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Abstract

What is the suitable Laplace operator on vector fields for the Navier-Stokes equa-
tion on a Riemannian manifold? In this note, by considering Nash embedding, we will
try to elucidate different aspects of different Laplace operators such as de Rham-Hodge
Laplacian as well as Ebin-Marsden’s Laplacian. A probabilistic representation formula
for Navier-Stokes equations on a general compact Riemannian manifold is obtained when
de Rham-Hodge Laplacian is involved.
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1 Introduction

The Navier-Stokes equation on a domain of Rn or on a torus Tn,{
∂tu+ (u · ∇)u− ν∆u+∇p = 0,

∇ · u = 0, u|t=0 = u0,
(1.1)

describe the evolution of the velocity u of an incompressible viscous fluid with kinematic
viscosity ν > 0, as well as the pressure p. Such equation attracts the attention of many
researchers, with an enormous quantity of publications in the literature. The model of peri-
odic boundary conditions is introduced to simplify mathematical considerations. There is no
doubt on the importance of the Navier-Stokes equation on a Riemannian manifold, which is
more suitable for models in aerodynamics, meteorology, and so on.

In a seminal paper [11], the Navier-Stokes equation has been considered on a compact Rie-
mannian manifold M using the framework of the group of diffeomorphisms of M initiated
by V. Arnold in [5]; the Laplace operator involved in the text of [11] is de Rham-Hodge
Laplacian, however, the authors said in the note added in proof that the convenient Laplace
operator comes from deformation tensor. Let’s give a brief explanation. Let ∇ be the Levi-
Civita connection on M , for a vector field A on M , the deformation tensor Def (A) is a
symmetric tensor of type (0, 2) defined by

(Def A)(X,Y) =
1

2

(
〈∇XA,Y〉+ 〈∇YA,X〉

)
, X,Y ∈ X (M), (1.2)
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where X (M) is the space of vector fields on M . Formula (1.2) says that Def A is the sym-
metrized part of ∇A. Then Def : TM → S2T∗M maps a vector field to a symmetric tensor
of type (0, 2). Let Def ∗ : S2T∗M → TM be the adjoint operator. Following [22] or [26], the
Ebin-Marsden’s Laplacian �̂ is defined by

�̂ = 2Def ∗Def . (1.3)

The following formula holds (see [26] or [3]),

�̂A = −∆A− Ric(A)−∇div(A), A ∈ X (M) (1.4)

where ∆A = Trace(∇2A). The Ebin-Marsden’s Laplacian �̂ has been used in [23] to solve
Navier-Stokes equation on a compact Riemannian manifold; recently in [24] to the case of
Riemannian manifolds with negative Ricci curvature : it is quite convenient with sign minus
in formula (1.4). In [7], the authors gave severals arguments from physics in order to convive
the relevance of �̂.

On the other hand, the De Rham-Hodge Laplacian � = dd∗+d∗d was widely used in the field
of Stochastic Analysis (see for example [21, 16, 6, 12, 13, 25]). The Navier-Stokes equation
with � on the sphere S2 was considered by Temam and Wang in [28] , the case where Ricci
tensor is positive. By Bochner-Weitzenböck formula (see [21]):

� = −∆ + Ric, (1.5)

examples of positive Ricci tensor are now confortable with �. Besides, in [17], S. Kobayashi
pleaded for the De Rham-Hodge Laplacian � in the formalism of the Navier-Stokes equation
on manifolds with curvature.

During last decade, a lot of works have been done in order to establish V. Arnold’s variational
principle [5] for Navier-Stokes on manifolds (see for example [1, 2, 3, 9, 20, 4]). Connections
between Navier-Stokes equations and stochastic evolution also have a quite long history: it
can be traced back to a work of Chorin [8]. In [15], a representation formula using noisy
flow paths for 3-dimensional Navier-Stokes equation was obtained. An achievement has been
realized by Constantin and Iyer in [10] by using stochastic flows. We also refer to [10]
for a more complete description on the history of the developments. In [3], it was showed
that the Ebin-Marsden’s Laplacian is naturally involved from the point of view of variational
principle; while in [14], the De Rham-Hodge Laplacian was showed to be natural for obtaining
probabilistic representations.

2 The case of Sn

For reader’s convenience, we first introduce some elements in Riemannian manifolds. Let M
be a compact Riemannian manifold, and ϕ : M → M a C1-diffeomorphism; the pull-back
ϕ∗A by ϕ of a vector field A is defined by

(ϕ∗A)(x) = dϕ(ϕ−1(x))Aϕ−1(x), x ∈M ;

the pull-back ϕ∗ω by ϕ of a differential form ω is defined by

〈ϕ∗ω,A〉x = 〈ωϕ(x), dϕ(x)Aϕ(x)〉 x ∈M.

Let V be a vector field on M , ϕt the group of diffeomorphisms associated to V , then the Lie
derivative LVA of A with respect to V is defined by
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LVA = lim
t→0

(ϕ−1
t )∗A−A

t
,

and the Lie derivative LV ω by

LV ω = lim
t→0

ϕ∗tω − ω
t

.

We have LVA = [V,A]. For a vector field A on M , the divergence div(A) of A is defined by∫
M
〈∇f,A〉 dx = −

∫
M
f div(A) dx,

where dx is the Riemannian volume of M . If ∇ denotes the Levi-Civita covariant derivative,
then

div(A)(x) =
n∑
i=1

〈∇viA, vi〉TxM

for any orthonormal basis {v1, . . . , vn} of TxM . A vector field A on M is said to be of
divergence free if div(A) = 0. It is important to emphasize that LVA is of divergence free if
V and A are (see [14]).

In order to understand the geometry of diffusion processes on a manifold M , Elworthy, Le
Jan and Li in [13] embedded M into a higher dimensional Riemannian manifold so that the
De Rham-Hodge Laplacian � on differential forms admits suitable decompositions as sum of
squares of Lie derivative of a family of vector fields. More precisely, let {A1, . . . , AN} be a
family of vector fields on M , assume they satisfy

|v|2TxM =

N∑
i=1

〈Ai(x), v〉2, v ∈ TxM, x ∈M, (2.1)

N∑
i=1

∇AiAi = 0, (2.2)

and
N∑
i=1

Ai ∧∇VAi = 0, for any vector field V. (2.3)

Then they obtained in [13], for any differential form ω on M ,

�ω = −
N∑
i=1

L2
Ai
ω. (2.4)

There is a one-to-one correspondence between the space of vector fields and that of differential
1-forms. Given a vector field A (resp. differential 1-form ω), we shall denote by A[ (resp. ω])
the corresponding differential 1-form (resp. vector field). The action of the de Rham–Hodge
Laplacian � on the vector field A is defined as follows:

�A := (�A[)].

Surprising enough it was remarked in [14] that the decomposition (2.4) is in general no more
valid if ω is replaced by a vector field A. It is why probabilistic representation formulae for
Navier-Stokes equations hold only, until now, on symmetric Riemannian manifolds.
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Proposition 2.1. Let {A1, . . . , AN} be a family of vector fields satisfying (2.1)–(2.3). Define

T1(B) =
N∑
i=1

div(Ai)LAiB, B ∈ X (M). (2.5)

Then T1 is a tensor : X (M)→ X (M) such that

N∑
i=1

L2
Ai
B = −�B − 2T1(B). (2.6)

Proof. Conditions (2.2) and (2.3) imply the following identity (see [13, 14])

N∑
i=1

div(Ai)Ai = 0. (2.7)

By torsion free, LAiB = [Ai, B] = ∇AiB −∇BAi. Then according to (2.7),

N∑
i=1

div(Ai)LAiB = −
N∑
i=1

div(Ai)∇BAi.

It follows that T1(fB) = fT1(B) for any smooth function f on M . Concerning equality (2.6),
it was already calculated in proof of Theorem 3.7 of [14] that∫

M
∆(ω(B)) dx = −

∫
M

(�ω)(B) dx−
∫
M
ω(

N∑
i=1

L2
Ai
B) dx− 2

∫
M
ω(T1(B)) dx.

The left hand side of above equality vanishes and
∫
M (�ω)(B) dx =

∫
M ω(�B) dx, equality

(2.6) follows.

The tensor T1 has explicit expression on Sn (see [14]). For the sake of self-contained, we give
here a short presentation. We denote by 〈 , 〉 the canonical inner product of Rn+1. Let x ∈ Sn,
the tangent space TxSn of Sn at the point x is given by

TxSn =
{
v ∈ Rn+1; 〈v, x〉 = 0

}
.

Then the orthogonal projection Px : Rn+1 → TxSn has the expression:

Px(y) = y − 〈x, y〉x.

Let B = {e1, · · · , en+1} be an orthonormal basis of Rn+1; then the vector field Ai defined by
Ai(x) = Px(ei) has the expression: Ai(x) = ei − 〈x, ei〉x for i = 1, · · · , n + 1. Let v ∈ TxSn
such that |v| = 1, consider

γ(t) = x cos t+ v sin t.

Then {γ(t); t ∈ [0, 1]} is the geodesic on Sn such that γ(0) = x, γ′(0) = v. We have
Ai(γ(t)) = ei − 〈γ(t), ei〉 γ(t). Taking the derivative with respect to t and at t = 0, we get

(∇vAi)(x) = Px
(
−〈v, ei〉x− 〈x, ei〉v

)
= −〈x, ei〉v. (2.8)

It follows that
div(Ai) = −n〈x, ei〉. (2.9)
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Hence in this case it is obvious that

n+1∑
i=1

div(Ai)Ai = −n
n+1∑
i=1

(
〈x, ei〉ei − 〈x, ei〉2x

)
= −n(x− x) = 0. (2.10)

Replacing v by Ai in (2.8), we have ∇AiAi = −〈x, ei〉ei + 〈x, ei〉2x; therefore summing over
i, we get

n+1∑
i=1

∇AiAi = 0. (2.11)

Now let v ∈ TxSn and a, b ∈ TxSn, we have

〈Ai ∧∇vAi, a ∧ b〉 = 〈Ai, a〉〈∇vAi, b〉 − 〈Ai, b〉〈∇vAi, a〉
= −〈a, ei〉〈x, ei〉〈v, b〉+ 〈x, ei〉〈b, ei〉〈v, a〉.

Summing over i yields

n+1∑
i=1

〈Ai ∧∇vAi, a ∧ b〉 = 〈a, x〉〈v, b〉 − 〈x, b〉〈v, a〉 = 0. (2.12)

By (2.10) and (2.11), we see that the family of vector fields {A1, . . . , An+1} satisfy above
conditions (2.1)–(2.3). Let B be a vector field on Sn; by (2.8), ∇BAi = −〈x, ei〉B. Using
LAiB = ∇AiB −∇BAi and combining with (2.9) and (2.10), we get that

T1(B) =
m∑
i=1

div(Ai)LAiB = −nB. (2.13)

In what follows, we will compute

n+1∑
i=1

L2
Ai
B directly on Sn. Again by torsion free and using

(2.8), we have
LAiB = ∇AiB −∇BAi = ∇AiB + 〈x, ei〉B,

and L2
Ai
B = ∇Ai(LAiB)− (∇LAi

B)Ai. Using (2.8) for last term, taking ∇Ai on the two sides
of above equality, we get

L2
Ai
B = ∇Ai∇AiB +∇Ai(〈x, ei〉B) + 〈x, ei〉LAiB.

But ∇Ai(〈x, ei〉B) = 〈Ai, ei〉B + 〈x, ei〉∇AiB; therefore

L2
Ai
B = ∇Ai∇AiB + 〈Ai, ei〉B + 2〈x, ei〉∇AiB − 〈x, ei〉∇BAi.

We have, by (2.10)
n+1∑
i=1

〈x, ei〉∇Ai = − 1

n

n+1∑
i=1

div(Ai)∇AiB = 0.

Besides

n+1∑
i=1

〈Ai, ei〉 =

n+1∑
i=1

(1− 〈ei, x〉2) = n and

n+1∑
i=1

〈x, ei〉∇BAi =

n+1∑
i=1

〈x, ei〉2B = B.

According to (2.11),

∆B =
n+1∑
i=1

∇Ai∇AiB.
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Therefore combining above calculations, we get

n+1∑
i=1

L2
Ai
B = ∆B + (n+ 1)B. (2.14)

Note that Ric(B) = (n − 1)B on Sn, and by Bochner-Weitzenböck formula −� = ∆ − Ric,
we see that (2.14) is compatible with (2.6) together with (2.13).

Proposition 2.2. Let ∆̂B =
n+1∑
i=1

L2
Ai
B. Then the following dimension free identity holds

−
∫
M
〈∆̂B,B〉 dx = 2

∫
M
|Def (B)|2 dx− 2

∫
M
|B|2 dx, for any div(B) = 0.

Proof. By (1.4), ∆B = −�̂B+Ric(B) if div(B) = 0,. Then ∆̂B = −�̂B+2B, due to (2.14).
The result follows.

3 Nash embedding and sum of squares of Lie derivatives

In what follows, we will find links between above different objects when the compact Rie-
mannian manifold M is isometrically embedded in an Euclidian space RN . Let J : M → RN
be a Nash embedding, that is, for any x ∈M ,

|dJ(x)v|RN = |v|TxM , v ∈ TxM. (3.1)

Denote by (dJ(x))∗ : RN → TxM the adjoint operator of dJ(x):

〈(dJ(x))∗ξ, v〉TxM = 〈ξ, dJ(x)v〉RN , ξ ∈ RN , v ∈ TxM.

For each x ∈M , we denote Ex = dJ(x)(TxM) and E⊥x the orthogonal in RN to Ex. Define

Λx = dJ(x)(dJ(x))∗.

We have
〈ξ − Λxξ, dJ(x)v〉 = 〈ξ, dJ(x)v〉 − 〈dJ(x)(dJ(x))∗ξ, dJ(x)v〉 = 0.

Therefore Λx : RN → Ex is the orthogonal projection. Set Λ⊥x = Id− Λx. By polarization of
(3.1), we have

(dJ(x))∗dJ(x) = IdTxM .

The mapping Λ : M → L(RN ,RN ) from M to the space of linear maps of RN is smooth. For
ξ ∈ RN given, v ∈ TxM , consider a smooth curve γ on M such that γ(0) = x, γ′(0) = v, we
denote

dΛx(v)ξ =
d

dt |t=0

(
Λγ(t)ξ

)
∈ RN .

Proposition 3.1. (see [25],ch.5) Let x ∈M , for any v ∈ TxM , it holds true:

(i) Λx ◦ dΛx = dΛx ◦ Λ⊥x , (ii) Λ⊥x ◦ dΛx = dΛx ◦ Λx. (3.2)
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Proof. We have Λx(Λxξ) = Λxξ. Taking the derivative with respect to x in direction v on
two sides of this equality, we get

dΛx(v)(Λxξ) + Λx(dΛx(v)ξ) = dΛx(v)ξ,

which yields the first equality in (3.2). For (ii), it suffices to use Λ⊥x (Λ⊥x ξ) = Λ⊥x ξ and
dΛ⊥x (v) = −dΛx(v).

Now let ξ ∈ Ex, then by (i) in (3.2), Λx(dΛx(v)ξ) = 0, which implies that dΛx(v)ξ ∈ E⊥x .
This means that dΛx(v) sends Ex into E⊥x . By (ii) in (3.2), dΛx(v) sends E⊥x into Ex.

Now we introduce the Levi-Civita covariant derivative on M : for B ∈ X (M) and v ∈ TxM ,
set

(∇vB)(x) = (dJ(x))∗
(
∂v(dJ(·)B·)(x)

)
, (3.3)

where ∂v denotes the derivative on the manifold M in direction of v. If Bx = (dJ(x))∗ξ for
a fix ξ, then

〈∇vB, u〉TxM = 〈dΛx(v)ξ, dJ(x)u〉RN , u ∈ TxM.

The second fundamental form α on M is defined as follows: for u, v ∈ TxM ,

αx(u, v) = dΛx(u) · dJ(x)v. (3.4)

By Proposition 3.1, αx(u, v) ∈ E⊥x . For X,Y ∈ X (M), we define α(X,Y )(x) = αx(Xx, Yx).
It is clear that α(X, fY ) = f α(X,Y ). In what follows, we will see that α is symmetric
bilinear application: α(X,Y ) = α(Y,X).

Let X be a vector field on M , then x→ dJ(x)Xx is a RN -valued function; therefore there is
a function X̄ : RN → RN such that X̄(J(x)) = dJ(x)Xx for x ∈M . Let Y be another vector
field on M , and Ȳ : RN → RN such that Ȳ (J(x)) = dJ(x)Yx, x ∈ M . Taking the derivative
of x→ Ȳ (J(x)) along X:

∂X
(
Ȳ ◦ J

)
(x) = Ȳ ′(J(x)) · dJ(x)Xx = Ȳ ′(J(x))X̄(J(x)) = (DX̄ Ȳ )(J(x)), (3.5)

where Ȳ ′ denotes the differential of Ȳ and DX̄ the derivative on RN with respect to X̄. It
follows that

[X̄, Ȳ ](J) = ∂X(Ȳ (J))− ∂Y (X̄(J)). (3.6)

Since Ȳ (J)(x) ∈ Ex, then Λx(Ȳ (J(x))) = Ȳ (J(x)). Taking the derivative with respect to X
and according to definition (3.4), we get

∂X(Ȳ (J))(x) = dΛx(Xx) · Ȳ (J(x)) + Λx

(
∂X(Ȳ (J))(x)

)
= αx(Xx, Yx) + Λx

(
∂X(Ȳ (J))(x)

)
.

Combining this with (3.6), we get

[X̄, Ȳ ](J) = α(Y,X)− α(X,Y ) + Λ·
(
[X̄, Ȳ ](J)

)
.

By property of embedding, [X̄, Ȳ ](J(x)) ∈ Ex so that Λ·
(
[X̄, Ȳ ](J)

)
= [X̄, Ȳ ]. Then the

symmetry of α follows.
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Now according to definition (3.3) and to (3.5), we get (∇XY )(x) = (dJ(x))∗(DX̄ Ȳ )(J(x)).
Therefore the following orthogonal decomposition holds

(DX̄ Ȳ )(J(x)) = dJ(x)(∇XY )(x) + αx(Xx, Yx). (3.7)

Now let x→ Vx ∈ E⊥x be a field of normal vectors to M . Set, for X ∈ X (M),

A(X,V )(x) = −(dJ(x))∗(∂XV )(x). (3.8)

Since x→ 〈dJ(x)Yx, Vx〉RN = 0, taking the derivative with respect to X yields

〈∂X(dJ(·)Y )(x), Vx〉RN + 〈dJ(x)Yx, (∂XV )(x)〉RN = 0.

By (3.7) and (3.8), we get
〈α(X,Y ), V 〉 = 〈A(X,V ), Y 〉. (3.9)

From above expression, A(X, fV ) = fA(X,V ). A is called shape operator of M .

Proposition 3.2. Let B ∈ X (M) defined by Bx = (dJ(x))∗ξ for a fixed ξ ∈ RN . Then

∇XB = A(X,Λ⊥· ξ), X ∈ X (M). (3.10)

Proof. By (3.3), (∇vB)(x) = (dJ(x))∗
(
∂v(Λ·ξ)

)
which is equal to −(dJ(x))∗

(
∂v(Λ

⊥
· ξ)
)

as
Λxξ + Λ⊥x = ξ. Now definition (3.8) gives the result.

For the sake of self-contained, we use (3.10) to check properties (2.2), (2.3) and (2.7). Let
B = {e1, . . . , eN} be an orthonormal basis of RN , we define

Ai(x) = (dJ(x))∗ei, i = 1, . . . , N.

Proposition 3.3. We have
N∑
i=1

∇AiAi = 0.

Proof. Let u ∈ TxM , then by (3.10) and (3.9) respectively,

〈(∇AiAi)(x), u〉 = 〈A(Ai,Λ
⊥
· ξi), u〉 = 〈αx((dJ(x))∗ei, u), ei〉.

The sum from i = 1 to N of above terms is basis independent. Then taking {e1, . . . , en} ⊂ Ex
and {en+1, . . . , eN} ⊂ E⊥x , and remarking (dJ(x))∗ej = 0 for j > n, we have

〈
N∑
i=1

(∇AiAi)(x), u〉 =

n∑
i=1

〈αx((dJ(x))∗ei, u), ei〉 = 0,

due to the orthogonality. The result follows.

Proposition 3.4. We have

N∑
i=1

Ai ∧∇VAi = 0, V ∈ X (M).
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Proof. Let a, b ∈ TxM , we have

〈Ai ∧∇VAi, a ∧ b〉 = 〈Ai, a〉〈∇VAi, b〉 − 〈Ai, b〉〈∇VAi, a〉,

which is equal to, by (3.10),

〈Ai, a〉〈A(Vx,Λ
⊥
x ei), b〉 − 〈Ai, b〉〈A(Vx,Λ

⊥
x ei), a〉,

which is equal to, by (3.9),

〈ei, dJ(x)a〉〈α(Vx, b), ei〉 − 〈ei, dJ(x)b〉〈α(Vx, a), ei〉.

Therefore

N∑
i=1

〈Ai ∧∇VAi, a ∧ b〉 = 〈α(Vx, b), dJ(x)a〉 − 〈α(Vx, a), dJ(x)b〉 = 0.

Proposition 3.5. Let B(x) = (dJ(x))∗ξ for a fixed ξ ∈ RN . Then

div(B) = 〈Trace(α), ξ〉RN . (3.11)

Proof. Let {v1, . . . , vn} be an orthonormal basis of TxM ; by (3.10) and (3.9),

div(B) =

n∑
i=1

〈A(vi,Λ
⊥
x ξ), vi〉 =

n∑
i=1

〈α(vi, vi), ξ〉 = 〈Trace(α), ξ〉RN .

Theorem 3.6. Let B = {e1, . . . , eN} be an orthonormal basis of RN , and Ai(x) = (dJ(x))∗ei.
Define

T1(B) =
N∑
i=1

div(Ai)LAiB. (3.12)

Then
T1(B) = −A(B,Trace(α)). (3.13)

Proof. We first see, by (3.11), that

N∑
i=1

div(Ai)(x)Ai(x) =
N∑
i=1

〈Trace(αx), ei〉(dJ(x))∗ei = (dJ(x))∗(Trace(αx)) = 0,

since Trace(αx) ∈ E⊥x . Therefore term (3.12) becomes T1(B) =

N∑
i=1

div(Ai)∇BAi. Again

using (3.10),

T1(B) = −
N∑
i=1

〈Trace(α), ei〉A(B,Λ⊥· ei) = −A(B,Trace(α)).
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Remark: In the case of Sn, for x ∈ Sn, the outer normal unit vector n(x) = x; then for

v ∈ TxM and γ(t) = x cos(t) + v sin(t), we see that
d

dt |t=0

n(γ(t)) = v ∈ TxM . Therefore

A(v,n) = v.

Using (3.13) gives T1(B) = −nB.

In what follows, we will give a link between the Ricci tensor and T1. Let R(B, Y )Z =
[∇B,∇Y ]Z −∇[B,Y ]Z be the curvature tensor on M . Using second fundamental form, R can
be expressed by (see [18]):

〈R(B, Y )Z,W 〉 = 〈α(Y, Z), α(B,W )〉 − 〈α(B,Z), α(Y,W )〉. (3.14)

Let Ai be defined as above. Define

ψ(B,W ) =

N∑
i=1

〈α(B,Ai), α(W,Ai)〉,

which is basis independent, symmetric bilinear form. Using (3.9), we get

ψ(B,W ) =

N∑
i=1

〈A(B,Λ⊥· ei),A(W,Λ⊥· ei)〉.

This quantity is independent of the dimension of M , but the co-dimension of M in RN .
Define the tensor T2 by

〈T2(B),W 〉 = ψ(B,W ), W ∈ X (M).

The tensor T2 is directly related to the manner of the embedding M into RN .

Proposition 3.7. It holds true
T1 = −Ric− T2. (3.15)

Proof. We have 〈Ric(B),W 〉 =

N∑
i=1

〈R(B,Ai)Ai,W 〉. The relation (3.14) leads 〈Ric(B),W 〉

to

N∑
i=1

〈α(Ai, Ai), α(B,W )〉 −
N∑
i=1

〈α(B,Ai), α(W,Ai)〉

= 〈A(B,Trace(α)),W 〉 − ψ(B,W ) = −〈T1(B),W 〉 − 〈T2(B),W 〉.

The result (3.15) follows.

Theorem 3.8. Let B be a vector field on M of divergence free, then

N∑
i=1

L2
Ai
B = −�̂B + 2T2(B). (3.16)

Proof. Equality (3.16) follows from (2.6) and (3.15).
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4 Probabilistic representation formula for the Navier-Stokes
equation

Let’s first state Constantin-Iyer’s probabilistic representation formula for Navier-Stokes equa-
tion (1.1) on Tn.

Theorem 4.1 (Constantin–Iyer). Let ν > 0, W be an n-dimensional Wiener process, k ≥ 1,
and u0 ∈ Ck+1,α a given deterministic divergence-free vector field. Let the pair (X,u) satisfy
the stochastic system {

dXt =
√

2ν dWt + ut(Xt) dt,

ut = EP
[(
∇X−1

t

)∗(
u0 ◦X−1

t

)]
,

(4.1)

where P is the Leray–Hodge projection and the star ∗ denotes the transposed matrix. Then
u satisfies the incompressible Navier–Stokes equations (1.1).

For a given sufficiently regular initial velocity u0, there is a T > 0 such that system (4.1)
admits a unique solution over [0, T ] and Xt is a diffeomorphism of Tn (see [10]). Using the
terminology of pull-back by diffeomorphism of vector fields, the following intrinsic formulation
to the second identity in (4.1) was given in [14]:∫

Tn

〈ut, v〉dx = E
(∫

Tn

〈
u0, (X

−1
t )∗v

〉
dx

)
, div(v) = 0, ∀ t ≥ 0,

which means that the evolution of ut in the direction v is equal to the average of the evolution
of v under the inverse flow X−1

t in the initial direction u0. The generalization of Theorem
4.1 to a Riemannian manifold gave rise to a problem how to decompose the De Rham-Hodge
Laplacian on vector fields as sum of squares of Lie derivatives : this has been achieved in [14]
on Riemannian symmetric spaces.

The purpose of this section is to derive a Feymann-Kac type representation for solutions to
the following Navier-Stokes equation on M :{

∂tu+∇uu+ ν�u+∇p = 0,

div(u) = 0, u|t=0 = u0

(4.2)

where ν > 0.

Consider a Nash embedding J : M → RN as in Section 3; let B = {e1, . . . , eN} be an
orthonormal basis of RN and Ai(x) = (dJ(x))∗ei, x ∈ M . Let {ut, t ∈ [0, T ]} be a time-
dependent vector fields in C1,β with β > 0, then the following Stratanovich SDE on M

dXt =
√

2ν

N∑
i=1

Ai(Xt) ◦ dW i
t + ut(Xt) dt, X0 = x ∈M (4.3)

admits a unique solution {Xt, t ∈ [0, T ]} which defines a flow of diffeomorphisms of M (see
[6, 16, 12]), where {W i

t ; i = 1, . . . , N} is a N -dimensional standard Brownian motion.

The space X (M) of vector fields on M , equipped with uniform norm ||B||∞ = sup
x∈M
|Bx|TxM ,

is a Banach space. We equip L(X ,X ), the space of linear map from X (M) into X (M), the
norm of operator:

|||Q||| = sup
||B||∞≤1

||QB||∞.
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For a diffeomorphism ϕ : M →M , the pull-back ϕ∗ sends X (M) into X (M), which is in the
space L(X ,X ) with |||ϕ∗||| ≤ ||ϕ||C1 . For a tensor T which sends X (M) to X (M), we denote
(T∗B)(x) = T (x)Bx, then |||T∗||| ≤ ||T ||∞. Now we consider the following linear differential
equation on L(X ,X ):

dQt
dt

= ν Qt · (X−1
t )∗ T∗ (Xt)∗, Q0 = identity (4.4)

where (Xt) is solution to SDE (4.3).

Theorem 4.2. Let −�̃ =
N∑
i=1

L2
Ai

+ T∗. Then if �̃ preserves the space of vector fields of

divergence free, ut ∈ C2,β is solution to{
∂tut +∇utut + ν�̃ut +∇p = 0,

div(ut) = 0, u|t=0 = u0

(4.5)

if and only if, for each v ∈ X (M) with div(v) = 0,∫
M
〈ut, v〉 dx = E

(∫
M

〈
u0, Qt (X−1

t )∗v
〉
dx

)
, ∀ t ∈ [0, T ]. (4.6)

Moreover, ut has the following more geometric expression

ut = E
[
P
(
ρt · (X−1

t )∗(Q̃tu0)[
)#]

(4.7)

where Q̃t is the adjoint of Qt in the sense that
∫
M 〈Q̃t u, v〉 dx =

∫
M 〈u,Qt v〉 dx, ρt is the

density of (Xt)#(dx) with respect to dx and P is the Leray-Hodge projection on the space of
vector fields of divergence free.

Proof. Suppose (4.6) holds. By Itô formula [19, p.265, Theorem 2.1], we have

d(X−1
t )∗(v) =

N∑
i=1

(X−1
t )∗(LAiv) dW i

t + ν
N∑
i=1

(X−1
t )∗(L2

Ai
v) dt+ (X−1

t )∗(Lutv) dt.

We have, according to (4.4) and above formula,

d
[
Qt · (X−1

t )∗v
]

= dQt · (X−1
t )∗v +Qt · d(X−1

t )∗v

= ν Qt · (X−1
t )∗T∗v dt+

N∑
i=1

Qt · (X−1
t )∗(LAiv) dW i

t

+ ν

N∑
i=1

Qt · (X−1
t )∗(L2

Ai
v) dt+Qt · (X−1

t )∗(Lutv) dt,

since (Xt)∗(X
−1
t )∗ = identity. Now using definition of �̃, we get

∫
M
〈ut, v〉 dx =

∫
M
〈u0, v〉 dx− ν

∫ t

0
E
(∫

M

〈
u0, Qs · (X−1

s )∗(�̃v)
〉
dx

)
ds

+

∫ t

0
E
(∫

M

〈
u0, Qs · (X−1

s )∗(Lusv)
〉
dx

)
ds.
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Since �̃v and Lusv are of divergence free, to them we apply (4.6) to get

E
(∫

M

〈
u0, Qs · (X−1

s )∗(�̃v)
〉
dx

)
=

∫
M
〈us, �̃v〉 dx,

and

E
(∫

M

〈
u0, Qs · (X−1

s )∗(Lusv)
〉
dx

)
=

∫
M
〈us,Lusv〉 dx,

Therefore we obtain the following equality:∫
M
〈ut, v〉 dx =

∫
M
〈u0, v〉 dx− ν

∫ t

0

∫
M
〈us, �̃v〉 dxds+

∫ t

0

∫
M
〈us,Lusv〉 dxds.

But the last term can be changed∫
M
〈us,Lusv〉 dx =

∫
M
〈us,∇usv〉 dx−

∫
M
〈us,∇vus〉 dx

=

∫
M
〈us,∇usv〉 dx−

1

2

∫
M
v(|us|2) dx =

∫
M
〈us,∇usv〉 dx.

Finally ∫
M
〈ut, v〉 dx =

∫
M
〈u0, v〉 dx− ν

∫ t

0

∫
M
〈us, �̃v〉 dxds+

∫ t

0

∫
M
〈us,∇usv〉 dxds.

It follows that for a.e. t ≥ 0,

d

dt

∫
M
〈ut, v〉 dx = ν

∫
M
〈ut, �̃v〉 dx+

∫
M
〈ut,∇utv〉 dx.

Multiplying both sides by γ ∈ C1
c ([0,∞)) and integrating by parts on [0,∞), we get

γ(0)

∫
M
〈u0, v〉 dx+

∫ ∞
0

∫
M

[
γ′(t)〈ut, v〉+ γ(t)〈ut,∇utv〉+ ν γ(t)〈ut, �̃v〉

]
dxdt = 0.

The above equation is the weak formulation of the Navier–Stokes (4.5) on the manifold M .

To prove (4.7), we note that∫
M
ρt
〈
(X−1

t )∗(Q̃tu0)[, v
〉
dx =

∫
M
ρt
〈
(Q̃tu0)[, (X−1

t )∗v
〉
X−1

t
dx

=

∫
M
ρt(Xt) ρ̃t

〈
u[0, Qt · (X−1

t )∗v
〉
dx

=

∫
M

〈
u[0, Qt · (X−1

t )∗v
〉
dx =

∫
M

〈
u0, Qt · (X−1

t )∗v
〉
TxM

dx

where ρ̃t is the density of (X−1
t )#(dx) with respect to dx. Now by (4.6), we have:∫

M
〈ut, v〉 dx = E

(∫
M
ρt
〈
(X−1

t )∗(Q̃tu0)[, v
〉
dx

)
, div(v) = 0.

The formula (4.7) follows.

For proving the converse, we use the idea in [30, Theorem 2.3]. Let ut ∈ C2 be a solution to
(4.5), then∫

M
〈ut, v〉 dx =

∫
M
〈u0, v〉 dx− ν

∫ t

0

∫
M
〈us, �̃v〉 dxds+

∫ t

0

∫
M
〈us,Lusv〉 dxds.
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Define

ũt = E
[
P
(
ρt · (X−1

t )∗(Q̃tu0)[
)#]

.

Then calculations as above lead to∫
M
〈ũt, v〉 dx =

∫
M
〈u0, v〉 dx− ν

∫ t

0

∫
M
〈ũs, �̃v〉dxds+

∫ t

0

∫
M
〈ũs,Lusv〉 dxds.

Let zt = ut − ũt; we have∫
M
〈zt, v〉 dx = −ν

∫ t

0

∫
M
〈zs, �̃v〉dxds+

∫ t

0

∫
M
〈zs,Lusv〉dxds.

It follows that (zt) solves the following heat equation on M

dzt
dt

= −ν �̃zt − L∗utzt, z0 = 0,

where L∗ut is the adjoint operator. By uniqueness of solutions, we get that zt = 0 for all t ≥ 0.
Thus ut = ũt. Then (4.7) follows. The proof of Theorem 4.2 is complete.

Remark 4.3. By Proposition 2.1, −�B =
N∑
i=1

L2
Ai
B + 2T1(B); Taking T = 2T1 in Theorem

4.2, we obtain a probabilistic representation formula for Navier-Stokes equation (4.2) on a
general compact Riemnnian manifold, since � preserves the space of vector fields of divergence
free. According to Theorem 3.8, the Ebin-Marsden Laplacian �̂ has the expression −�̂B =
N∑
i=1

L2
Ai
B − 2T2(B). However, by (1.4) and (1.5),

�̂B = �B + 2Ric(B) for div(B) = 0;

therefore �̂ does not preserve the space of vector fields of divergence free, except for the case
where Ric = k Id, that is to say that M is a Einstein manifold.

Remark 4.4. Let g be the Riemannian metric of M . A vector field A on M is said to be a
Killing vector field if

LAg = 0.

Let X,Y ∈ X (M), we have, using Lie derivatives,

∂A
(
g(X,Y )

)
= (LAg)(X,Y ) + g(LAX,Y ) + g(X,LAY ), (i)

and using covariant derivatives,

∂A
(
g(X,Y )

)
= g(∇AX,Y ) + g(X,∇AY ). (ii)

Since ∇AX − LAX = ∇XA, combining (i) and (ii) yields

(LAg)(X,Y ) = g(∇XA, Y ) + g(X,∇YA) = 2Def (A)(X,Y).

That is to say that A is a Killing vector field if and only it Def (A) = 0, which implies �̂A = 0.
Conversely if div(A) = 0 and �̂A = 0, then A is a Killing vector field on M (see [29]). Does
is it why Ebin and Marsden said that �̂ is more convenient in [11] ?
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Proposition 4.5. Let ρt be given in Theorem 4.2; then the following stochastic partial equa-
tion (SPDE) holds

dρt = −
√

2ν
〈
dJ(x)∇ρt + Trace(α) ρt, dWt

〉
+
(
ν∆ρt + Lutρt

)
dt. (4.8)

Proof. Let f be a C2-function on M , by Itô formula, we have

d f(Xt) =
√

2ν

N∑
i=1

(LAif)(Xt) dW
i
t + ν

N∑
i=1

(L2
Ai
f)(Xt) dt+ (Lutf)(Xt) dt.

Since ∆f =
N∑
i=1

L2
Ai
f and

∫
M

(LAif)(Xt) dx =

∫
M
LAif ρt dx = −

∫
M
f
(
div(Ai)ρt + LAiρt

)
dx,

∫
M

(∆f)(Xt) dx =

∫
M

∆f ρt dx =

∫
M
f ∆ρt dx,∫

M
Lut(Xt) dx =

∫
M
Lutf ρt dx =

∫
M
f Lutρt dx,

and according to
∫
M f(Xt) dx =

∫
M f ρt dx, we get that ρt satisfies the following SPDE

dρt = −
√

2ν
N∑
i=1

(
div(Ai)ρt + LAiρt

)
dW i

t +
(
ν∆ρt + Lutρt

)
dt. (4.9)

Using (3.11), we have
N∑
i=1

div(Ai)ρt dW
i
t = 〈Trace(α)ρt, dWt〉.

Besides,
N∑
i=1

〈(dJ(x))∗ei,∇ρt〉 dW i
t =

N∑
i=1

〈ei, dJ(x)∇ρt〉 dW i
t = 〈dJ(x)∇ρt, dWt〉. Therefore

(4.8) follows from (4.9).
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