2 `Lpγ 1 q `¨¨¨`Lpγ r qq ı Ê" r ź i"1 ´hol U pγ i q p X piq ¯Jpa i q p X piq Jpb i q ı r ź i"1 µ xa i ,x b i pdγ i q,
where the sum runs over the p2rq!{p2 r r!q partitions of t1, . . . , 2ru in pairs. Proof. Indeed,

E " r ź i"1 ´hol U pγ i q p X piq ¯Jpa i q p X piq Jpb i q ı " r ź i"1 hol U Jpa i qJpb i q pγ i q.
2.5. Ribbon graphs and surfaces. Here we describe the ribbon graphs and the related twodimensional surfaces. For more details, we refer to

[Eyn16, Sections 2.2, 2.3], [EKR18, Chap- ter 2], [LZ04, Sections 3.2, 3.3], [Zvo97]
, and [MT01, Section 3.3]. Let ν " pν 1 , ν 2 , . . . , ν m q, where m ě 1, and for all l P t1, 2, . . . , mu, ν l P Nzt0u. We will denote mpνq " m, |ν| "

mpνq ÿ l"1 ν l .
We will assume that |ν| is even. Given ν as above, we consider mpνq vertices, where each vertex has adjacent ribbon half-edges: ν 1 half-edges for the first vertex, ν 2 for the second, etc. A ribbon half-edge is a two-dimensional object and carries an orientation. Also, the ribbon half-edges around each vertex are ordered in a cyclic way. The ribbon half-edges are numbered from 1 to |ν|. See Figure 1 for an illustration with ν " p4, 3, 1q. Since the total number of half-edges, |ν|, is even, one can pair them to obtain a ribbon graph (not necessarily connected), with mpνq vertices and |ν|{2 ribbon edges. Each time we pair two half-edges, we can glue the corresponding ribbons in two different ways. Either the orientations of the two ribbon half-edges match, or are opposite. In the first case we get a straight ribbon edge, in the second a twisted ribbon edge. See Figure 2. We call such a pairing of ribbon halfedges that keeps straight or twists the ribbons a ribbon pairing. Let R ν be the set of all possible ribbon pairings associated to ν. The number of different ribbon pairings is A ribbon pairing ρ P R ν induces a partition in pairs of t1, . . . , |ν|u, denoted p ν pρq. The pairs correspond to the labels of ribbon half-edges associated into an edge. Conversely, given p a partition in pairs of t1, . . . , |ν|u, R ν,p will denote the subset of R ν made of all ribbon pairings ρ such that p ν pρq " p (CardpR ν,p q " 2 |ν|{2 ).

CardpR ν q " |ν|! 2 |ν|{2 p|ν|{2q! 2 |ν|{2 " |ν|! p|ν|{2q! .
Given a ribbon pairing ρ P R ν , one can see the corresponding ribbon graph as a twodimensional compact bordered surface (not necessarily connected). Let f ν pρq denote the number of the connected components of the boundary, that is to say the number of distinct cycles formed by the borders of ribbons. On Figure 3, f ν pρq " 3, and on Figure 4, f ν pρq " 2. Then, one can glue along each connected component of the boundary a disk (f ν pρq disks in total), and obtain in this way a two-dimensional compact surface (not necessarily connected) without boundary. We will denote it Σ ν pρq, and consider it up to diffeomorphisms. On the example of Figure 3, Σ ν pρq has two connected components, a torus on the left and a sphere on the right. On the example of Figure 4, Σ ν pρq has again two connected components, a Klein bottle on the left and a projective plane on the right. Observe that if all the edges are straight, the surfaces that appear are orientable. Let χ ν pρq denote the Euler's characteristic of Σ ν pρq. According to Euler's formula,

χ ν pρq " mpνq ´|ν| 2 `fν pρq.
Next we introduce additional combinatorial objects related to the ribbon pairings. We will consider tuples pk 1 , s 1 , k 2 , s 2 , . . . , k j , s j q, where j P Nzt0u, each of the k i is in Nzt0u, and each of the s i is one of the three abstract symbols Ñ, Ð or . ". We will endow such tuples by an equivalence relation « generated by the following rules.

' Cyclic permutation: for any i P t2, . . . , ju, pk i , s i , . . . , k j , s j , k 1 , s 1 , . . . , k i´1 , s i´1 q is identified to pk 1 , s 1 , k 2 , s 2 , . . . , k j , s j q. ' Reversal of the direction: pk j , rps j q, . . . , k 2 , rps 2 q, k 1 , rps 1 qq is identified to pk 1 , s 1 , k 2 , s 2 , . . . , k j , s j q, where rpÑq is Ð, rpÐq is Ñ, and rp . "q is . ". For lack of a better name, we will call trails the equivalence classes of «.

Given a ribbon pairing ρ P R ν , we will associate to ρ a set T ν pρq made of f ν pρq trails, one per each boundary cycle in the ribbon pairing. One starts on such a boundary cycle in an arbitrary place, and travels along it in any of the two directions. Then one successively visits ribbon half-edges with labels k 1 , k 2 , . . . , k j and then returns to the half-edge k 1 . One can go from the half-edge k i to the half-edge k i`1 either by following a gluing, and we will denote this k i . " k i`1 , or by going through a vertex. In the latter case, one either does a turn clockwise, and we will denote this k i Ñ k i`1 , or counterclockwise, and we will denote this k i Ð k i`1 . A special rule is applied if the vertex has only one outgoing half-edge, one just makes the arrows in the trail and on the picture match. This is how a trail is obtained. Note that by construction, there is an alternation between on one hand . ", and on the other hand Ñ or Ð. In the example of Figure 3, there are three trails:

(2.4) p1, Ñ, 2, . ", 4, Ñ, 1, . ", 3, Ñ, 4, . ", 2, Ñ, 3, . "q, p5, Ñ, 6, . ", 7, Ñ, 5, . ", 8, Ñ, 8, . "q, p6, Ñ, 7, . "q.
In the example of Figure 4, there are two trails:

p1, Ñ, 2, . ", 4, Ñ, 1, . ", 3, Ð, 2, . ", 4, Ð, 3, . "q, p5, Ñ, 6, . ", 7, Ð, 6, . ", 7, Ñ, 5, . ", 8, Ñ, 8, . "q.
We will also consider oriented trails. Like the (unoriented) trails, they can contain positive integer numbers and symbols Ñ and . ", but not the symbol Ð. In the oriented trails we quotient by cyclic permutations, but not by the reversal of direction. We will associate oriented trails to ribbon pairing that contain only straight edges. Given ρ P R ν with only straight edges, Ý Ñ T ν pρq will be a set of f ν pρq oriented trails, one per each boundary cycle where one follows the cycle in the direction of the arrows (clockwise). The oriented trails corresponding to Figure 3 are given by (2.4). 2.6. One matrix integrals and topological expansion. E β,n will denote S n pRq, the space of real symmetric matrices, for β " 1, H n pCq, the space of complex Hermitian matrices, for β " 2, and H n pHq, the space of quaternionic Hermitian matrices, for β " 4.

dim E β"1,n " pn `1qn 2 , dim E β"2,n " n 2 , dim E β"4,n " 2n 2 ´n.
E β,n is endowed with the real inner product

pM, M 1 q Þ Ñ RepTrpM M 1 qq.
The Gaussian Orthogonal Ensemble GOEpnq, the Gaussian Unitary Ensemble GUEpnq and Gaussian Symplectic Ensemble GSEpnq are Gaussian probability measures on E β,n , with β " 1 for the GOEpnq, β " 2 for the GUEpnq and β " 4 for the GSEpnq. We will use the usual notation GβEpnq. The density with respect to the Lebesgue measure on E β,n is given by

(2.5) 1 Z β,n e ´1 2 TrpM 2 q .
The distribution of the ordered family of eigenvalues λ 1 ě λ 2 ě ¨¨¨ě λ n of GβEpnq is given by

1 Z ev β,n 1 tλ 1 ěλ 2 쨨¨ěλnu ź 1ďiăjďn pλ i ´λj q β e ´1 2 pλ 2 1 `¨¨¨`λ 2 n q dλ 1 . . . dλ n .
For more on random matrices see [START_REF] Madan | Random Matrices[END_REF].

Let ν " pν 1 , ν 2 , . . . , ν mpνq q, where for all l P t1, 2, . . . , mpνqu, ν l P Nzt0u, and

|ν| " mpνq ÿ l"1 ν l
is even. Next we recall the expressions for the matrix integrals (2.6)

x mpνq ź l"1 TrpM ν l qy β,n " 1 Z β,n ż E β,n ´mpνq ź l"1 TrpM ν l q ¯e´1 2 TrpM 2 q dM, β P t1, 2, 4u.
Note that if |ν| is odd, the above integrals are zero. The expression for (2.6) is a polynomial in n, with powers n fν pρq , where ρ P R ν are ribbon pairings associated to ν. Since f ν pρq can be expressed using Euler's characteristic of surfaces, the expression for (2.6) is often referred to as topological expansion. The expansion for complex Hermitian and real symmetric matrices appears in [START_REF] Brézin | Planar diagrams[END_REF] (see also [START_REF] Bessis | Quantum field theory techniques in graphical enumeration[END_REF]). The combinatorics for quaternionic Hermitian matrices are given in [START_REF] Mulase | Duality of orthogonal and symplectic matrix integrals and quaternionic Feynman graphs[END_REF] (see also [START_REF] Bryc | Duality of real and quaternionic random matrices[END_REF]). For more on the topological expansion, we also refer to [Eyn16, Chapter 2], [EKR18, Chapter 2], [LZ04, Chapter 3], and [START_REF] Zvonkin | Matrix integrals and map enumeration: an accessible introduction[END_REF]. Given a ribbon pairing ρ P R ν , we associate to it a weight w ν,β pρq depending on β: w ν,β"1 pρq " 1 2 |ν|{2 , w ν,β"2 pρq " 1 ρ has only straight edges , w ν,β"4 pρq " p´2q χν pρq 2 ´2mpνq`|ν|{2 . In all three cases β P t1, 2, 4u, for every p partition in pairs of t1, . . . , |ν|u,

ÿ ρPRν,p w ν,β pρq " 1. Theorem 2.4 (Brézin-Itzykson-Parisi-Zuber [BIPZ78], Mulase-Waldron [MW03]
). For β P t1, 2, 4u and |ν| even, the value of the matrix integral x ś mpνq l"1 TrpM ν l qy β,n (2.6) is given by

(2.7) x mpνq ź l"1 TrpM ν l qy β,n " ÿ ρPRν w ν,β pρqn fν pρq .
For instance, xTrpM 2 qy β,n equals dim E β,n . For ν " p4q and ν " p2, 2q one gets

xTrpM 4 qy β"1,n " 1 2 n 3 `5 4 n 2 `5 4 n, xpTrpM 2 qq 2 y β"1,n " 1 4 n 4 `1 2 n 3 `5 4 n 2 `n, xTrpM 4 qy β"2,n " 2n 3 `n, xpTrpM 2 qq 2 y β"2,n " n 4 `2n 2 ,
xTrpM 4 qy β"4,n " 8n 3 ´10n 2 `5n, xpTrpM 2 qq 2 y β"4,n " 4n 4 ´4n 3 `5n 2 ´2n.

Main statements

3.1. Matrix-valued free fields, isomorphisms and topological expansion. Let G " pV, Eq be an electrical network as in Section 2.2. For β P t1, 2, 4u, Φ will be a random Gaussian function from V to E β,n . The distribution of Φ is

(3.1) 1 Z G β,n exp ´´1 2 ÿ xPV κpxq TrpM pxq 2 q ´1 2 ÿ tx,yuPE
Cpx, yq TrppM pyq ´M pxqq 2 q ¯ź xPV dM pxq.

The field Φ is a matrix-valued Gaussian free field. It can be obtained out of dim E β,n i.i.d. copies of the scalar GFF (2.2), by considering the coefficients of the matrices. For any x P V , Φpxq{ a Gpx, xq is distributed as a GβEpnq matrix. The brackets x¨y β,n will denote the expectation with respect to the law of Φ for the corresponding values of pβ, nq.

Let ν " pν 1 , ν 2 , . . . , ν mpνq q, where for all l P t1, 2, . . . , mpνqu, ν l P Nzt0u, and |ν| is even. Let x 1 , x 2 , . . . , x |ν| be vertices in V , not necessarily distinct and F a bounded measurable function R V Ñ R. By applying Theorem 2.1, one can a priori write an isomorphism for

A´m pνq ź l"1 Tr ´ν1 `¨¨¨`ν l ź k"ν 1 `¨¨¨`ν l´1 `1 Φpx k q ¯¯F pTrpΦ 2 q{2q E β,n
.

However, if one expands the traces and the product, one gets many terms that give identical contributions, many terms with contributions that compensate, and many terms that do not contribute at all. Here we will be interested in the exact combinatorics that appear. What emerges is a topological expansion, generalizing that of Theorem 2.4. Let µ

x 1 ,x 2 ,...,x |ν| ν,β,n be the following positive measure on families of |ν|{2 nearest-neighbor paths on G:

µ x 1 ,x 2 ,...,x |ν| ν,β,n pdγ 1 , . . . , dγ |ν|{2 q " ÿ ρPRν w ν,β pρqn fν pρq µ x 1 ,x 2 ,...,x |ν| p ν pρq pdγ 1 , . . . , dγ |ν|{2 q.
Next we give examples.

µ x 1 ,x 2 ν"p2q,β"1,n " ´1 2 n 2 `1 2 n ¯µx 1 ,x 2 , µ x 1 ,x 2 ν"p1,1q,β"1,n " nµ x 1 ,x 2 , µ x 1 ,x 2 ν"p2q,β"2,n " n 2 µ x 1 ,x 2 , µ x 1 ,x 2 ν"p1,1q,β"2,n " nµ x 1 ,x 2 , µ x 1 ,x 2 ν"p2q,β"4,n " p2n 2 ´nqµ x 1 ,x 2 , µ x 1 ,x 2 ν"p1,1q,β"4,n " nµ x 1 ,x 2 .
The measures µ x 1 ,x 2 ,x 3 ,x 4 ν,β,n with |ν| " 4 are linear combinations of µ x 1 ,x 2 b µ x 3 ,x 4 , µ x 1 ,x 4 b µ x 2 ,x 3 and µ x 1 ,x 3 b µ x 2 ,x 4 . We summarize the coefficients in some cases in the table below.

µ x 1 ,x 2 b µ x 3 ,x 4 µ x 1 ,x 4 b µ x 2 ,x 3 µ x 1 ,x 3 b µ x 2 ,x 4 µ x 1 ,x 2 ,x 3 ,x 4 ν"p4q,β"1,n 1 4 n 3 `1 2 n 2 `1 4 n 1 4 n 3 `1 2 n 2 `1 4 n 1 4 n 2 `3 4 n µ x 1 ,x 2 ,x 3 ,x 4 ν"p2,2q,β"1,n 1 4 n 4 `1 2 n 3 `1 4 n 2 1 2 n 2 `1 2 n 1 2 n 2 `1 2 n µ x 1 ,x 2 ,x 3 ,x 4 ν"p4q,β"2,n n 3 n 3 n µ x 1 ,x 2 ,x 3 ,x 4 ν"p2,2q,β"2,n n 4 n 2 n 2 µ x 1 ,x 2 ,x 3 ,x 4 ν"p4q,β"4,n 4n 3 ´4n 2 `n 4n 3 ´4n 2 `n ´2n 2 `3n µ x 1 ,x 2 ,x 3 ,x 4
ν"p2,2q,β"4,n

4n 4 ´4n 3 `n2 2n 2 ´n 2n 2 ´n
In the examples of Section 2.5, the terms in µ x 1 ,x 2 ,...,x 8 ν"p4,3,1q,β,n corresponding to the pairings displayed on Figures 3,respectively 4, are measures of the form µ x 1 ,x 3 b µ x 2 ,x 4 b µ x 5 ,x 8 b µ x 6 ,x 7 with prefactors w ν"p4,3,1q,β pρqn 3 , respectively w ν"p4,3,1q,β pρqn 2 . Theorem 3.1. For β P t1, 2u and F a bounded measurable function R V Ñ R, one has the following equality:

A´m pνq ź l"1 Tr ´ν1 `¨¨¨`ν l ź k"ν 1 `¨¨¨`ν l´1 `1 Φpx k q ¯¯F pTrpΦ 2 q{2q E β,n " ż γ 1 ,...γ |ν|{2 A F `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q ˘Eβ,n µ x 1 ,x 2 ,...,x |ν| ν,β,n pdγ 1 , . . . , dγ |ν|{2 q,
where x¨y β,n µ

x 1 ,x 2 ,...,x |ν| ν,β,n
p¨q is a product measure. For β " 4,

A´m pνq ź l"1 Re ´Tr ´ν1 `¨¨¨`ν l ź k"ν 1 `¨¨¨`ν l´1 `1 Φpx k q ¯¯¯F pTrpΦ 2 q{2q E β"4,n " ż γ 1 ,...γ |ν|{2 A F `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q ˘Eβ"4,n µ x 1 ,x 2 ,...,x |ν| ν,β"4,n pdγ 1 , . . . , dγ |ν|{2 q.
In particular, if λ 1 pxq ě λ 2 pxq ě ¨¨¨ě λ n pxq is the family of eigenvalues of Φpxq, x P V , and

x 1 " ¨¨¨" x ν 1 , x ν 1 `1 " ¨¨¨" x ν 1 `ν2 , . . . , x |ν|´ν mpνq `1 " ¨¨¨" x |ν| ,
then, for β P t1, 2,

A mpνq ź l"1 ´n ÿ i"1 λ i px ν 1 `¨¨¨`ν l q ν l ¯F ´1 2 n ÿ i"1 λ 2 i ¯Eβ,n " ż γ 1 ,...γ |ν|{2 A F ´1 2 n ÿ i"1 λ 2 i `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q 4u, (3.2) 
¯Eβ,n µ pxν 1 ,ν 1 q,...,px |ν| ,ν mpνq q ν,β,n pdγ 1 , . . . , dγ |ν|{2 q,

where the notation px ν 1 `¨¨¨`ν l , ν l q means that x ν 1 `¨¨¨`ν l is repeated ν l times.

Remark 3.2. In the quaternionic case β " 4, when considering a single GSE matrix M as in Theorem 2.4, one does not need to take the real part of TrpM ν l q, since M ν l is quaternionic Hermitian and its diagonal entries are real. However, in Theorem 3.1 above, the products

ν 1 `¨¨¨`ν l ź k"ν 1 `¨¨¨`ν l´1
`1 Φpx k q may involve several different matrices, and thus are not always quaternionic Hermitian. So one needs to take the real part of the traces. Now, we consider a family of |ν| deterministic square matrices with complex entries of size n ˆn:

Ap1, 2q, . . . , Apν 1 ´1, ν 1 q, Apν 1 , 1q, Apν 1 `1, ν 1 `2q, . . . , Apν 1 `ν2 ´1, ν 1 `ν2 q, Apν 1 `ν2 , ν 1 `1q, . . . , Ap|ν| ´νmpνq `1, |ν| ´νmpνq `2q, . . . , Ap|ν| ´1, |ν|q, Ap|ν|, |ν| ´νmpνq `1q. Note that by convention, for each l P t1, . . . , mpνqu such that ν l " 1, we have a single matrix Apν 1 `¨¨¨`ν l , ν 1 `¨¨¨`ν l q. For l P t1, . . . , mpνqu, Π ν,l pΦ, Aq will denote the product

(3.3) Π ν,l pΦ, Aq " Φpx ν 1 `¨¨¨`ν l´1 `1qApν 1 `¨¨¨`ν l´1 `1, ν 1 `¨¨¨`ν l´1 `2qΦpx ν 1 `¨¨¨`ν l´1 `2q . . . Apν 1 `¨¨¨`ν l ´1, ν 1 `¨¨¨`ν l qΦpx ν 1 `¨¨¨`ν l qApν 1 `¨¨¨`ν l , ν 1 `¨¨¨`ν l´1 `1q.
In case ν l " 1, Π ν,l pΦ, Aq " Φpx ν 1 `¨¨¨`ν l qApν 1 `¨¨¨`ν l , ν 1 `¨¨¨`ν l q.

Next, for β P t1, 2u, we will write an isomorphism for

A´m pνq ź l"1
Tr ´Πν,l pΦ, Aq ¯¯F pTrpΦ 2 q{2q E β,n .

It will involve the following (complex-valued) measure µ

x Here, Π t pAq is a product of matrices of the form Apk, k 1 q or Apk 1 , kq T , where T denotes the transpose (and not the adjoint). For each sequence k Ñ k 1 in the trail t we add the factor Apk, k 1 q to the product, and for each sequence k Ð k 1 , we add the factor Apk 1 , kq Note that while the product Π t pAq depends on the particular representative of the equivalence class t, its trace does not. Indeed, the trace is invariant by a cyclic permutation of the factors. Moreover, reversing the direction of a representative of t amounts to taking the transpose of the product, which has the same trace.

Next we give examples of measures µ

x 1 ,x 2 ,...,x |ν| ν,β,n,A :

µ x 1 ,x 2 ν"p2q,β"1,n,A " ´1 2 TrpAp1, 2qq TrpAp2, 1qq `1 2 TrpAp1, 2qAp2, 1q T q ¯µx 1 ,x 2 , µ x 1 ,x 2 ν"p1,1q,β"1,n,A " ´1 2 
TrpAp1, 1qAp2, 2qq `1 2 TrpAp1, 1qAp2, 2q T q ¯µx 1 ,x 2 , µ x 1 ,x 2 ν"p2q,β"2,n,A " TrpAp1, 2qq TrpAp2, 1qqµ x 1 ,x 2 , µ x 1 ,x 2 ν"p1,1q,β"2,n,A " TrpAp1, 1qAp2, 2qqµ x 1 ,x 2 . Note that if all of the matrices Apk, k 1 q are equal to I n , the n ˆn identity matrix, then µ

x 1 ,x 2 ,...,x |ν| ν,β,n,A is just µ x 1 ,x 2 ,...,x |ν| ν,β,n
, because all of the traces TrpΠ t pAqq equal then n.

For β " 4, we will need a slightly different setting. We consider matrices r Apk, k 1 q, with the same indices pk, k 1 q as for the matrices Apk, k 1 q, but instead the r Apk, k 1 q's are n ˆn quaternionvalued. The (signed) measure µ

x 1 ,x 2 ,...,x |ν| ν,β"4,n, r A will be defined as follows Here, r Π t p r Aq is a product of matrices of the form r Apk, k 1 q or r Apk 1 , kq ˚. For each sequence k Ñ k 1 in the trail t we add the factor r Apk, k 1 q to the product, and for each sequence k Ð k 1 , we add the factor r Apk 1 , kq ˚, all by respecting cyclic order of the trail. Let us emphasize that for β " 4, we use the quaternion adjoint ˚, and not the transpose T . For the trail (3.4), one gets r Π t p r Aq " r Ap5, 6q r Ap7, 6q ˚r Ap7, 5q r Ap8, 8q.

µ x 1 ,x 2 ,...,
Next are two examples: Let x¨y U β,n be the following probability measure on pE β,n q V , defined by the density (3.5) 1

µ x 1 ,
Z G,U β,n exp ´´1 2 ÿ xPV κpxq TrpM pxq 2 q ´1 2 ÿ tx,yuPE
Cpx, yq TrppM pyq ´U py, xqM pxqU px, yqq 2 q ¯.

Note that if tx, yu P E , then

TrppM pxq ´U px, yqM pyqU py, xqq 2 q " TrppM pyq ´U py, xqM pxqU px, yqq 2 q.

We will denote by Φ the field under the measure x¨y U β,n . It is the matrix-valued Gaussian free field twisted by the connection U . If pUpxqq xPV is a gauge transformation, then pUpxq ´1ΦpxqUpxqq xPV is the field associated to the connection pUpxq ´1U px, yqUpyqq tx,yuPE . If the connection U is trivial, then for all x P V , Φpxq{ a Gpx, xq is distributed as a GβEpnq matrix. This is not necessarily the case if the connection is non-trivial.

As in Section 3.1, we take ν " pν 1 , ν 2 , . . . , ν mpνq q, where for all l P t1, 2, . . . , mpνqu, ν l P Nzt0u, and |ν| is even. Let x 1 , x 2 , . . . , x |ν| be vertices in V , not necessarily distinct. As in Section 3.1, the Apk, k 1 q's respectively r Apk, k 1 q's are families of |ν| square matrices with complex, respectively quaternionic entries of size nˆn. The products Π ν,l pΦ, Aq and Π ν,l pΦ, r Aq are defined as in (3.3). Next we will write an isomorphism for Here, Π t pU, Aqpγ 1 , . . . , γ |ν|{2 q is a product of matrices of the form Apk, k 1 q or Apk 1 , kq T , and hol U pγq or hol U pγq ˚, γ being one of the paths. For each sequence k Ñ k 1 in the trail t we add the factor Apk, k 1 q to the product, and for each sequence k Ð k 1 , we add the factor Apk 1 , kq T , as in the construction of µ

A´m pνq ź l"1
x 1 ,x 2 ,...,x |ν| ν,β,n,A
. Moreover, for each sequence k .

" k 1 with k ă k 1 , a measure µ x k ,x k 1 pdγ i q is present, and we add to the product the factor hol U pγ i q. For each sequence k .

" k 1 with k ą k 1 , a measure µ x k 1 ,x k pdγ i q is present, and we add to the product the factor hol U pγ i q ˚" hol U pγ i q T . In the product, the factors respect the cyclic order on the trail.

For β " 2, we will need oriented trails. The (complex) measure µ

x 1 ,x 2 ,...,x |ν| ν,β"2,n,A,U on |ν|{2-tuples of nearest-neighbor paths on G is as follows:

µ x 1 ,x 2 ,...,x |ν| ν,β"2,n,A,U pdγ 1 , . . . , dγ |ν|{2 q " ÿ ρPRν w ν,β"2 pρq ´ź Ý Ñ t P Ý Ñ T ν pρq TrpΠÝ Ñ t pU, Aqpγ 1 , . . . , γ |ν|{2 qq ¯µx 1 ,x 2 ,...,x |ν| p ν pρq pdγ 1 , . . . , dγ |ν|{2 q.
Here, ΠÝ Ñ t pU, Aqpγ 1 , . . . , γ |ν|{2 q is a product of matrices of the form Apk, k 1 q and hol U pγq or hol U pγq ˚, γ being one of the paths. For each sequence k Ñ k 1 in the oriented trail Ý Ñ t we add the factor Apk, k 1 q to the product. Moreover, for each sequence k .

" k 1 with k ă k 1 , a measure µ x k ,x k 1 pdγ i q is present, and we add to the product the factor hol U pγ i q. For each sequence k .

" k 1 with k ą k 1 , a measure µ x k 1 ,x k pdγ i q is present, and we add to the product the factor hol U pγ i q ˚.

In the product, the factors respect the cyclic order on the trail. The reason we use oriented trails is that the reversal of the orientation of the trail changes the trace, as complex adjoints of holonomies appear.

For β " 4, we return to unoriented trails. We introduce the (signed) measure µ Here, r Π t pU, r Aqpγ 1 , . . . , γ |ν|{2 q is a product of matrices of the form r Apk, k 1 q or r Apk 1 , kq ˚, and hol U pγq or hol U pγq ˚, γ being one of the paths. For each sequence k Ñ k 1 in the trail t we add the factor r Apk, k 1 q to the product, and for each sequence k Ð k 1 , we add the factor r Apk 1 , kq ˚.

Moreover, for each sequence k .

" k 1 with k ă k 1 , a measure µ x k ,x k 1 pdγ i q is present, and we add to the product the factor hol U pγ i q. For each sequence k .

" k 1 with k ą k 1 , a measure µ x k 1 ,x k pdγ i q is present, and we add to the product the factor hol U pγ i q ˚. In the product, the factors respect the cyclic order on the trail.

Next are some examples of measures µ

x 1 ,x 2 ,...,x |ν| ν,β,n,A,U and µ

x 1 ,x 2 ,...,x |ν| ν,β"4,n, r A,U : µ x 1 ,x 2 ν"p2q,β"1,n,A,U " ´1 2 TrpAp1, 2qhol U pγq ˚q ˆTrpAp2, 1qhol U pγqq `1 2 TrpAp1, 2qhol U pγq ˚Ap2, 1q T hol U pγqq ¯µx 1 ,x 2 pdγq, µ x 1 ,x 2 ν"p1,1q,β"1,n,A,U " ´1 2 TrpAp1, 1qhol U pγqAp2, 2qhol U pγq ˚q `1 2 TrpAp1, 1qhol U pγqAp2, 2q T hol U pγq ˚q¯µ x 1 ,x 2 pdγq, µ x 1 ,x 2 ν"p2q,β"2,n,A,U " TrpAp1, 2qhol U pγq ˚q ˆTrpAp2, 1qhol U pγqqµ x 1 ,x 2 pdγq, µ x 1 ,x 2 ν"p1,1q,β"2,n,A,U " TrpAp1, 1qhol U pγqAp2, 2qhol U pγq ˚qµ x 1 ,x 2 pdγq, µ x 1 ,x 2 ν"p2q,β"4,n, r A,U " ´2 RepTrp r Ap1, 2qhol U pγq ˚qq ˆRepTrp r Ap2, 1qhol U pγqqq ´RepTrp r Ap1, 2qhol U pγq ˚r Ap2, 1q ˚hol U pγqqq ¯µx 1 ,x 2 pdγq, µ x 1 ,x 2 ν"p1,1q,β"4,n, r A,U " ´1 2 RepTrp r Ap1, 1qhol U pγq r Ap2, 2qhol U pγq ˚qq `1 2 RepTrp r Ap1, 1qhol U pγq r Ap2, 2q ˚hol U pγq ˚qq ¯µx 1 ,x 2 pdγq.
Theorem 3.4. For β P t1, 2u and F a bounded measurable function R V Ñ R, one has the following equality:

(3.6)

A´m pνq ź l"1
Tr ´Πν,l pΦ, Aq ¯¯F pTrpΦ 2 q{2q

E U β,n " ż γ 1 ,...γ |ν|{2 A F `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q ˘EU β,n µ x 1 ,x 2 ,...,x |ν| ν,β,n,A,U pdγ 1 , . . . , dγ |ν|{2 q,
where x¨y U β,n µ

x 1 ,x 2 ,...,x |ν| ν,β,n,A,U p¨q is a product measure. For β " 4, (3.7)

A´m pνq ź l"1
Re ´Tr ´Πν,l pΦ, r Aq

¯¯¯F pTrpΦ 2 q{2q E U β"4,n " ż γ 1 ,...γ |ν|{2 A F `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q ˘EU β"4,n µ x 1 ,x 2 ,...,x |ν| ν,β"4,n, r A,U
pdγ 1 , . . . , dγ |ν|{2 q.

Theorem 3.4 will be proved in Section 4.2.

Remark 3.5. Note that in the measures µ

x 1 ,x 2 ,...,x |ν| ν,β,n,A,U pdγ 1 , . . . , dγ |ν|{2 q for β P t1, 2u, and in µ

x 1 ,x 2 ,...,x |ν| ν,β"4,n, r A,U
pdγ 1 , . . . , dγ |ν|{2 q, the holonomy along each path γ i appears twice.

Remark 3.6. If one does not have x ν 1 `¨¨¨`ν l´1 `1 " x ν 1 `¨¨¨`ν l´1 `2 " ¨¨¨" x ν 1 `¨¨¨`ν l , then from a geometrical viewpoint it is not very natural to consider just the trace Tr

´ν1 `¨¨¨`ν l ź k"ν 1 `¨¨¨`ν l´1 `1 Φpx k q ¯.
This is because then the Φpx k q live on fibers above different points of the base. So one needs a way to compare fibers above different points. For this one can intertwine the matrices Apk, k 1 q and r Apk, k 1 q, with Apk, k 1 q real symmetric pβ " 1q, respectively complex Hermitian pβ " 2q, and r Apk, k 1 q quaternionic Hermitian pβ " 4q. However, it turns out that the identities of Theorem 3.4 are the same for Apk, k 1 q and r Apk, k 1 q being more general.

Remark 3.7. Consider the particular case when the connection U is trivial, i.e. for any closed path (loop) γ, hol U pγq " I n . There is a gauge transformation U : V Ñ U β,n such that @x, y P V such that tx, yu P E, Upxq ´1Upyq " U px, yq.

Then for any x, y, P V and γ nearest-neighbor path from x to y, hol U pγq " Upxq ´1Upyq.

The field Φ under x¨y U β,n has the same law as pUpxq ´1ΦpxqUpxqq xPV under x¨y β,n . So, in the particular case of a trivial connection, Theorem 3.4 follows directly from Theorem 3.3.

A special case of particular interest in Theorem 3.4 is when all the matrices Apk, k 1 q and r Apk, k 1 q equal I n and

x 1 " ¨¨¨" x ν 1 , x ν 1 `1 " ¨¨¨" x ν 1 `ν2 , . . . , x |ν|´ν mpνq `1 " ¨¨¨" x |ν| .
Then, on the left-hand side of (3.6), we have @l P t1, . . . , mpνqu, TrpΠ ν,l pΦ, I n qq "

n ÿ i"1 λ i px ν 1 `¨¨¨`ν l q ν l ,
where λ 1 pxq ě λ 2 pxq ě ¨¨¨ě λ n pxq is the family of eigenvalues of Φ. On the right-hand side of (3.6) appears a product of Wilson loops. Indeed, each Π t pU, I n qpγ 1 , . . . , γ |ν|{2 q, ΠÝ Ñ t pU, I n qpγ 1 , . . . , γ |ν|{2 q and r Π t pU, I n qpγ 1 , . . . , γ |ν|{2 q is then a holonomy along a loop formed by concatenating some of the paths γ k . In the example of Figure 3, the holonomies are

hol U pγ 1 qhol U pγ 2 qhol U p Ð Ý γ 1 qhol U p Ð Ý γ 2 q, hol U pγ 3 qhol U pγ 4 qhol U p Ð Ý γ 4 q, and hol U p Ð Ý γ 3 q.
where γ 1 and γ 2 are paths from x 4 to x 4 , γ 3 is a path from from x 7 to x 7 and γ 4 a path from x 7 to x 8 . In the example of Figure 4, we get

hol U pγ 1 qhol U p Ð Ý γ 2 qhol U p Ð Ý γ 1 qhol U p Ð Ý γ 2 q, and hol U pγ 3 qhol U pγ 3 qhol U pγ 4 qhol U p Ð Ý γ 4 q.
Note that since the joint distribution of all eigenvalues above all vertices is invariant under gauge transformations, it is natural that expectations with respect to only these eigenvalues involve only Wilson loops; see Section 2.3 and [Gil81, [START_REF] Sengupta | Gauge invariant functions of connections[END_REF][START_REF] Lévy | Wilson loops in the light of spin networks[END_REF]. We summarize this paragraph in the following corollary.

Corollary 3.8. For β P t1, 2, 4u and U a non-trivial connection, in the isomorphism for

A mpνq ź l"1 ´n ÿ i"1 λ i px ν 1 `¨¨¨`ν l q ν l ¯F ´1 2 n ÿ i"1 λ 2 i ¯EU β,n
, compared to the case of a trivial connection (3.2), each power of n in the topological expansion, that is n fν pρq , is replaced by a product of f ν pρq Wilson loops corresponding to holonomies along random walk loops, one for each boundary cycle of the ribbon in the ribbon pairing ρ.

Remark 3.9. The density (3.5) can be factorized by using the orthogonal decomposition

M " 1 n TrpM qI n `´M ´1 n TrpM qI n ¯.
We have that Tr ´Πν,l,p pM, Aq ¯Eβ,n ˆAF `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q ˘Eβ,n µ

x 1 ,x 2 ,...,x |ν| p pdγ 1 , . . . , dγ |ν|{2 q.

For β " 4,

A´m pνq ź l"1
Re ´Tr ´Πν,l pΦ, r Aq

¯¯¯F pTrpΦ 2 q{2q E β"4,n " ÿ p partition of t1,...,|ν|u in pairs ż γ 1 ,...γ |ν|{2 A mpνq ź l"1
Re ´Tr ´Πν,l,p pM, r Aq

¯¯E β"4,n ˆAF `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q ˘Eβ"4,n µ x 1 ,x 2 ,...,x |ν| p pdγ 1 , . . . , dγ |ν|{2 q.
Proof. On the left-hand side one can expand the product of traces Re ´Tr ´Πν,l pΦ, r Aq ¯¯.

Then, one applies to each term in the sum Lemma 2.3 (in the particular case U " I n ), so as to make appear the entries of GβEpnq matrices M piq . Then one factorizes these entries into

mpνq ź l"1
Tr ´Πν,l,p pM, Aq ¯and

mpνq ź l"1
Re ´Tr ´Πν,l,p pM, r Aq ¯¯.

It remains to compute the moments

x mpνq ź l"1
Tr ´Πν,l,p pM, Aq ¯Eβ,n and

A mpνq ź l"1
Re ´Tr ´Πν,l,p pM, r Aq

¯¯E β"4,n .
for |ν|{2 i.i.d. GβEpnq matrices. For β " 4 we will use expressions of moments of quaternionic Gaussian r.v. that appeared in [START_REF] Bryc | Duality of real and quaternionic random matrices[END_REF].

Lemma 4.2 (Bryc-Pierce [START_REF] Bryc | Duality of real and quaternionic random matrices[END_REF]). Let ξ P H be a quaternionic Gaussian r.v. with distribution (4.1) 1 p2πq 2 e ´1 2 |q| 2 dq r dq i dq j dq k .

Then, for any q 1 , q 2 P H, ErRepξq 1 ξq 2 qs " 4 Repq 1 q Repq 2 q, ErRepξq 1 ξq 2 qs " ´2 Repq 1 q 2 q, ErRepξq 1 q Rep ξq 2 qs " Repq 1 q 2 q, ErRepξq 1 q Repξq 2 qs " Repq 1 q 2 q.

Lemma 4.3. Let M be a random GβEpnq matrix (2.5), β P t1, 2, 4u. Let B, C be two deterministic matrices in M n pCq, and r B, r C two deterministic matrices in M n pHq. Then Proof. If β P t1, 2u, the identities follow from the second moments of the entries:

xTrpM BM Cqy β"1,n " 1 2 TrpBq TrpCq `1 2 TrpBC T q, (4.2) xTrpM Bq TrpM Cqy β"1,n " 1 2 TrpBCq `1 2 TrpBC T q, (4.3) xTrpM BM Cqy β"2,
@i P t1, . . . , nu, xM 2 ii y β"1,n " 1 " 1 2 `1 2 , @i ‰ j P t1, . . . , nu, xM 2 ij y β"1,n " xM ij M ji y β"1,n "
1 2 , @i P t1, . . . , nu, xM 2 ii y β"2,n " 1, @i ‰ j P t1, . . . , nu, xM ij M ji y β"2,n " 1, all other second moments being zero. If β " 4, the diagonal entries are still real and commute with quaternions, so for all i P t1, . . . , nu,

xRep r B ii M ii r C ii M ii qy β"4,n " Rep r B ii r C ii q " 2 Rep r B ii q Rep r C ii q ´Re ´r B ii r C ii ¯, xRep r B ii M ii q Rep r C ii M ii qy β"4,n " Rep r B ii q Rep r C ii q " 1 2 Rep r B ii r C ii q `1 2 Re ´r B ii r C ii ¯.
For the offdiagonal entries, ? 2M ij is distributed according to (4.1), so we apply Lemma 4.2. For all i ‰ j P t1, . . . , nu,

xRep r B ii M ij r C jj M ji qy β"4,n " 2 Rep r B ii q Rep r C jj q, xRep r B ji M ij r C ji M ij qy β"4,n " ´Re ´r B ji r C ji ¯, xRep r B ji M ij q Rep r C ij M ji qy β"4,n " 1 2 Rep r B ji r C ij q, xRep r B ji M ij q Rep r C ji M ij qy β"4,n " 1 2 Re ´r B ji r C ji ¯.
All other second moments are zero.

The following lemma will conclude the proof of Theorem 3.3. Proof. The proof can be done by induction on |ν|{2. If |ν|{2 " 1, the identities above are exactly those of Lemma 4.3. If |ν|{2 ą 1, we fix p " tta 1 , b 1 u, . . . , ta |ν|{2 , b |ν|{2 uu a partition of t1, . . . , |ν|u in pairs. One can take conditional expectations with respect to M p|ν|{2q that appears at positions a |ν|{2 and b |ν|{2 (i.e. conditioning on pM p1q , . . . , M p|ν|{2´1q q). For that, one again applies Lemma 4.3. q p will denote the partition of t1, . . . , |ν|uzta |ν|{2 , b |ν|{2 u induced by p. To construct a ribbon pairing ρ P R ν,p one can proceed as follows.

(1) First pair the ribbon half-edges a |ν|{2 and b |ν|{2 in an either straight or twisted way.

(2) Then contract the ribbon edge ta |ν|{2 , b |ν|{2 u. After this operation one gets a new family of positive integers, q ν str if the edge ta |ν|{2 , b |ν|{2 u was straight, or q ν tw if the edge ta |ν|{2 , b |ν|{2 u was twisted, and in both cases |q ν str | " |q ν tw | " |ν| ´2.

(3) Finally take a ribbon pairing q ρ in R q νstr,q p , respectively R q νtw,q p .

One can show that the steps (1) and (2) above correspond to taking the conditional expectation with respect to the law M p|ν|{2q , and the step (3) to further taking the expectations with respect to the law of pM p1q , . . . , M p|ν|{2´1q q. One needs to see how the weights w ν,β pρq and w q νstr,β pq ρq, respectively w q νtw,β pq ρq, are related, with a particular attention to the case β " 4. This edge contraction procedure appears in the proof of a quaternionic Wick formula in Bryc and Pierce [START_REF] Bryc | Duality of real and quaternionic random matrices[END_REF], Theorem 3.1. There the authors do in particular the verifications for the weights w ν,β"4 pρq. Our setting is more general, and not limited to β " 4, but the recurrence on ribbon graphs is the same. For completeness, we give the details in Appendix A.

Remark 4.5. For β P t1, 2u one can alternatively prove Lemma 4.4 by expanding the product of traces, applying Wick's rule to each scalar term and then recombining the resulting terms. If one wishes to proceed like that in the quaternionic case β " 4, one needs the Wick formula (4.9) for quaternionic Gaussian r.v.s; see Appendix B. This formula is more general than the one given in [START_REF] Bryc | Duality of real and quaternionic random matrices[END_REF]. However, proceeding like that does not simplify the proof of Lemma 4.4, since the proof of the quaternionic Wick formula (4.9) relies itself on an induction on ribbon edges. Moreover, then one would need a particular treatment for the diagonal coefficients of the matrices, since those are real Gaussian r.v.s. 4.2. Proof of Theorem 3.4. We give the proof of Theorem 3.4. We use the notations of Section 3.2. As in Section 4.1, for β P t1, 2, 4u, pM piq q iě1 is an i.i.d. sequence of GβE(n) matrices with distribution (2.5). Consider x 1 , x 2 , . . . , x |ν| P V , p " tta 1 , b 1 u, . . . , ta |ν|{2 , b |ν|{2 uu a partition of t1, . . . , |ν|u in pairs, with a i ă b i , and γ 1 , . . . , γ |ν|{2 nearest-neighbor paths on G, with γ i going from x a i to x b i . For l P t1, . . . , mpνqu, Π ν,l,p pM, U, Aqpγ 1 , . . . , γ |ν|{2 q will denote the following product of matrices. Π ν,l,p pM, U, Aqpγ 1 , . . . , γ |ν|{2 q "

x M pν 1 `¨¨¨`ν l´1 `1q Apν 1 `¨¨¨`ν l´1 `1, ν 1 `¨¨¨`ν l´1 `2q x M pν 1 `¨¨¨`ν l´1 `2q . . . Apν 1 `¨¨¨`ν l ´1, ν 1 `¨¨¨`ν l q x M pν 1 `¨¨¨`ν l q Apν 1 `¨¨¨`ν l , ν 1 `¨¨¨`ν l´1 `1q,
where the matrix x M pkq is given by

x M pkq " hol U pγ i qM piq hol U pγ i q ˚if k " a i , x M pkq " M piq if k " b i .
The product Π ν,l,p pM, U, r Aqpγ 1 , . . . , γ |ν|{2 q is defined similarly, with matrices r Apk, k 1 q instead of Apk, k 1 q. Lemma 4.6. Then, for β P t1, 2u and F a bounded measurable function R V Ñ R, one has the following equality: ˆAF `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q ˘Eβ"4,n µ

A´m pνq ź l"1
x 1 ,x 2 ,...,x |ν| p pdγ 1 , . . . , dγ |ν|{2 q.

Proof. This follows from Lemma 2.3. Indeed, the action of U px, yq on R n (β " 1), C n (β " 2), respectively H n (β " 4), induces an action on E β,n by conjugation:

M Þ Ñ U px, yqM U px, yq ˚.
Upx, yq will denote the corresponding linear orthogonal operator on E β,n . The holonomy of the connection pUpx, yqq tx,yuPE along a path γ is related to that of pU px, yqq tx,yuPE along γ by hol U pγqpM q " hol U pγqM hol U pγq ˚, M P E β,n .

So one applies Lemma 2.3 to the connection pUpx, yqq tx,yuPE .

To finish the proof of Theorem 3.4, one needs to check, for every fixed partition in pairs p, the following expressions of expectations with respect to the law of pM piq q 1ďiď|ν|{2 : The identities above follow already from Lemma 4.4. One has to apply the latter to matrices Apk, k 1 q, respectively r Apk, k 1 q, instead of Apk, k 1 q, respectively r Apk, k 1 q, where Apk, k 1 q and r Apk, k 1 q are as follows:

A mpνq ź l"1 Tr ´Πν,l,p pM, U, Aqpγ 1 , . . . , γ |ν|{2 q ¯Eβ"1,n " ÿ ρPRν,p w ν,β"1 pρq ź tPTν pρq TrpΠ t pU, Aqpγ 1 , . . . , γ |ν|{2 qq, A mpνq ź l"1 Tr ´Πν,l,p pM, U, Aqpγ 1 , . . . , γ |ν|{2 q ¯Eβ"2,n " ÿ ρPRν,p w ν,β"2 pρq ź Ý Ñ t P Ý Ñ T ν pρq TrpΠÝ Ñ t pU
Apa i , a j q " hol U pγ i q ˚Apa i , a j qhol U pγ j q, r Apa i , a j q " hol U pγ i q ˚r Apa i , a j qhol U pγ j q, Apa i , b j q " hol U pγ i q ˚Apa i , b j q, r Apa i , b j q " hol U pγ i q ˚r Apa i , b j q, Apb i , a j q " Apb i , a j qhol U pγ j q, r Apb i , a j q " r Apb i , a j qhol U pγ j q, Apb i , b j q " Apb i , b j q, r Apb i , b j q " r Apb i , b j q. Then, for every l P t1, . . . , mpνqu, 

Appendix A: induction on ribbon edges

Here we detail the induction on edges used in Lemma 4.4. We primarily distinguish the cases according to whether the ribbon half-edges a |ν|{2 and b |ν|{2 are adjacent to the same vertex (Figure 5) or to two different vertices (Figure 6). The case of one vertex corresponds to both occurrences of M p|ν|{2q being in the same trace. This also corresponds to the left-hand side in equations (4.2), (4.4) and (4.6). The case of two vertices corresponds to the two occurrences of M p|ν|{2q being in different traces. This also corresponds to the left-hand side in equations (4.3), (4.5) and (4.7). mpνq " mpq ν str q ´1, f ν pρq " f q νstr pq ρq, χ ν pρq " χ q νstr pq ρq ´2.

Thus, w ν,β"1 pρq " 1 2 w q νstr,β"1 pq ρq, w ν,β"2 pρq " w q νstr,β"2 pq ρq, w ν,β"4 pρq " 2w q νstr,β"4 pq ρq.

So indeed we get the coefficients in front of the first term on the right-hand side in equations (4.2), (4.4) and (4.6).

The twisted pairing of a |ν|{2 and b |ν|{2 is represented on Figure 8. It can only occur for β P t1, 4u. After contracting the ribbon edge ta |ν|{2 , b |ν|{2 u, the vertex is not divided. This corresponds to having a single trace in the second term on the right-hand side in equations (4.2) and (4.6). The orientations on one side of the contracted edge are reversed. This corresponds to having a transpose, respectively an adjoint, in the second term on the right-hand side in equation (4.2), respectively (4.6). Further, in case of a twisted pairing, we have that |ν| " |q ν tw | `2, mpνq " mpq ν tw q, f ν pρq " f q νtw pq ρq, χ ν pρq " χ q νtw pq ρq ´1, w ν,β"1 pρq " 1 2 w q νtw,β"1 pq ρq, w ν,β"4 pρq " ´wq νtw,β"4 pq ρq.

So we get the coefficients in front of the second term on the right-hand side in equations (4.2) and (4.6). ' The first degenerate case, when the vertex has other ribbon half-edges on only one side between a |ν|{2 and b |ν|{2 . Then, for a straight pairing we have that |ν| " |q ν str | `2, mpνq " mpq ν str q, f ν pρq " f q νstr pq ρq `1, χ ν pρq " χ q νstr pq ρq, and again, w ν,β"1 pρq " 1 2 w q νstr,β"1 pq ρq, w ν,β"2 pρq " w q νstr,β"2 pq ρq, w ν,β"4 pρq " 2w q νstr,β"4 pq ρq.

Moreover, the side between a |ν|{2 and b |ν|{2 with no other ribbon half-edges gives rise, after edge contraction/averaging by M p|ν|{2q , to a factor consisting of a deterministic trace, with no random matrices inside.

As for the twisted pairing, the result in this degenerate case is the same as in the generic case. Nothing changes. ' The second degenerate case, when the vertex is of degree 2 and its only ribbon half-edges are a |ν|{2 and b |ν|{2 . Then, for a straight pairing we have that |ν| " |q ν str | `2, mpνq " mpq ν str q `1, f ν pρq " f q νstr pq ρq `2, χ ν pρq " χ q νstr pq ρq `2, and again, w ν,β"1 pρq " 1 2 w q νstr,β"1 pq ρq, w ν,β"2 pρq " w q νstr,β"2 pq ρq, w ν,β"4 pρq " 2w q νstr,β"4 pq ρq.

Moreover, after edge contraction/averaging by M p|ν|{2q , appears a factor consisting of a product of two deterministic traces. For a twisted pairing we have that |ν| " |q ν tw | `2, mpνq " mpq ν tw q `1, f ν pρq " f q νtw pq ρq `1, χ ν pρq " χ q νtw pq ρq `1, and again, w ν,β"1 pρq " 1 2 w q νtw,β"1 pq ρq, w ν,β"4 pρq " ´wq νtw,β"4 pq ρq.

Moreover, after edge contraction/averaging by M p|ν|{2q , appears a factor consisting of a deterministic trace. Now we deal with the case of two vertices. We further distinguish the following cases.

' The generic case, when at least one of the two vertices is of degree at least two. Then, the straight pairing of a |ν|{2 and b |ν|{2 is represented on Figure 9. After contracting the ribbon edge ta |ν|{2 , b |ν|{2 u, the two vertices are merged into one. This corresponds to having a single trace in the first term on the right-hand side in equations (4.3), (4.5) and (4.7). The orientations are preserved after contraction. This corresponds to not having transposes or adjoints in the first term on the right-hand side in equations (4.3), (4.5) and (4.7). Further, in case of a straight pairing, we have that |ν| " |q ν str | `2, mpνq " mpq ν str q `1, f ν pρq " f q νstr pq ρq, χ ν pρq " χ q νstr pq ρq. Thus, w ν,β"1 pρq " 1 2 w q νstr,β"1 pq ρq, w ν,β"2 pρq " w q νstr,β"2 pq ρq, w ν,β"4 pρq " 1 2 w q νstr,β"4 pq ρq.

So indeed we get the coefficients in front of the first term on the right-hand side in equations (4.3), (4.5) and (4.7).

The twisted pairing of a |ν|{2 and b |ν|{2 is represented on Figure 10. After contracting the ribbon edge ta |ν|{2 , b |ν|{2 u, the two vertices merged into one. This corresponds to having a single trace in the second term on the right-hand side in equations (4.3) and (4.7). The orientations on one of the parent vertices are reversed after contraction. This corresponds to the transpose, respectively adjoint, in the second term on the right-hand side in equations (4.3), respectively (4.7). Further, in case of a twisted pairing, we have that |ν| " |q ν tw | `2, mpνq " mpq ν tw q `1, f ν pρq " f q νtw pq ρq, χ ν pρq " χ q νtw pq ρq, w ν,β"1 pρq " 1 2 w q νtw,β"1 pq ρq, w ν,β"4 pρq " 1 2 w q νtw,β"4 pq ρq. So we get the coefficients in front of the second term on the right-hand side in equations (4.3) and (4.7). 

denotes

  the complex adjoint. If A, B P M n pHq, pABq ˚" B ˚A˚.

Figure 1 .

 1 Figure 1. Ribbon half-edges in the case of ν " p4, 3, 1q.

Figure 3

 3 Figure 3 displays an example of a ribbon pairing with only straight edges, and Figure 4 an example with both straight and twisted edges.

Figure 2 .

 2 Figure 2. A straight ribbon edge on the left and a twisted ribbon edge on the right.

Figure 3 .

 3 Figure 3. A ribbon pairing in the case of ν " p4, 3, 1q with only straight edges.The induced partition in pairs is p ν pρq " tt1, 3u, t2, 4u, t5, 8u, t6, 7uu.

Figure 4 .

 4 Figure 4. A ribbon pairing in the case of ν " p4, 3, 1q with straight and twisted edges. The induced partition in pairs p ν pρq is the same as on Figure 3.

Lemma 4. 4 .

 4 For β P t1, 2u, and p a partition in pairs of t1, . . . , |ν|u, Re ´Tr ´Πν,l,p pM, r Aq ¯¯E β"4,n " ÿ ρPRν,p w ν,β"4 pρq ź tPTν pρq RepTrp r Π t p r Aqqq.

Figure 5 .'

 5 Figure 5. The case when the ribbon half-edges a |ν|{2 and b |ν|{2 are adjacent to the same vertex. Only the relevant vertex is represented.

Figure 6 .

 6 Figure 6. The case when the ribbon half-edges a |ν|{2 and b |ν|{2 are adjacent to two different vertices. Only the two relevant vertices are represented.

Figure 7 .

 7 Figure 7. On the left: the ribbon half-edges a |ν|{2 and b |ν|{2 belong to the same vertex and are paired in a straight way. On the right: the result of the contraction of the corresponding straight ribbon edge. The vertex is split into two. All the orientations are preserved.

Figure 8 .

 8 Figure 8. On the left: the ribbon half-edges a |ν|{2 and b |ν|{2 belong to the same vertex and are paired in a twisted way. On the right: the result of the contraction of the corresponding twisted ribbon edge. The vertex is not divided. The orientations on one side of the contracted edge are reversed.

Figure 9 .

 9 Figure 9. On the left: the ribbon half-edges a |ν|{2 and b |ν|{2 belong to two different vertices and are paired in a straight way. On the right: the result of the contraction of the corresponding straight ribbon edge. The two vertices are merged into one. All the orientations are preserved.

Figure 10 .

 10 Figure 10. On the left: the ribbon half-edges a |ν|{2 and b |ν|{2 belong to two different vertices and are paired in a twisted way. On the right: the result of the contraction of the corresponding twisted ribbon edge. The two vertices are merged into one. The orientations on one of the parent vertices are reversed.

If pUpxqq xPV is a gauge transformation, then pUpxq p φpxqq xPV is the Gaussian free field related to the connection pUpxq ´1U px, yqUpyqq tx,yuPE . In particular, if the connection U is trivial, the field

  xq.i.e. G U px, yq T " G U py, xq and G U px, xq is symmetric. One can see G U as a symmetric linear operator on pR n q V . It is positive definite (see Proposition 2.15 in[START_REF] Kassel | Covariant Symanzik identities[END_REF]). We will denote by det G U the determinant of this operator.

	The R n -valued Gaussian free field on G twisted by the connection U is a random Gaussian
	function p φ : V Ñ R n ( p φpxq " p p φ 1 pxq, . . . , p φ n pxqq) with the distribution given by	
	1 Z U GFF	exp	´´1 2	ÿ xPV	κpxq} p ϕpxq} 2 ´1 2	ÿ tx,yuPE	Cpx, yq} p ϕpxq ´U px, yq p ϕpyq} 2	¯ź xPV	n ź i"1	d p ϕpxq i ,
	where } ¨} is the usual L 2 norm on R n and				
					Z U GFF " pp2πq n CardpV q det G U q	1 2 .		
	Note that if tx, yu P E,						
					} p ϕpxq ´U px, yq p ϕpyq} 2 " } p ϕpyq ´U py, xq p ϕpxq} 2 .		
	We have that Er p φs " 0. As for the covariance structure, we have (see Proposition 4.1 in
	[KL16]):									
					Er p φ i pxq p φ j pyqs " G U ij px, yq.			
	p φ can be reduced to n i.i.d. copies of the scalar GFF with distribution (2.2).	
	In [KL16], Theorems 5.1 and 7.3, Kassel and Lévy gave a BFS-Dynkin-type isomorphism for
	GFFs twisted by connections.					
	Theorem 2.2 (Kassel-Lévy [KL16]). Let r P Nzt0u, x 1 , x 2 , . . . , x 2r P V , Jp1q, Jp2q, . . . , Jp2rq P
	t1, . . . , nu and F a bounded measurable function R V Ñ R. Then		
	E " 2r ź	p φ Jpkq px k qF p} p φ} 2 {2q ı					
	k"1									
				ż						
		ÿ							
	"									
	partitions of t1,...,2ru	γ 1 ,...γr					
		in pairs							
	tta 1 ,b 1 u,...,tar,bruu						

  1 ,x 2 ,...,x |ν| ν,β,n,A

								on |ν|{2-tuples of nearest-
	neighbor paths on G:						
	µ	x 1 ,x 2 ,...,x |ν| ν,β,n,A	pdγ 1 , . . . , dγ |ν|{2 q "	ÿ ρPRν	w ν,β pρq	´ź tPTν pρq	TrpΠ t pAqq	¯µx 1 ,x 2 ,...,x |ν| p ν pρq	pdγ 1 , . . . , dγ |ν|{2 q.

  Theorem 3.3. For β P t1, 2u and F a bounded measurable function R V Ñ R, one has the following equality:

	" Tr ´Πν,l pΦ, Aq ¯¯F pTrpΦ 2 q{2q ´1 2 RepTrp r Ap1, 1q r Ap2, 2qqq E β,n " ż γ 1 ,...γ |ν|{2 A F `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q `1 2 RepTrp r Ap1, 1q r ˘Eβ,n µ x 1 ,x 2 ,...,x |ν| ν,β,n,A where x¨y β,n µ ź l"1 x 1 ,x 2 ,...,x |ν| ν,β,n,A p¨q is a product measure. For β " 4, A´m pνq ź l"1 Re ´Tr ´Πν,l pΦ, r Aq ¯¯¯F pTrpΦ 2 q{2q E β"4,n " ż γ 1 ,...γ |ν|{2 A F `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q ˘Eβ,n µ x 1 ,x 2 ,...,x |ν| ν,β"4,n, r A Ap2, 2q A´m pνq pdγ 1 , . . . , dγ |ν|{2 q, pdγ 1 , . . . , dγ |ν|{2 q. Theorem 3.3, which contains Theorem 3.1 as a special case, will be proved in Section 4.1.

x 2 ν"p2q,β"4,n, r A " ´2 RepTrp r Ap1, 2qq Trp r Ap2, 1qqq ´RepTrp r Ap1, 2q r Ap2, 1q ˚qq ¯µx 1 ,x 2 , µ x 1 ,x 2 ν"p1,1q,β"4,n, r A ˚qq ¯µx 1 ,x 2 . 3.2. Isomorphisms and topological expansion for matrix-valued fields twisted by a connection. We will denote by U β,n the group Opnq if β " 1, U pnq if β " 2, and U pn, Hq if β " 4. We consider a connection on G, pU px, yqq tx,yuPE , with U px, yq P U β,n and U py, xq " U px, yq ˚" U px, yq ´1.

  ,x 2 ,...,x |ν| ν,β"1,n,A,U pdγ 1 , . . . , dγ |ν|{2 q " ÿ

	For β " 1, we introduce the following (complex) measure µ	x 1 ,x 2 ,...,x |ν| ν,β"1,n,A,U on |ν|{2-tuples of
	nearest-neighbor paths on G:		
	µ	x 1 ρPRν	w ν,β"1 pρq ´ź tPTν pρq	TrpΠ t pU, Aqpγ 1 , . . . , γ |ν|{2 qq	¯µx 1 ,x 2 ,...,x |ν| p ν pρq	pdγ 1 , . . . , dγ |ν|{2 q.
				E U Tr ´Πν,l pΦ, Aq ¯¯F pTrpΦ 2 q{2q β,n	,	β P t1, 2u,
	and for				
		A´m pνq ź l"1	Re ´Tr ´Πν,l pΦ, r Aq ¯¯¯F	E U pTrpΦ 2 q{2q β,n	,	β " 4.

  Aqpγ 1 , . . . , γ |ν|{2 qqq ¯µx 1 ,x 2 ,...,x |ν|

	µ	x 1 ,x 2 ,...,x |ν| ν,β"4,n, r A,U	pdγ 1 , . . . , dγ |ν|{2 q "
		ÿ ρPRν	w ν,β"4 pρq	´ź tPTν pρq	RepTrp r Π t pU, r

x 1 ,x 2 ,...,x |ν| ν,β"4,n, r A,U on |ν|{2-tuples of nearest-neighbor paths in G, constructed as follows:

p ν pρq pdγ 1 , . . . , dγ |ν|{2 q.

  Lemma 4.1. Then, for β P t1, 2u and F a bounded measurable function R V Ñ R, one has the following equality:Tr ´Πν,l pΦ, Aq ¯¯F pTrpΦ 2 q{2q

	A´m pνq ź			E		
	l"1			β,n		
	ÿ		ż	A mpνq ź	
	"					
	p partition of t1,...,|ν|u	γ 1 ,...γ |ν|{2	l"1	
	in pairs			
	TrpM pxq 2 q "	1 n	TrpM pxqq 2 `Tr ´´M pxq	´1 n	TrpM pxqqI n	¯2¯,

  Tr ´Πν,l pΦ, Aq ¯¯F pTrpΦ 2 q{2q

						E U
						β,n
			"	ÿ	ż	A mpνq ź	Tr ´Πν,l,p pM, U, Aqpγ 1 , . . . , γ |ν|{2 q ¯Eβ,n
			p partition of t1,...,|ν|u	γ 1 ,...γ |ν|{2	l"1
			in pairs
			ˆAF `TrpΦ 2 q{2 `Lpγ 1 q `¨¨¨`Lpγ |ν|{2 q	˘Eβ,n	µ	x 1 ,x 2 ,...,x |ν| p	pdγ 1 , . . . , dγ |ν|{2 q.
	For β " 4,			
	A´m pνq ź l"1	Re ´Tr ´Πν,l pΦ, r Aq ¯¯¯F	E U pTrpΦ 2 q{2q β"4,n
		"	ÿ p partition of t1,...,|ν|u	ż γ 1 ,...γ |ν|{2	A mpνq ź l"1	¯¯E Aqpγ 1 , . . . , γ |ν|{2 q Re ´Tr ´Πν,l,p pM, U, r β"4,n
			in pairs		

,

  Aqpγ 1 , . . . , γ |ν|{2 qq,

	A mpνq ź l"1	Re ´Tr ´Πν,l,p pM, U, r Aqpγ 1 , . . . , γ |ν|{2 q	¯¯E β"4,n
		ÿ		ź
		"	w ν,β"4 pρq	RepTrp r Π
		ρPRν,p		tPTν pρq

t pU, r Aqpγ 1 , . . . , γ |ν|{2 qqq.

  TrpΠ ν,l,p pM, U, Aqpγ 1 , . . . , γ |ν|{2 qq " TrpΠ ν,l,p pM, Aqqq, RepTrpΠ ν,l,p pM, U, r Aqpγ 1 , . . . , γ |ν|{2 qqq " RepTrpΠ ν,l,p pM, r Aqqq. Further, if ρ P R ν,p and t P T ν pρq, TrpΠ t pU, Aqpγ 1 , . . . , γ |ν|{2 qq " TrpΠ t pAqqq,

	RepTrp r Π t pU, r Aqpγ 1 , . . . , γ |ν|{2 qqq " RepTrp r Π t p r Aqqq.
	If ρ is the only ribbon pairing in R ν,p with only straight edges (the setting for β " 2), if Ý Ñ t P Ý Ñ T

ν pρq and t is the corresponding unoriented trail, then TrpΠÝ Ñ t pU, Aqpγ 1 , . . . , γ |ν|{2 qq " TrpΠ t pAqqq.
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Trphol U pγqhol U pγq ˚qµ x,y pdγq " nµ x,y pdγq.

Hence,

xTrpΦpxqq TrpΦpyqqy U β,n " nGpx, yq.

Proofs

4.1. Proof of Theorem 3.3. We give the proof of Theorem 3.3, which contains Theorem 3.1 as a special case. A possible approach would be to expand the product of traces on the left-hand side of the isomorphism identity, apply Theorem 2.1, and then recombine the terms to get the right-hand side of the isomorphism identity. This works well for β P t1, 2u (see [START_REF] Zvonkin | Matrix integrals and map enumeration: an accessible introduction[END_REF] for one matrix integrals), but for β " 4 this approach is less tractable because of the non-commutativity of quaternions. Instead, we will rely on an induction over the numbers of edges |ν|{2, similar to that in [START_REF] Bryc | Duality of real and quaternionic random matrices[END_REF].

We use the notations of Section 3.1. For β P t1, 2, 4u, let pM piq q iě1 be an i.i.d. sequence of GβE(n) matrices with distribution (2.5). Given p " tta 1 , b 1 u, . . . , ta |ν|{2 , b |ν|{2 uu a partition of t1, . . . , |ν|u in pairs and l P t1, . . . , mpνqu, Π ν,l,p pM, Aq will denote the product of matrices

where, for k P t1, . . . , |ν|u, we denote by I k the unique index i P t1, . . . , |ν|{2u such that k P ta i , b i u. Note that how exactly the pairs ta i , b i u in the partition p are ordered will not be important. The product Π ν,l,p pM, r

Aq is defined similarly, with matrices r Apk, k 1 q instead of Apk, k 1 q. Note that in the products ' The degenerate case, when both vertices are of degree one. Then, for a straight pairing we have that |ν| " |q ν str | `2, mpνq " mpq ν str q `2, f ν pρq " f q νstr pq ρq `1, χ ν pρq " χ q νstr pq ρq `2, and again, w ν,β"1 pρq " 1 2 w q νstr,β"1 pq ρq, w ν,β"2 pρq " w q νstr,β"2 pq ρq, w ν,β"4 pρq " 1 2 w q νstr,β"4 pq ρq.

The same coefficients appear for a twisted pairing. Moreover, both in case of a straight and of a twisted pairing appears, after edge contraction/averaging by M p|ν|{2q , a factor consisting of a deterministic trace, with no random matrices inside.

Appendix B: a quaternionic Wick formula

Here we present a Wick formula for quaternionic Gaussian r.v.s. It is more general then the one given in Theorem 3.1 in [START_REF] Bryc | Duality of real and quaternionic random matrices[END_REF] and involves trails (see Section 2.5). We are not aware whether our formula has already appeared elsewhere.

Let pξ i q iě1 be a sequence of i.i.d. quaternionic Gaussian r.v.s distributed according to (4.1). Let ν " pν 1 , ν 2 , . . . , ν mpνq q, where for all l P t1, 2, . . . , mpνqu, ν l P Nzt0u, and |ν| is even. Let pη k q 1ďkď|ν| be a family of r.v.s, where each η k is either a r.v. ξ i , or a r.v. ξi , for some i P t1, . . . , |ν|u. We also consider |ν| deterministic quaternions qp1, 2q, . . . , qpν 1 ´1, ν 1 q, qpν 1 , 1q, qpν 1 `1, ν 1 `2q, . . . , qpν 1 `ν2 ´1, ν 1 `ν2 q, qpν 1 `ν2 , ν 1 `1q, . . . , qp|ν| ´νmpνq `1, |ν| ´νmpνq `2q, . . . , qp|ν| ´1, |ν|q, qp|ν|, |ν| ´νmpνq `1q.

Note that for each l P t1, . . . , mpνqu such that ν l " 1, we have a single quaternion qpν 1 `¨¨¨ν l , ν 1 `¨¨¨`ν l q. For l P t1, . . . , mpνqu, Π ν,l pη, qq will denote the product Π ν,l pη, qq " η ν 1 `¨¨¨`ν l´1 `1qpν 1 `¨¨¨`ν l´1 `1, ν 1 `¨¨¨`ν l´1 `2qη ν 1 `¨¨¨`ν l´1 `2 . . . qpν 1 `¨¨¨`ν l ´1, ν 1 `¨¨¨`ν l qη ν 1 `¨¨¨`ν l qpν 1 `¨¨¨`ν l , ν 1 `¨¨¨`ν l´1 `1q.

In case ν l " 1, Π ν,l pη, qq " η ν 1 `¨¨¨`ν l qpν 1 `¨¨¨`ν l , ν 1 `¨¨¨`ν l q. We will express the moment

Re ´Πν,l pη, qq ¯ı.

Theorem 3.1 in [START_REF] Bryc | Duality of real and quaternionic random matrices[END_REF] gives an expression in case all the quaternions qpk, k 1 q equal 1. Note that in order for the moment (4.8) to be different from 0, the number of occurrences of ξ i plus the number of occurrences of ξi in the family pη k q 1ďkď|ν| has to be even for each i. R ν,η will denote the subset of R ν made of all ribbon pairings ρ such that for each straight ribbon edge with labels k, k 1 , η k " η k 1 a.s., and for each twisted ribbon edge with labels k, k 1 , η k " η k 1 a.s. Given a ribbon pairing ρ P R ν,η and a trail t P T ν pρq, let r Π t pqq denote a product of quaternions of the form qpk, k 1 q or qpk 1 , kq. For each sequence k Ñ k 1 in the trail t we add the factor qpk, k 1 q to the product, and for each sequence k Ð k 1 , we add the factor qpk 1 , kq, all by respecting cyclic order of the trail. Proof. On can proceed by induction on ribbon edges as in the proof of Lemma 4.4. The case |ν| " 2 is given by Lemma 4.2.