Small eigenvalues of the Witten Laplacian with Dirichlet boundary conditions: the case with critical points on the boundary - Archive ouverte HAL
Article Dans Une Revue Analysis & PDE Année : 2021

Small eigenvalues of the Witten Laplacian with Dirichlet boundary conditions: the case with critical points on the boundary

Résumé

In this work, we give sharp asymptotic equivalents in the limit $h\to 0$ of the small eigenvalues of the Witten Laplacian, that is the operator associated with the quadratic form $$ \psi\in H^1_0(\Omega)\mapsto h^2 \int_\Omega \big \vert \nabla \big (e^{\frac 1hf} \psi\big )\big \vert^2\, e^{-\frac 2hf},$$ where $\overline\Omega=\Omega\cup \partial \Omega$ is an oriented $C^\infty$ compact and connected Riemannian manifold with non empty boundary $\partial \Omega$ and $f: \overline \Omega\to \mathbb R$ is a $C^\infty$ Morse function. The function $f$ is allowed to admit critical points on $ \partial \Omega$, which is the main novelty of this work in comparison with the existing literature.
Fichier principal
Vignette du fichier
APDE-Correc.pdf (700.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02185083 , version 1 (16-07-2019)
hal-02185083 , version 2 (10-08-2020)

Identifiants

Citer

Dorian Le Peutrec, Boris Nectoux. Small eigenvalues of the Witten Laplacian with Dirichlet boundary conditions: the case with critical points on the boundary. Analysis & PDE, 2021, 14 (8), pp.2595-2651. ⟨10.2140/apde.2021.14.2595⟩. ⟨hal-02185083v2⟩
174 Consultations
152 Téléchargements

Altmetric

Partager

More