Nash embedding, shape operator and Navier-Stokes equation on a Riemannian manifold - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Nash embedding, shape operator and Navier-Stokes equation on a Riemannian manifold

Shizan Fang
  • Fonction : Auteur
  • PersonId : 828629

Résumé

What is the suitable Laplace operator on vector fields for the Navier-Stokes equation on a Riemannian manifold? In this note, by considering Nash embedding, we will try to elucidate different aspects of different Laplace operators such as de Rham-Hodge Laplacian as well as Ebin-Marsden's Laplacian. A probabilistic representation formula for Navier-Stokes equations on a general compact Riemannian manifold is obtained when de Rham-Hodge Laplacian is involved. MSC 2010: 35Q30, 58J65
Fichier principal
Vignette du fichier
NashEmbedding.pdf (260 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02196468 , version 1 (28-07-2019)
hal-02196468 , version 2 (02-10-2019)

Identifiants

Citer

Shizan Fang. Nash embedding, shape operator and Navier-Stokes equation on a Riemannian manifold. 2019. ⟨hal-02196468v2⟩
92 Consultations
214 Téléchargements

Altmetric

Partager

More