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TOPOLOGICAL EXPANSION IN ISOMORPHISM THEOREMS BETWEEN
MATRIX-VALUED FIELDS AND RANDOM WALKS

TITUS LUPU

ABSTRACT. We consider Gaussian fields of real symmetric, complex Hermitian or quaternionic
Hermitian matrices over an electrical network, and describe how the isomorphisms between
these fields and random walks give rise to topological expansions encoded by ribbon graphs. We
further consider matrix-valued Gaussian fields twisted by an orthogonal, unitary or symplectic
connection. In this case the isomorphisms involve traces of holonomies of the connection along
random walk loops parametrized by boundary cycles of ribbon graphs.

1. INTRODUCTION

It is known since the works of Symanzik [Sym65|, [Sym66|, [Sym69] and Brydges, Frohlich and
Spencer [BES82] that the Gaussian free field (GFF) has representations involving random walks,
sometimes referred to as ”isomorphisms”. For a survey on the subject we refer to [MR06), [Szn12].
Here we will be interested in a representation that appears in Brydges, Frohlich, Spencer [BES82]
and Dynkin [Dyn84aj, Dyn84b], that expresses

E[ﬁmﬂw(&/z)],

for ¢ a GFF, in terms of pairings of vertices x;-s and random walks joining the pairs. Following
[BHS21], we will call it the BFS-Dynkin isomorphism.

Kassel and Lévy considered vector-valued GFFs twisted by an orthogonal or unitary connec-
tion [KL16]. In this setting isomorphism theorems involve the holonomy of the connection along
the random walks. Holonomies along random walk or Brownian loops have been also studied
in [LJI17, [LJ20, [CLJR21].

In this paper we will consider fields of random Gaussian matrices, real symmetric, complex
Hermitian or quaternionic Hermitian, on an electrical network. These are matrix-valued GFFs.
The matrix above any vertex of the network is proportional to a GOE, GUE or GSE matrix.
Here we will write an isomorphism for

m(v) Vit ty
(1.1) << I1 Tr( I1 (I)(a:k)>>F(Tr(<I>2)/2)> ,
Bn
I=1 k=141 +1
where @ is the matrix-valued GFF, 8 € {1,2,4}, n is the size of the matrices, v1, ...,y are
positive integers with [v| := 11 + -+ + v,(,) even, and 1, ..., 7}, vertices on the network. By

taking the zp-s equal inside each of the traces, we get symmetric polynomials in the eigenvalues.
By expanding the traces and the product above, one can write a BFS-Dynkin’s isomorphism
for each of the terms of the sum. However, one gets many different terms that give identical
contributions, many terms with contributions that cancel out, being of opposite sign, and many
terms that give zero contribution. By regrouping the terms surviving to cancellation into powers
of n, one gets a combinatorial structure known as a topological expansion. The terms of the
expansion correspond to ribbon graphs with m(v) vertices, obtained by pairing and gluing |v|
ribbon half-edges. Each gluing may be straight or twisted. The power of n is then given by the
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number of cycles formed by the boundary components of the ribbons. It can be also expressed
in terms of genera of compact surfaces, orientable or not.

The topological expansion has been introduced by 't Hooft for the study of Quantum Chromo-
dynamics [tH74], and further developed by Brézin, Itzykson, Parisi and Zuber [BIPZTS8, IZ80].
Nowadays there is a broad, primarily physics literature on this topic. In particular, topological
expansion of one matrix or several matrix integrals is used for the enumeration of maps on
surfaces and other graphical objects [BIZ80, [Zvo97, LZ04, Eyn16]. Compared to the case of one
matrix integrals, where each ribbon edge comes only with a scalar weight, in our setting each
ribbon edge will be associated to a measure on random walk paths between two vertices zj and
xys on the network. For an introduction to the topological expansion we refer to[Zvo97, EKR1S].

We will further extend our framework and consider matrix-valued free fields twisted by a
connection of orthogonal (8 = 1), unitary (8 = 2) or symplectic (8 = 4) matrices. We rely
for this on results of Kassel and Lévy for twisted vector-valued GFFs [KL16]. If ® is the
matrix-valued GFF twisted by a connection U and (A1, ..., \,) its fields of eigenvalues, then
the isomorphism for

m) = n §
(I (StenryrG £,

involves a topological expansion where instead of n to the power the number of cycles in a ribbon
graph appears a product of traces of holonomies of the connection, one per each boundary cycle
in the ribbon graph. The holonomies are taken along loops made of concatenated random walk
paths. Such traces of holonomies along loops are called Wilson loop observables.

2. PRELIMINARIES

2.1. Quaternions, symplectic matrices and quaternionic Hermitian matrices. H will
denote the skew (non-commutative) field of quaternions. Its elements are of the form

q=q + @i+ g+ ak,
where ¢r, q;, ¢, qr € R, and i, j and k satisfy the relations
2ook= 1,
ij = —ji =k, jk = —-kj =1, ki = —ik =j.

The coefficient ¢, is the real part Re(q) of the quaternion ¢q. The algebra of quaternions has the
usual representation over 2 x 2 complex matrices:

g +qii —q; — @i
Clg) =

qG —qki  gr — il
The conjugate of a quaternion is given by
q=ar —qi—q;j — @k
The matrix C(g) is the adjoint of C(q) for the Hermitian inner product:
C(q) = ¢(q)"
If q1,q92 € H7
192 = 42q1-
The absolute value |g| is given by
qI* = ¢ + ¢} + ¢} + 4 = 47 = qq = det(C(q)).

For more on quaternions, we refer to [MGS14].
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We will denote by M,,(H) the ring of n x n matrices with quaternionic entries. The product
of matrices is defined in the same way as for matrices over a commutative field:

(AB)” = 2 AikBkj7 i,jE {1,...,’0}.
k=1

One can associate to a matrix M € M,,(H) a 2n x 2n matrix with complex entries, by replacing
each entry M;; by a 2 x 2 block C(M;;). The resulting matrix in Mo, (C) will be again denoted
C(M). The map C is then a morphism of rings from M,,(H) to Ma,(C).

The trace of a matrix of quaternions is defined as usually:

n
Tr(M) = ) M.
i=1
However, it is more convenient to deal with the real part of the trace, as
1
Re(Tr(M)) = 3 Tr(C(M)),
and for A, B e M,,(H),
Re(Tr(AB)) = Re(Tr(BA)).
Note that in general there is no equality between Tr(AB) and Tr(BA), since the product of
quaternions is not commutative.

The quaternion adjoint of a matrix M € M,,(H), denoted M*, extends the notion of adjoint
for matrices with complex entries:
(M*)” :Mji7 i,je{l,...,n},
where Mj; is the quaternion conjugate. We have that

C(M*) = c(M),

where on the left-hand side * denotes the quaternion adjoint, and on the right-hand side,
denotes the complex adjoint. If A, B € M,,(H),

(AB)* = B*A*.
The quaternionic unitary group, U(n,H) is the set of matrices U € M,,(H) satisfying
Uv* = I,
I, being the n x n identity matrix. The relation above is equivalent to
U*U = I.

*

IfUeU(nH),
det(C(U)) =1,

and C(U) € SU(2n). The image of U(n,H) by C is the compact symplectic group Sp(n), a
subgroup of SU(2n).

The set of n x n quaternionic Hermitian matrices H,, (H) is composed of matrices M € M,,(H)
satisfying

M* = M.

A matrix M € M,,(H) is quaternionic Hermitian if and only if C(M) is complex Hermitian. The
diagonal entries of a quaternionic Hermitian matrix are real. Given M € H, (H), there exists
U € U(n,H) such that U* MU is diagonal with real entries:

U*MU = Diag()\l,)\g,. . .,)\n),

with Ay = Ao = --- = A, € R. The family Ay, Ao, ..., Ay is uniquely determined. This is also the
family of ordered eigenvalues of C(M), but the multiplicities have to be doubled. A1, g, ..., A,
are the right eigenvalues of M, and form the right spectrum of M, i.e. the set of A € H, for
which the equation
Mx = zA
3



has a non-zero solution. There is also a notion of left spectrum, corresponding to the equation
Max = Ax. But the right and the left spectra do not necessarily coincide, even for quaternionic
Hermitian matrices. For details on eigenvalues of quaternionic matrices we refer to [Zha97,
MGS14]. For M € H,,(H), the trace of M also equals

Tr(M) = Re(Tr(M)) = > Ai.
=1

2.2. BFS-Dynkin isomorphism. Let G = (V| E) be a finite undirected connected graph. We
do not allow multiple edges or self-loops. Edges {z,y} € E are endowed with conductances
C(z,y) = C(y,z) > 0. There also a not identically zero killing measure (k(x))zey, with
k(z) = 0. The graph G will be further referred to as an electrical network. Let (X;):>0 be the
Markov jump process to nearest neighbors with jump rates given by the conductances. (X;)¢=o
is also killed by . Let ¢ € (0, +o0] be the first time (X;):>0 gets killed by &.

Let (G(x,y))zyev be the Green’s function:

Glo0) = Gty =] [

1{Xt:y}dt’X0 = 1‘] .
0

Let pi(x,y) be the transition probabilities of (X;)o<i<¢. Then pi(z,y) = pi(y, ) and

+00

G(z,y) = fo pi(z, y)dt.

Let P;*Y be the bridge probability measure from z to y, where one conditions by ¢ < . Let p*¥
be the following measure on paths from x to y in finite time:

+00

(2.1) pY(dy) = L Py (dy)pe (e, y)dt.

The measure p™Y has total mass G(z,y). The image of ™Y by time reversal is p¥*.
Given z1,x9,...,x9, € V and p = {{a1,b1},...,{ar,b;}} a partition in pairs of {1,...,2r},

ppt 2T (dyy, . .., dyy) will denote the following product measure on r-tuples of paths:

,
pg T (d s diy) = | [ (d ).
i=1

We will sometimes, in particular in Section use the convention that a; < b;. The order of
the pairs in p will not be important.
In general, for a path v and x € V', L(y) will denote the occupation field of =,

L(y)(z) = L Ly (t)=a}dt,

where T'(7y) is the life-time of the path.
The (scalar real) Gaussian free field (GFF) (¢(z))zev will denote here the centered Gaussian
process with covariance

Elp(x)o(y)] = G(z,y).
The distribution of (¢(x)).ey is given by

(22) 1 exp (5 D r@e@? -5 D) Clan)ely)-e@)?) [] det)

1
((27T)Card(\/) det G) 2 xeV {z,y}eE zeV

The following isomorphism relates the square of the GFF (¢(x)?).ec1 and the occupation fields
of paths under the measures p*¥. It first appears in the work of Brydges, Frohlich and Spencer
[BES82| (see also [Fro82, BES83bl, [BES83a]) and then in that of Dynkin [Dyn84al Dyn84b| (see
also [Dyn84c]). It is also related to earlier works of Symanzik [Sym65| [Sym66, Sym69]. For
more on isomorphism theorems, see [MRO6 [Szn12].
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Theorem 2.1 (Brydges-Frohlich-Spencer [BES82], Dynkin [Dyn84al, Dyn84b]). Let r € N\{0},

T1,%2,...,To. €V and F a bounded measurable function RY — R. Then
2r
B[ [[onF@?2)] = Y j B[ F(6%/24L(m)+ - +L(3) gt == (dys, ... dy).
k=1 p partition
of {L,.2ry T
m pairs

2.3. Connections, gauge equivalence and Wilson loops. Let n € N, n > 2. Let U be
the group of either n x n orthogonal matrices O(n), or unitary matrices U(n), or quaternionic
unitary matrices U(n,H). We consider that each undirected edge in E consists of two directed
edges of opposite direction. We consider a family of matrices in U, (U(2,9))(zy)er, With

Uly,z) = U(z,y)* =U(z,y)~", Y{z,y}eE.
(U(2,Y)){z,y1eE 18 our connection on the vector bundle with base space G and fiber respectively
R™ C"™ or H".
Given a nearest-neighbor oriented discrete path v = (y1,42,...,¥;), the holonomy of U along
v is the product

hol” (v) = U(y1,52)U (y2,y3) - - - U1, 4;)-

If the path v is a nearest-neighbor path parametrized by continuous time, and does only a finite
number of jumps, the holonomy hoIU(v) is defined as the holonomy along the discrete skeleton
of v. We will denote by % the time-reversal of a path v. We have that

(2.3) hol” () = holY (v)* = holV ().

Given a nearest-neighbor oriented discrete closed path (i.e. a loop) v = (y1,¥2,...,y;), with
y; = y1, we will consider the observable

Tr(hol” (+))

in the orthogonal and unitary case, and
1
Re(Tr(hol” (7)) = 3 Tr(C(hol” (7))

in the quaternionic unitary case. Such observables are called Wilson loops [Wil74]. Note that
the Wilson loop observable does not depend on where the loop 7 is rooted. Indeed, if 7 is the
loop visiting (yi, ..., Y5, Y1, .- -, Yi—1,¥) (1 €{2,...,7}), and if 7 is the path visiting (y1,...,y:)
then

hol” (%) = hol? (") ~thol (7)ol ().

Given another family of matrices in U, (4(x))zev, this time on top of vertices, it induces a
gauge transformation on the connection U:

(U(:Ba y)){x,y}eE — (ﬂ(l’)_lU(ZE, y)u(y)){x,y}eE

Two connections related by a gauge transformation are said to be gauge equivalent. A connection
is trivial if it is gauge equivalent to the identity connection. A criterion for triviality is that
along any nearest-neighbor loop v = (y1,v2, .. .,¥;), with y; = y1,

hol (v) = I,,.

In general, any two gauge equivalent connections have the same Wilson loop observables. The
converse is also true (but non-obvious): the collection of all possible Wilson loop observables
characterizes a connection up to gauge transformations [Gil81), [Sen94, [L.E04].
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2.4. BFS-Dynkin isomorphism for the Gaussian free field twisted by a connection.
In [KL16] Kassel and Lévy introduced the vector-valued GFF twisted by an orthogonal /unitary
connection, and generalized the isomorphisms with random walks to this case. Here we will
do a less abstract, more computational presentation of the same object. Kassel and Lévy’s
isomorphisms rely on a covariant Feynman-Kac formula ([BEFS79] and Theorem 3.1 in [KL16]).

Let us consider on top of the electrical network G = (V,E) an orthogonal connection
(U(x,9)){zpe> U(w,y) € O(n). The Green’s function GY associated to the connection U
is a function from V x V to M, (R) (i.e. the n x n matrices with real entries), with the entries
given by

G?j(x,y):f ol (1) (dy), zy eV, inje{l,....n),
Y

where the measure on paths p™¥(dy) is given by (2.1). Since the image of ™Y by time reversal
is pu¥*  and because of (2.3), we have that

U U U U
Gij(x7y) = Gji(:%x)a Gij(%@ = sz‘(l’ax)-

ie. GY(x,y)"T = GY(y,z) and GY(z,z) is symmetric. One can see GU as a symmetric linear
operator on (R™)V. It is positive definite (see Proposition 2.15 in [KLI6]). We will denote by
det GY the determinant of this operator.

The R"-valued Gaussian free field on G twisted by the connection U is a random Gaussian
function ¢ : V — R" (g’b\(x) = (qul (x),..., (En(x))) with the distribution given by

e (=3 D@l -5 Y Cl e - U newI) []]]dew);
GFF 25 {x yIcE zeV i=1
where | - || is the usual L? norm on R"™ and
Z8p = ((2m)"CardV) det GU)z.
Note that if {z,y} € E,
|8(2) = Uz, ) 3W)I* = 18(y) — Uy, 2)3()|*.

We have that E[q@] = 0. As for the covariance structure, we have (see Proposition 4.1 in
[KL16]):

E[¢i(x)$;(y)] = GY(z,y).

If (U(x))zev is a gauge transformation, then (L((a:)@(x))xev is the Gaussian free field related to
the connection (44(z)~1U(z, YY)z, y1ep- In particular, if the connection U is trivial, the field

¢ can be reduced to n i.i.d. copies of the scalar GFF with distribution (12.2)).
In [KL16], Theorems 5.1 and 7.3, Kassel and Lévy gave a BFS-Dynkin-type isomorphism for
GFFs twisted by connections.

Theorem 2.2 (Kassel-Lévy [KL16]). Let r € N\{0}, z1,22,...,22, € V, J(1),J(2),...,J(2r) €

{1,...,n} and F a bounded measurable function RV — R. Then
E| H b0y (@) F(I0]%/2) |
= f E[F(I812/2 + L) + -+ L) | T T 00l ()= ™ (dr2),
portiions of 3,5,
in pairs
{{alvbl}v"v{arvbr}}
where the sum runs over the (2r)!/(2"r!) partitions of {1,...,2r} in pairs.
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Next we rewrite slightly the isomorphism above. This will be used in Section [ in the proofs
of Lemmas and Let (X®);>; be an i.i.d. family of random Gaussian vectors with n
components, following the law N(0, I,).

Lemma 2.3. Let r € N\{0}, x1,29,...,29, € V, J(1),J(2),...,J(2r) € {1,...,n} and F a
bounded measurable function RY — R. Then

2r
E[ [T bsu (e F(I31/2)]
k=1

= [ E[RGBRE L) 1G]
partitions of
{1,...,2r}
n pairs

{{alvbl}r"'v{ahb'f}}

Y15 Yr

T

« E[H (holU <7i)X(i)>J(a,-) Xv((]i()bi)] 11 L (i),

where the sum runs over the (2r)!/(2"r!) partitions of {1,...,2r} in pairs.

Proof. Indeed,

' T
E[H (hOIU(%)X(Z)>J(ai)Xa(fl()bi)] B 11 hol 70,506 ()- U
1= 1=
2.5. Ribbon graphs and surfaces. Here we describe the ribbon graphs and the related two-
dimensional surfaces. For more details, we refer to [Eynl6), Sections 2.2, 2.3], [EKR18, Chap-
ter 2], [LZ04, Sections 3.2, 3.3], [Zvo97], and [MT01l Section 3.3].

Let v = (v1,v2,...,Um), where m > 1, and for all [ € {1,2,...,m}, v, € N\{0}. We will
denote

m(v)
m(v) = m, lv| = Z Y.
=1

We will assume that |v| is even.

Given v as above, we consider m(v) vertices, where each vertex has adjacent ribbon half-edges:
v1 half-edges for the first vertex, vo for the second, etc. A ribbon half-edge is a two-dimensional
object and carries an orientation. Also, the ribbon half-edges around each vertex are ordered in
a cyclic way. The ribbon half-edges are numbered from 1 to |v|. See Figure|l|for an illustration
with v = (4,3,1).

2¢ A A
\ 5
8
\
J\4 s

FIGURE 1. Ribbon half-edges in the case of v = (4,3, 1).

=

Y A

w
Y A

Since the total number of half-edges, |v|, is even, one can pair them to obtain a ribbon graph
(not necessarily connected), with m(v) vertices and |v|/2 ribbon edges. Each time we pair two
half-edges, we can glue the corresponding ribbons in two different ways. Either the orientations
of the two ribbon half-edges match, or are opposite. In the first case we get a straight ribbon
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edge, in the second a twisted ribbon edge. See Figure 2l We call such a pairing of ribbon half-
edges that keeps straight or twists the ribbons a ribbon pairing. Let R, be the set of all possible
ribbon pairings associated to v. The number of different ribbon pairings is

vt vz _ vl

Card(R,) = —— .
AR = SR T (w2
Figure [3| displays an example of a ribbon pairing with only straight edges, and Figure {4| an

example with both straight and twisted edges.

Y A

-
-

A

J\

A 4

FIGURE 2. A straight ribbon edge on the left and a twisted ribbon edge on the right.

}\l-'l
A
"/

FIGURE 3. A ribbon pairing in the case of v = (4, 3, 1) with only straight edges.
The induced partition in pairs is p,(p) = {{1, 3}, {2, 4}, {5, 8}, {6, 7}}.

A

Y
m\f

FIGURE 4. A ribbon pairing in the case of v = (4, 3, 1) with straight and twisted
edges. The induced partition in pairs p,(p) is the same as on Figure

A ribbon pairing p € R, induces a partition in pairs of {1,...,|v|}, denoted p,(p). The pairs

correspond to the labels of ribbon half-edges associated into an edge. Conversely, given p a
partition in pairs of {1,...,|v|}, R, p will denote the subset of R, made of all ribbon pairings

p such that p,(p) = p (Card(R,p) = 2‘”‘/2).
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Given a ribbon pairing p € R,, one can see the corresponding ribbon graph as a two-
dimensional compact bordered surface (not necessarily connected). Let f,(p) denote the number
of the connected components of the boundary, that is to say the number of distinct cycles formed
by the borders of ribbons. On Figure |3, f,(p) = 3, and on Figure 4, f,(p) = 2. Then, one can
glue along each connected component of the boundary a disk (f,(p) disks in total), and obtain
in this way a two-dimensional compact surface (not necessarily connected) without boundary.
We will denote it ¥, (p), and consider it up to diffeomorphisms. On the example of Figure
Y, (p) has two connected components, a torus on the left and a sphere on the right. On the
example of Figure 4] ¥, (p) has again two connected components, a Klein bottle on the left
and a projective plane on the right. Observe that if all the edges are straight, the surfaces
that appear are orientable. Let x,(p) denote the Euler’s characteristic of ¥,(p). According to
Euler’s formula,

xolp) = miw) ~ 4 1, (p).

Next we introduce additional combinatorial objects related to the ribbon pairings. We will
consider tuples (ki,s1, k2, s2,...,kj,s;), where j € N\{0}, each of the k; is in N\{0}, and each
of the s; is one of the three abstract symbols —, < or =. We will endow such tuples by an
equivalence relation ~ generated by the following rules.

¢ Cyclic permutation: foranyie {2,...,j}, (ki,si,...,kj, 85, k1,81,...,ki—1,8;-1) is iden-
tified to (k‘l, Sq, ]432, S2,..., l{ij, Sj).
¢ Reversal of the direction: (kj,r(s;),...,k2,r(s2),k1,r(s1)) is identified to
(k1,s1,k2,82,...,kj,85), where r(—) is <, r(«) is —, and r(=) is =.
For lack of a better name, we will call trails the equivalence classes of ~.

Given a ribbon pairing p € R,,, we will associate to p a set T, (p) made of f,(p) trails, one per
each boundary cycle in the ribbon pairing. One starts on such a boundary cycle in an arbitrary
place, and travels along it in any of the two directions. Then one successively visits ribbon
half-edges with labels k1, ka2, ..., k; and then returns to the half-edge k1. One can go from the
half-edge k; to the half-edge k;,1 either by following a gluing, and we will denote this k; = k; 11,
or by going through a vertex. In the latter case, one either does a turn clockwise, and we will
denote this k; — k; 11, or counterclockwise, and we will denote this k; < k;11. A special rule is
applied if the vertex has only one outgoing half-edge, one just makes the arrows in the trail and
on the picture match. This is how a trail is obtained. Note that by construction, there is an
alternation between on one hand =, and on the other hand — or <. In the example of Figure
[B] there are three trails:

(2.4)
(1,-,2,=4,—,1,=,3,—>,4,=,2,—>,3,=), (5,—,6,=,7,—,5,=,8,—,8,=), (6,—,7,=).

In the example of Figure 4] there are two trails:
(17 4)7 2’ i? 47 4)7 17 i? 37 (77 27 i? 47 (7? 37 i)? (5’ 4)’ 6’ i? 7’ (7’ 6’ i? 77 4)’ 5’ i? 87 4)7 8’ i)'

We will also consider oriented trails. Like the (unoriented) trails, they can contain positive
integer numbers and symbols — and =, but not the symbol <. In the oriented trails we quotient
by cyclic permutations, but not by the reversal of direction. We will associate oriented trails to
ribbon pairing that contain only straight edges. Given p € R, with only straight edges, ?V(p)
will be a set of f,(p) oriented trails, one per each boundary cycle where one follows the cycle in
the direction of the arrows (clockwise). The oriented trails corresponding to Figure |3| are given

by .

2.6. One matrix integrals and topological expansion. Ej3, will denote S,(R), the space
of real symmetric matrices, for 8 = 1, H,(C), the space of complex Hermitian matrices, for
B =2, and H,(H), the space of quaternionic Hermitian matrices, for g = 4.

(n+1)n

5 , dim Eg_o ,, = n2, dim Eg_y,, = on? —n.

dim Egzl’n =
9



Eg ,, is endowed with the real inner product
(M, M'") — Re(Tr(MM")).

The Gaussian Orthogonal Ensemble GOE(n), the Gaussian Unitary Ensemble GUE(n) and
Gaussian Symplectic Ensemble GSE(n) are Gaussian probability measures on Eg,,, with 5 =1
for the GOE(n), g = 2 for the GUE(n) and f = 4 for the GSE(n). We will use the usual
notation GSE(n). The density with respect to the Lebesgue measure on Eg,, is given by

1 1 2
2.5 = e (M)
(2.5) Zom

The distribution of the ordered family of eigenvalues A\; = A\ = -+ = A, of GBE(n) is given by
1

_ 12 . 2
Zev 1{>\1>)\2>~~~>)\n} H ()‘i - Aj)ﬁe 2 A+ Jr)\")d>\1 oo dA.
Bn 1<i<j<n

For more on random matrices see [Meh04].
Let v = (v1,v2,...,Vm@)), where for all [ € {1,2,...,m(v)}, v € N\{0}, and

is even. Next we recall the expressions for the matrix integrals

m(v)

m(v)
(2.6) (T Te@))sm = Zl f ( 11 Tr(M”ﬁ)e’éTr(MQ)dM, Be{l1,2,4}.
1=1 Bn JEgn -1

Note that if |v| is odd, the above integrals are zero. The expression for is a polynomial
in n, with powers nf*(?) where p € R, are ribbon pairings associated to v. Since fu(p) can
be expressed using Euler’s characteristic of surfaces, the expression for is often referred
to as topological expansion. The expansion for complex Hermitian and real symmetric matrices
appears in [BIPZ78] (see also [BIZ80]). The combinatorics for quaternionic Hermitian matrices
are given in [MWO3| (see also [BP09]). For more on the topological expansion, we also refer to
[Eynl6, Chapter 2], [EKRIS, Chapter 2], [LZ04, Chapter 3], and [Zvo97].
Given a ribbon pairing p € R,, we associate to it a weight w,, g(p) depending on j:

1

wu,ﬁ:l(ﬂ) = Wv wu,,3:2(p) = 1,0 has only straight edges wu,5:4(p) = (_2))(1,(,0)272m(u)+\1/|/2.

In all three cases [ € {1,2,4}, for every p partition in pairs of {1,...,|v|},
Z wy,8(p) = 1.
PERv,p

Theorem 2.4 (Brézin-Itzykson-Parisi-Zuber [BIPZ78|, Mulase-Waldron [MWO3]). For § €
{1,2,4} and |v| even, the value of the matriz integral <H;z(1y) Tr(M"))s.n (2.6) is given by

m(v)
(2.7) T M0 = ) wip(p)n®).
=1 PERL
For instance, (Tr(M?))s,, equals dim Eg,,. For v = (4) and v = (2,2) one gets
1 ) ) 1 1 )

(Tr(M*))g1n = §n3 + ZnZ + UTe(M*) g1 = Zn‘L + §n3 + Zn2 +n,
Tz = 20+ 1, (V)00 = ' + 202,
(Tr(M*)) -4, = 8n® — 10n* + 5n, UTr(M?)*g—gm = 4n* — 4n3 + 5n% — 2n.

10



3. MAIN STATEMENTS

3.1. Matrix-valued free fields, isomorphisms and topological expansion. Let G =
(V, E) be an electrical network as in Section For g € {1,2,4}, ® will be a random Gaussian
function from V' to Eg,. The distribution of ® is

(3.1) Z% esxp (- ;EV (o) TR (M (@)%) — 5 {Z}E O, ) Te(M(y) — M(x))?)) [Tave)

The field ® is a matrix-valued Gaussian free field. It can be obtained out of dim Eg, i.i.d.
copies of the scalar GFF (2.2), by considering the coefficients of the matrices. For any z €
V, ®(x)/o/G(z,z) is distributed as a GSE(n) matrix. The brackets {-), will denote the
expectation with respect to the law of ® for the corresponding values of (53,n).

Let v = (1,12, .+, Vp(y)), where for all 1 € {1,2,...,m(v)}, v, € N\{0}, and || is even. Let
T1,T2,...,T), be vertices in V, not necessarily distinct and F' a bounded measurable function
RY — R. By applying Theorem one can a priori write an isomorphism for

Vit

m(v)
<( ] ( I1 <I>(:ck))>F(Tr(<I>2)/2)>B .
=1 ’

k=vi+-+y_1+1 "

However, if one expands the traces and the product, one gets many terms that give identical
contributions, many terms with contributions that compensate, and many terms that do not
contribute at all. Here we will be interested in the exact combinatorics that appear. What
emerges is a topological expansion, generalizing that of Theorem [2.4

Let ,uzléms " he the following positive measure on families of [v]/2 nearest-neighbor paths

on G:

T1,L2;.,& |y v T1,X2,5-,T |y

oAy dy2) = Z wy,5(p)n (p)ﬂpu(p) Ndy, . dyp2)-
pPERL

Next we give examples.

Mml,mg _ (}n2 + 1n>ux1,x2 M$17$2 — nuﬂflﬂb

v=(2),8=1n 9 9 ) v=(1,1),8=1,n )
M2 () pman = O, HoZ(1 1), man = M,
My (3 pmam = (207 =), () poan =

The measures f1,,'37>""** with [v| = 4 are linear combinations of p™ %2 @ u®*, u™* @ p2*s
and p*1"3 @ u*2%, We summarize the coefficients in some cases in the table below.

LTI ) (T3 T UL @ ETS | TS @) T,
ey, | ot gnt e | gt ge e gn | get I
Hi;g;ﬁ;ﬁln %n‘l + %n‘q’ + inQ %nQ + %n %nQ + %n
v o 3 :
25y n® n” n’
uf:?j)zﬁs:xfn An3 —4n +n An3 —4n2 +n —2n% + 3n
Mi;g;ﬁ;ﬁ in 4Ant — 4An3 + n? m2—n 22 —n

11



In the examples of Section the terms in ,uflzfj 3130% ,, corresponding to the pairings displayed
on Figures (3] respectively 4l are measures of the form p%% ® p®2:% @ P8 @ pve*7 with
prefactors wV=(473,1),5(p)n3, respectively wy=(473,1)75(p)n2.

Theorem 3.1. For 8 € {1,2} and F a bounded measurable function RY — R, one has the
following equality:

Vit

m(v)
(T T s,
=1 [ | ,

T1,22,-,T |y

- f <F(Tr(<I>2)/2 + L)+ + L)) Hy G (dyi, - dyy2),

B
717"'7\V\/2
T1,E2,, Ty )
where ()gnlt, 5 () is a product measure. For f = 4,

vi+-ty

m(v)
<< H Re (Tr ( H q)(a:k)>))F(Tr(@Q)/2)>6:4’n

k=vi+-+y_1+1

= J <F(T1"(‘I’2)/2 + L(y) + -+ L(’V\y\/z))> b Ny - Ay 2).-

Y1 Yw|/2
In particular, if \1(x) = Ao(x) = -+ = N\ (2) is the family of eigenvalues of ®(z), x € V, and

5:4771

mlz..-:xljl, xl/l"rl:.'.:xljl-‘rljgj ey x|l/|—l/m<u)+1:.'.:x|l/|7
then, for B € {1,2,4},

m(v) n

(3.2) <l11 (l; )\i(xy1+---+uz)”’)F(;g)\?)%}’n

1 S 2 (zv 7’/1)7---=(x\u\7’/m(1/))
= j <F<§ Z_Zl )\Z + L(’}/l) + -+ L(’Y\V|/2))>B,nﬂy,g7ln (dvla cee 7d’7|u\/2)a
V- V|/2 h

where the notation (Ty, 4.1, ;) means that Ty, 4.4y, is repeated vy times.
Remark 3.2. In the quaternionic case 8 = 4, when considering a single GSE matrix M as in

Theorem one does not need to take the real part of Tr(M"), since M* is quaternionic
Hermitian and its diagonal entries are real. However, in Theorem above, the products

Vi+-tyg
D(xk)
k=vi+-+y_1+1

may involve several different matrices, and thus are not always quaternionic Hermitian. So one
needs to take the real part of the traces.

Now, we consider a family of |v| deterministic square matrices with complex entries of size
n x n:
A(l, 2), ey A(Vl - 1, 1/1), A(Vl, 1),
A(Vl + 1,11 + 2), - ,A(l/l +uvy—1,11 + VQ),A(Vl + v, v + 1),
7A(|V| — Um(@) + 17|V| — Um(v) +2)7--'aA(|V| -1, ‘V‘)7A(|V|v |V‘ — VUm(v) + 1)
Note that by convention, for each [ € {1,...,m(v)} such that v; = 1, we have a single matrix
A+ +uy,vi+---+y). Forle {1,...,m(v)}, II,;(®, A) will denote the product

(33) Hy,l((I)a A) = (I)(x,jl_;_..._,_,,lil_;_l)A(Vl 4ty g+ L+ 4y + 2)(13(56,,1_,_...4_,,[714_2)
.. .A(Vl +--+y—1Lv+---+ Vl)@(l‘,,1+...+,,l)A(l/1 + -ty +--t+ Y1+ 1).
12



In case v = 1, I, ;(®, A) = ®(xp,4o0)) A1 + -+ 1,01 + - + 1)),
Next, for 8 € {1, 2}, we will write an isomorphism for

m(v)

((TT ™ (M@, 4)) ) F(Te(@2)/2) )

=1

ﬁ?n

It will involve the following (complex-valued) measure uzlﬁ’xﬁj’g’x'"' on |v|/2-tuples of nearest-

neighbor paths on G:
T 7x 7"'7];’/ x 737 7"'7xl/
f ot Ny dyye) = ) wy,g(p)( 11 Tr(Ht(A))>upi(p2) “dy, - dvpye)-
PERY teTu(p)

Here, TI;(A) is a product of matrices of the form A(k,k’) or A(k’,k)T, where T denotes the
transpose (and not the adjoint). For each sequence k — k£’ in the trail t we add the factor
A(k, k') to the product, and for each sequence k « k/, we add the factor A(K’, k)T, all by
respecting cyclic order of the trail. For instance, if

(34) t= (57_)’675373(_’6’£a77_)75,£583_)787i)v
which is one of the trails on Figure , then
I, (A) = A(5,6)A(7,6)TA(7,5)A(8, 8).

Note that while the product II;(A) depends on the particular representative of the equivalence
class t, its trace does not. Indeed, the trace is invariant by a cyclic permutation of the factors.
Moreover, reversing the direction of a representative of t amounts to taking the transpose of
the product, which has the same trace.

Next we give examples of measures uilﬁqu:'f;"x'”“

oL@ o=1n4 = (%TY(A(LQ))TT(A(QJ))+%Tr(A(l,Q)A(Q,1)T)>MI1,9«“27
Pl et = (%TY(A(LUA(Z?))+%T&“(A(l,1)A(2,2)T))M9€171‘2,
N sama = Tr(A(L,2)) Tr(A(2, 1)),

Pol(iny peama = (AL 1)A(2,2))p""2.

Note that if all of the matrices A(k,k’) are equal to I, the n x n identity matrix, then
T1,22,--,T || T1,22,-.,T|

I G A is just 1, 5., “I because all of the traces Tr(IT;(A)) equal then n.

For 8 = 4, we will need a slightly different setting. We consider matrices ﬁ(k, k"), with the
same indices (k, k) as for the matrices A(k, k), but instead the A(k,k’)’s are n x n quaternion-
T1yT2;50e 5Ty |

valued. The (signed) measure p P will be defined as follows

Nfﬁz,nf}w (dy1s - dyp)2) = Z wl,ﬂ=4(p)( H Re(Tr (11, (A))))Hf)i»&z),...,w\u\ (d1, - - A 2)-
PERL €T (p)

Here, I1;(A) is a product of matrices of the form A(k, k') or A(k', k)*. For each sequence k — &’

in the trail t we add the factor K(kz, k') to the product, and for each sequence k «— £/, we add

the factor g(k’ ,k)*, all by respecting cyclic order of the trail. Let us emphasize that for g = 4,

we use the quaternion adjoint *, and not the transpose '. For the trail , one gets

~ ~ ~

I, (A) = A(5,6)A(7,6)* A(7,5) A(8, 8).

Next are two examples:

W s = (2Re(TE(A(L,2) Tr(A(2.1)) — Re(Tr(A(1,2)A(2, 1)) )72,
1 ~ ~ 1 ~ ~

Z1,T2 _ - - * x1,T2

s = (G Re(I(ALDA2,2)) + 5 Re(Tr(A(L, DA(2,2)%)) ) ™.

13



Theorem 3.3. For 8 € {1,2} and F a bounded measurable function RY — R, one has the
following equality:

<(1=(1 Tr (T (®, 4)) ) F(Tr(@7)/2) )

J (F(Te(@)/2+ L(y) + - + L(’Y\u|/2))>g Mg (ds s dag),
T Yw|/2

,n

where <~>g,nuf1éx::’A Y1) is a product measure. For 3 = 4,

m(v)
(T Re (e (e D)) JFeec@ty)
S

f <F(Tr(¢'2)/2 + L)+ + L(’y\l,|/2))>6 M sean i (dy1, - dYy2)-
Vi Yw|/2

Theorem [3.3] which contains Theorem as a special case, will be proved in Section [£.1]

3.2. Isomorphisms and topological expansion for matrix-valued fields twisted by a
connection. We will denote by Ug,, the group O(n) if 5 =1, U(n) if 8 = 2, and U(n,H) if
B = 4. We consider a connection on G, (U(%,¥))(zyjer, With U(z,y) € Ug,, and

U(y,x) = U(xay)* = U(l'?y)_l'

Let <>gn be the following probability measure on (Eg,,)", defined by the density
(3.5)

1 1 1
7T (-5 2 5@ DM@ =5 ) Clay) Te((M(y) — Uly, ) M)V (,9)%)).

zeV {xuy}EE

Note that if {z,y} € E , then

Te((M(x) = Uz, y) M (y)U(y, ))*) = Te((M(y) = U(y,2)M (2)U (2, 9))?).

We will denote by ® the field under the measure <>gn It is the matrix-valued Gaussian free field
twisted by the connection U. If (4(2)) ey is a gauge transformation, then (U(x) = ®(x)U(7))zev
is the field associated to the connection (8(z) U (z,y)U(y))(zyjep- If the connection U is

trivial, then for all z € V, ®(x)//G(x,x) is distributed as a GSE(n) matrix. This is not
necessarily the case if the connection is non-trivial.

Asin Section we take v = (v1,19,. .., Vn(y)), Where forall l € {1,2,...,m(v)}, v € N\{0},
and [v| is even. Let x1, 72, ..., 7|, be vertices in V, not necessarily distinct. As in Section

the A(k, k')’s respectively ﬁ(k‘, k')’s are families of |v| square matrices with complex, respectively
quaternionic entries of size n x n. The products I, ;(®, A) and II,, ;(®, A) are defined as in (3.3]).
Next we will write an isomorphism for

m(v)

((I] (le@’vA>))F<Tr(<1>2>/2)>g . Befl,2},

=1 m

and for

m(v)
(]‘[ Re (T (11,.(2, 4)) ) ) F( r(<1>2)/2)>;, i

14
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For B = 1, we introduce the following (complex) measure i 2-tuples of
) Mu,ﬁ—l,n,A,U

nearest-neighbor paths on G:

T1,22,.,T |y

P gt A (@715 - ) =

> wu,ﬁzl(p)( [ 1 Tr(Ut(U,A)(*n,---,7\V|/2))>uﬁi’(if)"”’x'”'(dm,...,dwm).
PERL teT,(p)

Here, (U, A) (71, ..., 7jy|j2) is a product of matrices of the form A(k, k') or A(K',k)T, and
holV (v) or holY (4)*, 4 being one of the paths. For each sequence k — & in the trail t we add
the factor A(k, k') to the product, and for each sequence k < k', we add the factor A(k’, k)T, as

. . X1,X2,...,T . .
in the construction of x, B A I Moreover, for each sequence k = k’ with k < &/, a measure
I b b

pPE Tk (dy;) is present, and we add to the product the factor holV(y;). For each sequence
k = k' with k > k', a measure pu®"k(d~;) is present, and we add to the product the factor
holV (7:)* = holY (;)T. In the product, the factors respect the cyclic order on the trail.

For 8 = 2, we will need oriented trails. The (complex) measure uilﬁiénﬂ”g, on |v|/2-tuples
of nearest-neighbor paths on G is as follows:

T1,22,-,T |y

P gz A (@715 - ) j2) =

Z wl/ﬁ:Q(p)( H TI‘(H?(U, A) (717 s 7’Y\V|/2))>Mf,:(i)2)w.7xlyl (d")/l, - 7d7|z/\/2)~
PERY TeT . (p)

Here, Il (U, A)(71,---,Yy|2) 18 a product of matrices of the form A(k,%") and holV (7) or
hoIU(’y)*, 7 being one of the paths. For each sequence k — k' in the oriented trail © we add
the factor A(k,k’) to the product. Moreover, for each sequence k = k' with k < k/, a measure
p= @ (dry;) is present, and we add to the product the factor hol” (v;). For each sequence k = &’
with k > k/, a measure p® % (d~;) is present, and we add to the product the factor hol% (v;)*.
In the product, the factors respect the cyclic order on the trail. The reason we use oriented
trails is that the reversal of the orientation of the trail changes the trace, as complex adjoints
of holonomies appear.

For 8 = 4, we return to unoriented trails. We introduce the (signed) measure p*""*"""!

~ on
v,5=4,n,A,U

|v|/2-tuples of nearest-neighbor paths in G, constructed as follows:

T1,T2,..,T |y

My’ﬂ:m’g’U(d% o d)e) =

S wopeao)( [T Re(T. D)oo 1) 0 ).
PERL teT,(p)

Here, I, (U, A)(v1, . .. ;Yv|/2) 18 a product of matrices of the form A(k, k') or A(K,k)*, and
holV (v) or holY (4)*, 4 being one of the paths. For each sequence k — & in the trail t we add
the factor /T(k:, k") to the product, and for each sequence k «— k’, we add the factor X(k", k)*.
Moreover, for each sequence k = k' with k < k’, a measure %% (d~;) is present, and we add
to the product the factor holV (7;). For each sequence k = k' with k > k', a measure %+ (d~;)
is present, and we add to the product the factor hoIU('yZ-)*. In the product, the factors respect

the cyclic order on the trail.
15



T1,X250 Ty |

T2,y
Next are some examples of measures f, 5,"y ;" and Ky gmtn i
1
W peiman = (5 TAL2)hol” (1)) x Te(A(2, Dhol” (7))

+% Tr(A(1, 2)hol! ()* A(2,1) Thol (4)) ) ™= (d),

T, 1
HV2(1271),5:1@,A7U = (iTr(A(la1)h0|U(7)A(272)h0|U(’7)*)

+%Tr(A(1,1)hoIU (7)A(2,2)Thol” (7)*) ) 7% (dy),

ol pmoman = (AL 2)hol” (1)*) x Tr(A(2, 1)hol” (7)) 1% (dny),

= Tr(A(1, hol” () A(2, 2)hol” (7)*) 172 (dy),

T1,T2
Hy=(1,1),8=2,n,4,U

1,22

'ul/=(2),ﬁ=4,n,g,U

(2 Re(Tr(A(1,2)hol” (7)*)) x Re(Tr(A(2, 1)hol” (7))
~ Re(Tx(A(1, 2)hol” ()* (2, 1)*hol” (1)) ) ™ (d),

xT1,T2
By p=4n,40

(% Re(Tr(A(1, 1)hol” () A(2, 2)hol” (7)*))
+% Re(Tr(A(1,1)holV (1) A(2, 2)*hoIU('y)*))> 172 (dy).

Theorem 3.4. For 3 € {1,2} and F a bounded measurable function RV — R, one has the
following equality:

m(v)

(3.6) <( ] (Hy,l(cb,A))) (Tr(®2) /2)>6n

=1
U

J <F(Tr(‘1>2)/2 + L) + -+ L) Milg’f’A A, ),
V15w /2

T1,L2,5--,T |y

where <~>gnuyﬂ nau () is a product measure. For 8 = 4,

(e (1 (o ) o)
U T1,T2 500y T |y |

f <F(Tr(<1>2)/2 + L)+ L(’Y\u|/z))>ﬁ:4 g Ao (G- @Yy 2)-

V1o w|/2
Theorem [3.4] will be proved in Section

Remark 3.5. Note that in the measures p, B;,A,m‘ ‘(dm,...,d'y‘,,vz) for p € {1,2}, and in

','El 73327 7$ v .
u,ﬁ:4,n,A‘,l‘J(dryl’ . ,d’y|l,|/2), the holonomy along each path ~; appears twice.

Remark 3.6. If one does not have &y, 4...40, |41 = Tui gy 142 =+ = Ty 4.4y, then from a
geometrical viewpoint it is not very natural to consider just the trace
vi+-4y

ﬂ( I1 @(xk)).

k=vi+-4y_1+1

This is because then the ®(zy) live on fibers above different points of the base. So one needs a

way to compare fibers above different points. For this one can intertwine the matrices A(k, k')

and A(k, k"), with A(k, k") real symmetric (8 = 1), respectively complex Hermitian (8 = 2), and
16
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A(k, k") quaternionic Hermitian (8 = 4). However, it turns out that the identities of Theorem
are the same for A(k, k') and A(k, k') being more general.

Remark 3.7. Consider the particular case when the connection U is trivial, i.e. for any closed
path (loop) v, holV (y) = I,,. There is a gauge transformation &l : V — Ug,, such that

Vz,y € V such that {z,y} € B, U(z)'U(y) = U(z,y).
Then for any x,y,€ V and ~ nearest-neighbor path from z to y,
hol” () = U(x) "' U(y).

The field @ under <>gn has the same law as (U(z)'®(z)U(z))zey under (-)z,. So, in the
particular case of a trivial connection, Theorem follows directly from Theorem

A special case of particular interest in Theorem is when all the matrices A(k,k’) and

~

A(k, k') equal I,, and
T1 =" =Ty, Tuy41 = " = Loy 4, e, x|1/|*l/m<l,)+1:”':$\l/|'

Then, on the left-hand side of (3.6]), we have

n

Vie{1,...,m@)} Tr((®, 1n)) = D i@, 4oin)”,
=1

where A\ (z) = Aa(z) = -+ = A\, () is the family of eigenvalues of ®. On the right-hand side of
(3.6) appears a product of Wilson loops. Indeed, each I1; (U, In) (71, - - - Vw|/2)> U (U, In) (Y15 - - 5 Vwi/2)

and ﬁt(U, L) (715 -+ y|j2) is then a holonomy along a loop formed by concatenating some of
the paths 7. In the example of Figure [3] the holonomies are

holV (41)hol (2)holV (§7)holV (3, holV (43)holY (74)holV (57), and  holY (%3).

where 1 and 7o are paths from z4 to x4, 3 is a path from from z7 to x7 and 4 a path from
x7 to zg. In the example of Figure 4] we get

hol” (1)holY (F2)holY (F7)holY (82),  and  holY(43)holY (v3)holY (74)holY (57).

Note that since the joint distribution of all eigenvalues above all vertices is invariant under gauge
transformations, it is natural that expectations with respect to only these eigenvalues involve
only Wilson loops; see Section and [Gil81l [Sen94, [LE04]. We summarize this paragraph in
the following corollary.

Corollary 3.8. For € {1,2,4} and U a non-trivial connection, in the isomorphism for

m(v) n n
H (Sreacr) G50,

compared to the case of a trivial connection (3.2)), each power of n in the topological expansion,
that is nf() | is replaced by a product of fu(p) Wilson loops corresponding to holonomies along
random walk loops, one for each boundary cycle of the ribbon in the ribbon pairing p.

Remark 3.9. The density (3.5)) can be factorized by using the orthogonal decomposition
1 1
M = = Te(M)I, + <M _ - Tr(M)In).
n n

We have that



and
Te((M(y) — Uy, 2)M(2)U (x,y))*) = %(TY(M(LU)) — Tr(M()))*
+ T ((M(y) - %Tr(M(y))In ~ Uy, ) (M(x) - %Tr(M(fU))In)U(% y))Q)-

So, under <>gn, for 8 € {1,2,4}, the matrix-valued field ® — 1 Tr(®)I,, and the scalar field
Tr(®) are independent. Moreover, the field

(\;ﬁTr(q)( )>a:ev ([Z )er

is distributed as a scalar GFF ([2.2)), and in particular its law is the same whatever the connection
U. The latter point can also be seen through the covariance structure of Tr(®). In the expression
of two-point correlations

(Te(®(x)) Tr(®(y)))5

appear only ribbon graphs with one boundary component (f,—( 1)(p) = 1). Thus, the two-point
correlations are expressed with

Tr(hol” (y)hol” ()*) ¥ (dv) = nu™¥(dn).
Hence,

(Tr(®(x)) Te(®(y)))f,n = G (2,y).

4. PROOFS

4.1. Proof of Theorem We give the proof of Theorem which contains Theorem
as a special case. A possible approach would be to expand the product of traces on the left-hand
side of the isomorphism identity, apply Theorem and then recombine the terms to get the
right-hand side of the isomorphism identity. This works well for 8 € {1,2} (see [Zvo97] for one
matrix integrals), but for 5 = 4 this approach is less tractable because of the non-commutativity
of quaternions. Instead, we will rely on an induction over the numbers of edges |v|/2, similar
to that in [BPQ9].

We use the notations of Section For § € {1,2,4}, let (M®);~; be an i.i.d. sequence of
GSE(n) matrices with distribution 1-) Given p = {{a1,b1},...,{ap 2, b|2}} a partition of
{1,...,|v|} in pairs and € {1,...,m(v)}, I, ; , (M, A) will denote the product of matrices

T, p(M, A) = MO+t Ay 4oy 4+ Loy + -+ g+ 2)MOttieas2)
A+ Ay =LA )M ) A 4+ 4y + 1),

where, for k£ € {1,...,|v|}, we denote by J; the unique index i € {1,...,|v|/2} such that
ke {az,b }. Note that how exactly the pairs {a;,b;} in the partition p are ordered will not

be important. The product II,,; (M, A) is defined similarly, with matrices A(k: k') instead of
A(k, k). Note that in the products

m(v)

[T 7 (Moep(M,4))  and nﬁ)Re<Tr (Mp (M, 4))),
=1

=1

each M@ for i e {1,...,|v|/2} appears exactly twice, at positions corresponding to a pair in
the partition p.
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Lemma 4.1. Then, for f € {1,2} and F a bounded measurable function RV — R, one has the
following equality:

m(v)
(T (e, ) ) Peme)2)
=1 ’
m(v)
_ f CTT e (Mo, A))>ﬁn
Oz};{;clzrtzt"zzﬁ,yl, iz =1 ’
n pairs
x <F(Tr(<I)2)/2 +L(y)+ -+ L(my|/2))>ﬁ nuil’”’“"””'”' (dV1,- - AV 2)-
For p =4,

(T e (3 o 2))rcncao),
2 [ (e (nona)),

Y1,
of {1,.. \un Ivi/2
wm pazrs

x <F(Tr(<1>2)/2 +L(y) + -+ L(’V\v\/2))>ﬁz4 nuil’“’”"x'"' (A1, - - Ay a)-

Proof. On the left-hand side one can expand the product of traces

m(v)

H Tr <Hl,,l((I>,A)> and H Re (Tr( v (P A))>

=1

Then, one applies to each term in the sum Lemma (in the particular case U = I,,), so as to
make appear the entries of GGE(n) matrices M (©), Then one factorizes these entries into

m(v) m(v)
E Tr (Hu,l,p(M, A)) and E Re (Tr (H,,,lﬁp(M, /T))) O

It remains to compute the moments

m(v)
<H Tr( vip(M A))>B,n and < E Re (Tr <H,,,l’p(M, g)>>>6:4,n'

for |v]/2 i.i.d. GBE(n) matrices. For 5 = 4 we will use expressions of moments of quaternionic
Gaussian r.v. that appeared in [BP09).

Lemma 4.2 (Bryc-Pierce [BP09]). Let £ € H be a quaternionic Gaussian r.v. with distribution

1 12
e 211 dg, dg;dq;dgy.

(4.1) o

Then, for any q1,q2 € H,
E[Re(£g1€g2)] = 4Re(q1) Re(q2),  E[Re(§q1€g2)] = —2Re(q132),

E[Re(£q1) Re(€g2)] = Re(qig2),  E[Re(éq1) Re(€g2)] = Re(q12).
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Lemma 4.3. Let M be a random GBE(n) matriz (2.5), 8 € {1,2,4}. Let B,C be two deter-
ministic matrices in My (C), and B,C two deterministic matrices in My, (H). Then

(4.2) (Tre(MBMC)yg—1, = %TY(B) Tr(C) + %T&“(BCT),

(4.3) (Tr(MB) Tr(MC))g=1n = %Tr(BC) + %T&"(BCT),

(4.4) (T (MBMC)ypopn = Te(B)Te(C),

(4.5) (Tr(MB) Tr(MC))g—2,n = Tr(BC),

(4.6) (Re(Te(MBM®)))g—yn — 2Re(T( ) Re(Tx <c>> — Re(Tr(BC™)),

(4.7)  (Re(Tr(MB)) Re(Tr(MC)))posn = 5 Re(Tr(éé)) +3 Re(Tr(Eé*)).

Proof. If g € {1,2}, the identities follow from the second moments of the entries:
Vie{l,...,n},(MZ)s—1n=1= % + %, Vi#jedl,... ,n},(MEj)B:Ln = (M;jM;;)p=1n = %7

Vie{l,...,n},{M2ys_0, =1, Vi#je{l,...,n},(MjjM;) g—2, =1,

all other second moments being zero.
If 8 = 4, the diagonal entries are still real and commute with quaternions, so for all ¢ €

{1,...,n},
<Re(§iiMiiC~'z‘z‘Mz‘i)>B:4,n = Re(BiCy)
= 2 Re(éu) Re(CN’“) — Re (EMCNTZ),

(Re(BiiMi) Re(CiiMii)p—1n = Re(Bii) Re(Cy)
| R
= 5 Re(B;iCii) + 3 Re (Bzzczz)

For the offdiagonal entries, \/iMij is distributed according to (4.1)), so we apply Lemma
For all i # j e {1,...,n},

(Re(BjiM;jCjiM;j))p=an = —Re (BJZCJZ>7
- - 1 ~ ~
<RG(B]1M”) Re(Ciiji)>B=4,n = 5 Re<Bji 'i])a
- - 1 R
(Re(BjiMi;) Re(CjiMij))p=am = 5 Re (szcﬂ)
All other second moments are zero. O

The following lemma will conclude the proof of Theorem

Lemma 4.4. For € {1,2}, and p a partition in pairs of {1,...,|v|},
m(v)
CTT e (Mo, A)>>,Bn - N w H Tr(IL, (A
=1 ’ PERvp teTy
For g =4,
m(v) o
< H Re (Tr <Hl,,l,p(M,A >>>B i Z wy, g—4(p) H Re(Tr(II:(A))).
=1 PERv,p teTu(p)
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Proof. The proof can be done by induction on |v|/2. If |v]|/2 = 1, the identities above are exactly
those of Lemma [4.3

If [v]/2 > 1, we fix p = {{a1,b1},...,{a),|j2,b)2}} a partition of {1,...,|v|} in pairs. One
can take conditional expectations with respect to MI/2) that appears at positions a v|/2 and
bjy/2 (i-e. conditioning on (M MFI2=1)Y) | For that, one again applies Lemma p will
denote the partition of {1,...,[v[}\{a|,|/2,b},|;2} induced by p. To construct a ribbon pairing
p € R, p one can proceed as follows.

(1) First pair the ribbon half-edges aj,|/» and b}, 2 in an either straight or twisted way.

(2) Then contract the ribbon edge {a|/2,b|,|2}. After this operation one gets a new fam-
ily of positive integers, Usy if the edge {a),|/2,b),|2} Was straight, or 4y if the edge
{aj)2, b2} was twisted, and in both cases |Us:| = [Tw| = [v] — 2.

(3) Finally take a ribbon pairing p in Ry, ;5. respectively Ry, . -

One can show that the steps (1) and (2) above correspond to taking the conditional expectation

with respect to the law M(*//2) and the step (3) to further taking the expectations with respect

to the law of (M, ... M(¥/2=1)) " One needs to see how the weights w, s(p) and wy,, 5(7),

respectively wy,, s(p), are related, with a particular attention to the case § = 4.

This edge contraction procedure appears in the proof of a quaternionic Wick formula in Bryc
and Pierce [BP09], Theorem 3.1. There the authors do in particular the verifications for the
weights w, g—4(p). Our setting is more general, and not limited to 8 = 4, but the recurrence

on ribbon graphs is the same. For completeness, we give the details in Appendix A. O

Remark 4.5. For § € {1,2} one can alternatively prove Lemma by expanding the product
of traces, applying Wick’s rule to each scalar term and then recombining the resulting terms.
If one wishes to proceed like that in the quaternionic case 3 = 4, one needs the Wick formula
for quaternionic Gaussian r.v.s; see Appendix B. This formula is more general than the
one given in [BP09]. However, proceeding like that does not simplify the proof of Lemma
since the proof of the quaternionic Wick formula relies itself on an induction on ribbon
edges. Moreover, then one would need a particular treatment for the diagonal coefficients of
the matrices, since those are real Gaussian r.v.s.

4.2. Proof of Theorem We give the proof of Theorem We use the notations of

Section As in Section for B € {1,2,4}, (M®);>; is an iid. sequence of GAE(n)
matrices with distribution (2.5). Consider x1,x2,..., 2z, € V, p = {{a1,b1},...,{ap |2, b 2}}
a partition of {1,...,[v|} in pairs, with a; < b;, and ~1,...,7),|2 nearest-neighbor paths on g,
with 7; going from z,; to zp,. For I € {1,...,m(v)}, I, ; (M, U, A) (71, .., 7p2) Will denote
the following product of matrices.

Hu,l,p(M7 U, A)(Vh S )’Y|V\/2) =
MOt D Ay ooy Lo 4+ g 4 2) MO H1+2)

A+t =L+ )M A by 4y + 1),
where the matrix M®) is given by
M® = holV (1) MDholV (v)* if k = a;,  M® = MO if k = b,.

The product II,,; , (M, U, A (7, ... ;Vw|/2) is defined similarly, with matrices A(k, k') instead of
A(k, K.
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Lemma 4.6. Then, for f € {1,2} and F a bounded measurable function RV — R, one has the
following equality:

m(v)

((TT 1 (Mt ) ) Fers@?y)),
=1 ’
= Z f <Wﬁ) Tr (Hu,l,p(M7 U, A) (715 - - 7’Y|u\/2)>>
IJ;p(lwtztzon,Y17 iz =1 Bom
RAS
(R (TR @)/2 4 L) 4o+ L)) ), ™ )
For p =4,
(T (1 o 1)) i)
m(v)
_— f < U Re (ﬁ (H,,J,I,(M, U, D), ... ’7|”|/2)>)>/3:4,n
g}]{){;rtztfzﬁ,yh iy =1
in pairs
< (F(TH@/2 4 L0+ 4 L)) ), ™™ ),

Proof. This follows from Lemma [2.3] Indeed, the action of U(z,y) on R" (8 =1), C" (8 = 2),
respectively H"” (8 = 4), induces an action on Eg, by conjugation:

M — U(z,y)MU (z,y)*.

U(x,y) will denote the corresponding linear orthogonal operator on Eg,. The holonomy of the
connection (U(z,y))(zy}er along a path 7 is related to that of (U(z,y)) (s e along v by

hol (v)(M) = hol¥ (y)MholY (y)*, M € Eg,,.
So one applies Lemma to the connection (U(z,y))(zy}ek- O

To finish the proof of Theorem [3.4] one needs to check, for every fixed partition in pairs p,
the following expressions of expectations with respect to the law of (M (l))1§i<|V‘ /2t

{ H (Mo MU o0 p2)) ),

= Y wsea(p) ] TR A (- 3py2),

PERv,p teTu(p)
m(v)
< 11 Tr (Hl/,l,p(M7 Ua A) (717 s 7’Y|l/‘/2)) >,3=2,n
Z Wy, B= 2 H TI' )(715"'77‘14/2))5
PERv,p E?V

m(v)

< [] Re (Tr (nwl,p(M, U, A)(m, ... m|u\/2)))>5:4,n

11
31 wigmalp) || Re(Te(e(U, A)(y1,. . Ywi2)-
pERMp tE%(p)
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The identities above follow already from Lemma [4.4 One has to apply the latter to matrices
A(k, k'), respectively A(k, k'), instead of A(k:,k’), respectwely A(k, k'), where A(k, k) and
A(k, k') are as follows:

Alai,a;) = hoIU( ~)*A(al,a])ho|U(7]), ,z(ai,aj) = hoIU(%-) A(ai, aj)hol” ()
A(ai,bj) = hol” (;)* A(as,b;),  Alas, bj) = hol” (;)* A(as, by)
A(bi,aj) = A(b,a)holV (v;),  A(bi,a;) = A(bi, a;)holV ()
Abi, bj) = A(bi ;). A(bi,by) = A(by, by).

Then, for every [ € {1,...,m(v)},
Tr(IL1p(M, U, A) (715 Yp2)) = Tr(Ilp(M, A))),
Re(Te(Myp(M, U, A) (1, .., vpy2) = Re(Tr(ILp(M, A))).
Further, if pe R, p and t € T, (p),
Tr(Ie (U, A) (15 - - a’Y|u|/2)) Tr(Ic (A))),
Re(Tr(Ie (U, A (31, pi2)) = Re(Tr(Ile(A))).

If p is the only ribbon pairing in R, with only straight edges (the setting for § = 2), if
T e 71/(/7) and t is the corresponding unoriented trail, then

TT(H?(U, A)('Yl, R 77\V|/2)) = T‘I‘(Ht (A)))

APPENDIX A: INDUCTION ON RIBBON EDGES

Here we detail the induction on edges used in Lemma [£.4] We primarily distinguish the cases
according to whether the ribbon half-edges a),» and bj,|/2 are adjacent to the same vertex
(Figure [5)) or to two different vertices (Figure [6). The case of one vertex corresponds to both
occurrences of M("/2) being in the same trace. This also corresponds to the left-hand side in
equations , and . The case of two vertices corresponds to the two occurrences of
M"/2) being in different traces. This also corresponds to the left-hand side in equations ,

() and (T2,
/ ¢

A \
/

a|v| ‘2

\\

I'
I
1
\

--..
-

-.._...f

b2

FIGURE 5. The case when the ribbon half-edges a2 and bj,|/; are adjacent to
the same vertex. Only the relevant vertex is represented.

We start with the case of one vertex. Recall that p denotes a ribbon pairing of {1, ..., |v|} and

p the induced ribbon pairing of {1,...,[v[}\{a}, /2, b|/2}. We further distinguish the following
cases.

e The generic case, when the vertex has other ribbon half-edges on both sides between

a2 and by, 2. Then, the straight pairing of ay,|; and by, |, is represented on Figure

After contracting the ribbon edge {a|y|/2,b|y|/2}, the vertex is split into two. This

corresponds to having a product of two traces in the first term on the right-hand side in

equations (4.2)), (4.4) and (4.6). The orientations are preserved after contraction. This
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FIGURE 6. The case when the ribbon half-edges a, |, and b},|/; are adjacent to
two different vertices. Only the two relevant vertices are represented.

corresponds to not having transposes or adjoints in the first term on the right-hand side
in equations (4.2)), (4.4) and (4.6)). Further, in case of a straight pairing, we have that

‘V‘ = |\V/str| + 27 m(”) = m(l\//str) - ]-7 fl/(p) = fﬁstr(ﬁ)v Xl/(p) = Xﬁstr(/\)/) — 2.
Thus,

1

Wy5=1(p) = GWrup=1(P),  Wyp=2(p) = Wi, p=2(P), Wy p-a(p) = 2wi,, p=a(p)-

So indeed we get the coefficients in front of the first term on the right-hand side in

equations (L2), () and (L3).

The twisted pairing of aj, |, and by, is represented on Figure |8 It can only occur
for 3 € {1,4}. After contracting the ribbon edge {a,2,bj,|/2}, the vertex is not divided.
This corresponds to having a single trace in the second term on the right-hand side
in equations and . The orientations on one side of the contracted edge are
reversed. This corresponds to having a transpose, respectively an adjoint, in the second
term on the right-hand side in equation , respectively . Further, in case of a
twisted pairing, we have that

v = 0wl +2, m) =mw),  fulp) = o),  xo(p) = xp.(P) — 1,

1
wy p=1(p) = iwﬂtw,ﬁzl(ﬁ), Wy, p=4(p) = —Wy,, s=4(P)-

So we get the coeflicients in front of the second term on the right-hand side in equations

and (L5).

FIGURE 7. On the left: the ribbon half-edges a;,|2 and by, o belong to the
same vertex and are paired in a straight way. On the right: the result of the
contraction of the corresponding straight ribbon edge. The vertex is split into
two. All the orientations are preserved.
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FIGURE 8. On the left: the ribbon half-edges a2 and bj,|; belong to the
same vertex and are paired in a twisted way. On the right: the result of the
contraction of the corresponding twisted ribbon edge. The vertex is not divided.
The orientations on one side of the contracted edge are reversed.

e The first degenerate case, when the vertex has other ribbon half-edges on only one side
between aj,|/2 and bj,|/2. Then, for a straight pairing we have that

V| = [Tste| + 2, m(v) = m(Tsur), fu(p) = fl\//str(b/) +1, xv(p) = Xﬁstr(ﬁ)>

and again,
1
Wy,5=1(P) = GWiup=1(P);  wWyp=2(p) = Wi p=2(P)s  Wi,p=4(p) = 2wy, 5=4(P)-

Moreover, the side between a,|/2 and by, |2 with no other ribbon half-edges gives rise,
after edge contraction/averaging by M (I¥/2) to a factor consisting of a deterministic
trace, with no random matrices inside.
As for the twisted pairing, the result in this degenerate case is the same as in the
generic case. Nothing changes.
e The second degenerate case, when the vertex is of degree 2 and its only ribbon half-edges
are aj, |2 and by, /2. Then, for a straight pairing we have that

v = Tl +2,  m(v) = m(u) + 1, fu(p) = fr(P) + 2, Xo(P) = Xin () + 2,
and again,
1
Wyp=1(p) = S p=1(8)s  Wyp=2(p) = Wiup=2(P),  wip=4(p) = 2y, p=1(p)-

Moreover, after edge contraction/averaging by M (I¥1/2) appears a factor consisting of a
product of two deterministic traces.
For a twisted pairing we have that

vl =10l +2, m) =m@w)+1,  fulp) = fa. (D) +1, xulp) = X () + 1,
and again,

1
wy p=1(p) = §wﬁtw,5:1(ﬁ)a wy,g—4(p) = Wi, p=a(P)-

Moreover, after edge contraction/averaging by M (I¥1/2)appears a factor consisting of a
deterministic trace.

Now we deal with the case of two vertices. We further distinguish the following cases.
e The generic case, when at least one of the two vertices is of degree at least two. Then,
the straight pairing of a, |, and b},|/; is represented on Figure @ After contracting the
ribbon edge {aj,|/2, b2}, the two vertices are merged into one. This corresponds to

having a single trace in the first term on the right-hand side in equations (4.3), (4.5)
25



and (4.7). The orientations are preserved after contraction. This corresponds to not
having transposes or adjoints in the first term on the right-hand side in equations (4.3)),
(4.5) and (4.7)). Further, in case of a straight pairing, we have that

vl =10l +2,  m@)=mGu)+1,  fulp) = fr.(B),  xulp) = Xo. (P)-

Thus,

1 1
wy p=1(p) = §wﬁm,ﬁ:1(ﬁ), Wwy,p=2(p) = Wy, a=2(P); wy p=4(p) = 5%”,5:4(@-

So indeed we get the coefficients in front of the first term on the right-hand side in
equations , and .

The twisted pairing of a2 and b}, /2 is represented on Figure After contracting
the ribbon edge {CLM/Q, b‘,,|/2}, the two vertices are merged into one. This corresponds
to having a single trace in the second term on the right-hand side in equations and
. The orientations on one of the parent vertices are reversed after contraction. This
corresponds to the transpose, respectively adjoint, in the second term on the right-hand
side in equations , respectively . Further, in case of a twisted pairing, we have
that

vl =] +2, m@)=m@w) +1,  fulp) = fre (P Xu(P) = Xinw (),

1 1
wyp=1(p) = ithW7B:1(b/)? wy, g—4(p) = §’wmw,5:4(m-

So we get the coeflicients in front of the second term on the right-hand side in equations

and (4.7).
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FIGURE 9. On the left: the ribbon half-edges a;,|2 and by,|» belong to two
different vertices and are paired in a straight way. On the right: the result of
the contraction of the corresponding straight ribbon edge. The two vertices are

merged into one. All the orientations are preserved.
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FIGURE 10. On the left: the ribbon half-edges a2 and b),|; belong to two
different vertices and are paired in a twisted way. On the right: the result of
the contraction of the corresponding twisted ribbon edge. The two vertices are
merged into one. The orientations on one of the parent vertices are reversed.
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e The degenerate case, when both vertices are of degree one. Then, for a straight pairing
we have that

W=l +2,  m) =m@s)+2,  fulp) = fr(®+1 xu(p) = Xiw (P) + 2,
and again,
1 1
Wy,5=1(P) = SWrup=1(P)s  wWyp=2(p) = Wi p=2(P)s  Wup=-a(p) = Wi p=a(P)-
The same coefficients appear for a twisted pairing. Moreover, both in case of a straight

and of a twisted pairing appears, after edge contraction/averaging by M (17/2) "4 factor
consisting of a deterministic trace, with no random matrices inside.

APPENDIX B: A QUATERNIONIC WICK FORMULA

Here we present a Wick formula for quaternionic Gaussian r.v.s. It is more general then the
one given in Theorem 3.1 in [BP09] and involves trails (see Section . We are not aware
whether our formula has already appeared elsewhere.

Let (&;)i=1 be a sequence of i.i.d. quaternionic Gaussian r.v.s distributed according to .

Let v = (v1,12,...,VUn)), where for all [ € {1,2,...,m(v)}, vy € N\{0}, and [v] is even.
Let (Uk)lgké\ul be a family of r.v.s, where each 7 is either a r.v. &, or a r.v. &, for some
ie{l,...,|v|}. We also consider |v| deterministic quaternions

q(]-aQ)’ s 7q(V1 - 177/1)7(](7/1) 1)5
g1 + Ly +2),...,q(v1 +v2 — Ly + 1), q(v1 + 1,01 + 1),
s (V] = Vi) + LIV = Vi) +2)5 s q(lvl = 1)), a([v)s V] = vy + 1)

Note that for each [ € {1,... ,m(l/)} such that 1, = 1, we have a single quaternion q(vq + --- +
v,v1 +---+u). For le {1,...,m(v)}, 1L, ;(n, ¢) will denote the product

]-_-[l/,l(nv Q) = 771/1+~--+1/L,1+1Q(V1 + -+ Vi—1 + 1) 141 + -+ Vi—1 + 2)771/1+~~+I/l,1+2
..q(l/l +--+y -1, +"'+l/l)7],,1+...+l,lq(l/1 +---F+y, 1+ +y_q+ 1).

In case v; = 1, IL, ;(7, Q) = N4ty q(1 + -+ + v, 01 + - - + 7). We will express the moment

(4.8) [Hm@mm

Theorem 3.1 in [BP09] gives an expression in case all the quaternions ¢(k, k') equal 1. Note
that in order for the moment to be different from 0, the number of occurrences of &; plus
the number of occurrences of §; in the family (7x)i<k<|y| has to be even for each i. R, , will
denote the subset of R, made of all ribbon pairings p such that for each straight ribbon edge
with labels k, &/, np = T a.s., and for each twisted ribbon edge with labels k, k', n, = np a.s.
Given a ribbon pairing p € R, and a trail t € 7,(p), let I1;(¢) denote a product of quaternions
of the form q(k, k') or q(k’, k). For each sequence k — £’ in the trail t we add the factor q(k, k)
to the product, and for each sequence k — k', we add the factor ¢(k’, k), all by respecting cyclic
order of the trail.

Proposition B1. With the notations above, we have that

(4.9) [Hm@mmﬂwzww [T Re (M)

teTu(p)

Proof. On can proceed by induction on ribbon edges as in the proof of Lemma [£.4] The case
|v| = 2 is given by Lemma O
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