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Small eigenvalues of the Witten Laplacian with Dirichlet
boundary conditions: the case with critical points on the
boundary

Dorian Le Peutrec* and Boris Nectoux |

Abstract

In this work, we give sharp asymptotic equivalents in the limit A — 0 of the
small eigenvalues of the Witten Laplacian, that is the operator associated with
the quadratic form

¢ € HE(Q) — h2/ |V (et Fy)|* e 77,
Q

where Q = QU 99 is an oriented C> compact and connected Riemannian man-
ifold with non empty boundary 9Q and f : Q — R is a C* Morse function. The
function f is allowed to admit critical points on 0f), which is the main novelty
of this work in comparison with the existing literature.

Keywords: Witten Laplacian, overdamped Langevin dynamics, semiclassical
analysis, metastability, spectral theory, Eyring-Kramers formulas.
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1 Introduction

1.1 Setting

Let (Q,g) be an oriented C* compact and connected Riemannian manifold of di-
mension d with interior  and non empty boundary 9, and let f : @ — R be a
C® function. Let us moreover denote by d the exterior derivative acting on functions
on Q and by d* its formal adjoint (called the co-differential) acting on 1-forms (which
are naturally identified with vector fields). For any h > 0, the semiclassical Witten
Laplacian acting on functions on € is then the Schrédinger operator defined by

Aﬁh = d},hdf,h = thH+|Vf|2—|—hAHf,

where Ay = d*d is the Hodge Laplacian acting on functions, that is the negative of
the Laplace—Beltrami operator, and

f.r
h h

s s
dfp = he nder and djj, =herd e n
are respectively the distorted exterior derivative and co-differential. This operator
was originally introduced by Witten in [42] and acts more generally on the algebra of

differential forms. Note also the relation
App = he o (hAg +VV - V) 2 where V =2f, (1)

where the notation VV -V stands for g(VV,V-). It is then equivalent to study the
Witten Laplacian Ay, acting in the flat space L?(2) = L?(2, dVolg) or the weighted
Laplacian

LV,h = hAH +VV.V= d*V,hd



acting in the weighted space L?(£), e_%dVolg).

Let us now consider the usual self-adjoint Dirichlet realization A? 5, of the Witten
Laplacian Ay, on the Hilbert space L*(€2). Its domain is given by

D(AY)) = H*(Q) N Hy (%),

where, for p € N*, we denote by HP(2) the usual Sobolev space with order p and
by H(Q) the set made of the functions in H!(Q) with vanishing trace on 9Q. We
refer for instance to [35] for more material about Sobolev spaces on manifolds with
boundary. The operator A?’ 5 has a compact resolvent, and thus its spectrum J(A? )
is discrete. This operator is moreover nonnegative since it satisfies:

£ _2f
v e D(AR), (AR t)ia) = IdiatlBjeg = B2 /Q dlefv)2e T, (2)

where A'L?(2) denotes the space of 1-forms in L?(2) and Hdﬁhq/)H%ILQ(Q) = [q ldsnt)?.
Let us also mention here that the (closed) quadratic form @ associated with A?, h
has domain H}(2) and satisfies, for every ¢ € H}(9),

Q) i= Qualv.0) = Wgatlasay = 1 [ v+ [ (V5P+hans) ol o)

Remark 1. From standard results on elliptic operators, the principal eigenvalue of
A?h, which is positive since e F ¢ H}(Q) (see [@)), is moreover non degenerate and

any associated eigenfunction has a sign on S (see for example [12,[15]).

1.2 Spectral approach of metastability in statistical physics

The operator Ly = %e’ié Af,he_?é, where we recall that V = 2f (see (dI)), is the
infinitesimal generator of the overdamped Langevin process

dX; = —VV(X;)dt + V2h dB; (4)

which is for instance used to describe the motion of the atoms of a molecule or the
diffusion of impurities in a crystal. When the temperature of the system is small,
i.e. when h < 1, the process () is typically metastable: it is trapped during a long
period of time in a neighborhood of a local minimum of V', called a metastable region,
before reaching another metastable region.

When one looks at the process (@) on a metastable region Q with absorbing bound-
ary conditions, the evolution of observables is in particular given by the semigroup

—tLD f I, .. . . .
e tLV’h, where Leh = %eiﬁ A?hefﬁ is the Dirichlet realization of the weighted

Laplacian Ly, in the weighted space L?(S, ef%dVolQ), see (IJ). A first description of
the metastability of the process ([{]) with absorbing boundary conditions is then given
by the behaviour of the low-lying spectrum of the Dirichlet realization AJ? , of the
Witten Laplacian in the limit h — 0. The metastable behaviour of the dynamics is
more precisely characterized by the fact that the low-lying spectrum of AJ? ,, contains



exponentially small eigenvalues, i.e. eigenvalues of order 0(67%) where C' > 0. The
first mathematical results in this direction probably go back to the works of Freidlin-
Wentzell in the framework of their large deviation theory developed in the 70’s and
we refer in particular to their book [I4] for an overview on this topic. In this context,
when )y, is some exponentially small eigenvalue of A?, 5> the limit of hln \j, has been
investigated assuming that (see [14, Section 6.7])

|V f] # 0 on 09. (5)

The results of [14] imply in particular that, when 9,f > 0 on 92 and 2 contains a
unique critical point of f which is non degenerate and is hence the global minimum
of f in €, the principal eigenvalue A1, of AJ? ,, satisfies
ilzig%)hln)\l’h = —2(151})nf — r%nf)

The asymptotic logarithmic behaviour of the low-lying spectrum of AJ? », has also been
studied in [28] dropping the assumption (B]). When f and f|sq are smooth Morse
functions and (Bl holds, precise asymptotic formulas in the limit A — 0 have been
given by Helffer-Nier in [I7] where they prove in particular that under additional
generic hypotheses on the function f, any exponentially small eigenvalue \j of A?’ A
satisfies the following Eyring-Kramers type formula when A — 0:

A = AR e RE (1 42(h), (6)

where A > 0, £ > 0, and ~ € {%, 1} are explicit, and the error term e(h) is of the
order O(h) and admits a full asymptotic expansion in h. The constants E’s involved
in (@) are the depths of some characteristic wells of the potential f in Q. The results
of [17], obtained by a semiclassical approach, were following similar results obtained
in the case without boundary in [5l6L2030] by a probabilistic approach and in [16] by
a semiclassical approach. We also refer to [19,29] for a generalization of the results
obtained in [I6] in the case without boundary (see also [2,[3,22] for related results),
to [11] for a generalization of the results obtained in [I7] in the case of Dirichlet
boundary conditions (see also [4,26,27,32] for related results), and to [24128] in the
case of Neumann boundary conditions. Finally, we refer to [1,25] for a comprehensive
review on this topic.

1.3 Motivation and results

Motivation. These past few years, several efficient algorithms have been designed
to accelerate the sampling of the exit event from a metastable region €2, such as for
instance the Monte Carlo methods [7,[13],[33,34],[40,[41] or the accelerated dynamics
algorithms [37H39]. These algorithms rely on a very precise asymptotic understanding
of the metastable behaviour of the process (Xt)¢>o in a metastable region Q when
h — 0, and in particular on the validity of Eyring-Kramers type formulas of the

!This work corresponds to the first part of the preprint [10].



type (@) in the limit A — 0. Moreover, though the hypothesis (&) considered in [ITI17]
is generic, in most applications of the accelerated algorithms mentioned above, the
domain 2 is the basin of attraction of some local minimum of f for the dynamics
X = —V f(X) so that the function f admits critical points on the boundary of €.

In this work, we precisely aim at giving a precise description of the low-lying spectrum
of AJ? ,, in the limit & — 0 of the type (@) in a rather general geometric setting covering
the latter case (though we assume €2 to have a smooth boundary). This establishes the
first step to precisely describe the metastable behaviour of the overdamped Langevin
process () with absorbing boundary conditions in {2 when 92 contains critical points
of f. Let us also point out that, though the spectrum of AJ? ,, (or equivalently of L%Z n)
has been widely studied these past few decades, up to our knowledge, this setting
has not been treated in the mathematical literature. Our techniques come from
semiclassical analysis and, in Section [[4] below, we detail various difficulties arising
when considering critical points of f on 92 with such techniques.

Results. We recall that we assume that Q is a C™ oriented compact and connected
Riemannian manifold of dimension d with interior 2 and boundary 9 # (), and that
f:Q — Ris a C>® Morse function. For y € R, we will use the notation

{(f<py={xeQ, flo)<p}, {f<p}={reQ, f(z)<pu},
and
{(f=ny={reQ, f(z)=up}

Moreover, for all z € 9, ng(z) will denote the unit outward vector to 2 at z. Finally,
for r > 0 and y € Q, B(y,r) will denote the open ball of radius r centered at y in

B(y,r) :={2€Q, |y — 2| <r},
where, for y € Q, |y — 2| is the geodesic distance between y and z in Q.

Since stating our main results, which are Theorems[2 and [ (see Section [5.4]), requires
substantial additional material, we just give here simplified (and weaker) versions of
these results. We first give a preliminary result stating that, when f : Q@ — R is
a Morse function, the number of small eigenvalues of AJ? p is the number of local
minima of f in €. This requires the following definition.

Definition 2. Let us assume that f : Q — R is a C> Morse function. The set of
local minima of f in  is then denoted by Ug and one defines

mg := Card(Uo) e N

Theorem 1. Let us assume that f : @ — R is a C™ Morse function. Then, there
exist co > 0 and hg > 0 such that for all h € (0, hg):

dim Ran g ¢on) (A?,h) = dim Ran 77(076_%1) (A?,h) = mg,

where, for a Borel set E C R, WE(A?h) denotes the spectral projector associated with
A?h and E, and the nonnegative integer mqg is defined in Definition [2.
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Let us emphasize that the local minima of f included in 92 are not listed in Ug. This
preliminary result is expected from works such as [17[18] but we did not find any such
statement in the literature in our setting when the boundary admits critical points
of f. Theorem [ will be proven in Section 2

In the sequel, when mg > 0, we will denote by
0 < Mp < A < -0 < Ao

the mg exponentially small eigenvalues of A?’ , in the limit & — 0 (see Theorem [IJ).
The first main result of this paper is Theorem [2] which is stated and proven in
Section [5.4l Here is a simplified version of this result, in a less general setting. The
notation Hess f(z) at a critical point z of f below stands for the endomorphism of
the tangent space T, canonically associated with the usual symmetric bilinear form
Hess f(2) on T,Q x T, via the metric g.

Theorem 2. Let us assume that the number of local minima mg of the Morse func-
tion f is positive, that f|sq has only non degenerate local minima, and that at any
saddle point (i.e. critical point of index 1) z of f which belongs to 92, nq(z) is an
eigenvector of Hess f(z) associated with its unique negative eigenvalue. Then, there
exists C' > 0 such that one has in the limit h — 0O:

1
Vje{lomob, ket <, < ChienE, (7)

where, for j € {1,...,mo}, E; >0, and v; are explicit with moreover v; € {%, 1}.

The above constants E;’s are the depths of some characteristic wells of the potential f
in © which are defined through the map

j U= P(UTP(Q)) (8)

constructed in Section 3.3 (see (@3)) there). Here P(UT(Q2)) denotes the power set of
UTP(Q), the set of relevant generalized saddle points (or critical points of index 1) of
f in Q (see Definition [[7 at the end of Section [3.2]). To be a little more precise here,

we have the inclusion

UTP(Q) C {critical points of f in Q of index 1}
U {local minima z of f|gq in O such that d,, f(z) > 0},

where O, f(2) = nq(2)-V f(2) denotes the normal derivative of f at z. Moreover, f is
constant on each j(z), z € Up, and the E;’s are precisely the f(j(x)) — f(x)’s, where,
with a slight abuse of notation, we have identified f(j(z)) with its unique element, see
Section [3] for precise statements. Note that the E;’s give the logarithmic equivalents
of the small eigenvalues of A? , since the relation (7)) obviously implies:

Vje{l,...,mo}, flzii%hln)\j’h = —2Ej.

Note also that when €2 is the basin of attraction of some local minimum (or of some

family of local minima) of some Morse function f for the flow of X = —V f(X) and z is



a saddle point of f which belongs to 02, the following holds: 952 is a smooth manifold
of dimension d — 1 near z and ng(z) is an eigenvector of Hess f(z) associated with its
unique negative eigenvalue. More precisely, 9€2 coincides with the stable manifold of
z for the dynamics X = —V f(X) near the saddle point z (see (I2) in Section 2). In
Theorem ], the corresponding assumption is more general since we just assume that
the boundary 92 of €2 is, at the saddle points z € j(Ug) N 0f2, tangent to the stable
manifold of z.

Finally, the second main result of this work is Theorem [B which is stated and proven
in Section B4l It states that, under the hypotheses of Theorem B which, we recall,
are a little more general than the ones of Theorem BIl plus additional very general
generic hypotheses on the separation of the characteristic wells of f defined through
the map j : Ug — P(UTP(Q2)) (see (B) and the lines below), one has in the limit A — 0
sharp asymptotic estimates of the type (@) on all or part of the smallest eigenvalues
of AJ? ,- We state below a simplified version of Theorem [3 in a less general setting,
where we do not make explicit the pre-exponential factors (see Theorem Bl for explicit

formulas).

Theorem [3F. Let us assume the hypotheses of Theorem [l Then, under generic hy-
potheses on the characteristic wells of f defined through the map j : Uy — P(UTP(Q))
defined in[{3, one has in the limit h — 0:

Vie{l,...,mo}, Ajn = A e mE (14 0(Vh)), 9)

where, for j € {1,...,mg}, A; >0, E; > 0, and y; are explicit with moreover ~y; €
{11}, and the remainder term O(V'h) is actually of the order O(h) when the boundary
of the associated characteristic well does not meet both (|V f])~1({0}) and 0.

In addition, when mg > 2 and Eyn« > Em+41 for some m* € {1,...,mg — 1}, the
previous estimates remain valid for Ay, ..., Am= 5, under more general hypotheses:

Vie{l,....m'}, Ay o= A;hYe i (1+0(WVR)), (10)

where, for j € {1,...,mo}, A; >0, E; > 0, and ~y; are explicit with moreover ~y; €
{11}, and the remainder term O(V/h) is actually of the order O(h) when the boundary
of the associated characteristic well does not meet both (|V f])~1({0}) and 0.

Let us now comment about this result.

First, the above error terms O(v/h) or O(h) are in general optimal, see indeed Re-
mark 39 below.

Moreover, even when m* = mg in Theorem Bl the geometric assumptions on the
characteristic wells of f are still more general than the generic hypotheses made e.g.
in [6,16] in the case without boundary or in [I7] in the case with boundary, see
indeed [I7, Assumption 5.3.1]. For instance, our hypotheses neither imply that the
Ej’s are distinct, nor that the j(z), € Ug, are singletons, as assumed in [I7]. More
precisely, the main result of [I7] is a particular case of Theorem [}l when |V f| # 0



on 0f2, except that we do not prove in this work the possible existence of a full

asymptotic expansion of the low-lying spectrum of A? he

Furthermore, our results have the advantage to give assumptions on f leading to sharp
asymptotic estimates on the sole m* smallest eigenvalues Ay p,, ..., Am«p, of AJ? 5, When
m* < mg, and the more m* is small, the less restrictive are these assumptions. This
was not allowed in [I7]. In particular, in the case when m* = 1 is given a sharp
equivalent of the sole principal eigenvalue Ay ;. This is appreciable since it gives the
leading term of the semigroup (eim?ﬁ)tzo under very general assumptions. On this
point, Theorem [B] also generalizes [11, Theorem 3] when f admits critical points on
0€). To be a little more precise here, we have for example the following corollary of
Theorem [ (see also Remark A0l in this connection).

Corollary 3. Let us assume that f is a Morse function, that {f < mingq f} is non
empty, connected, contains all the local minima of f in ), and that

{f<rggi)nf}ﬂ(9§2 = {z1,...,2N},

where N € N* and, for k € {1,...,N}, zr is a saddle point of f such that no(zk)
is an eigenvector of Hess f(zy) associated with its unique negative eigenvalue \(z).
The principal eigenvalue of Aﬁh then satisfies the following Eyring-Kramers formula
in the limit h — 0:

2 Z;gvzl ‘)\(Zk)’ ]det Hess f(zk)’_%
i > (detHess f(y)) ®

yEarg ming f

My = he™ i (minon f-ming ) (1 L O(v/R)) . (11)

Let us also mention the work [29], where the author treats the case of general Morse
functions in the case without boundary. We believe that the analysis done in [29] can
be adapted to our setting, which would lead to the existence of an Eyring-Kramers
type formula for each small eigenvalue of AJ? p, under the sole assumptions of The-
orem Nevertheless, we made the choice to not follow this way here since these
precise formulas are in general very complicated to make explicit. Indeed, the pre-
exponential factors are not computed in general in [29], but are shown to be com-
putable by following an arbitrary long algorithm. This follows from the fact that in
the general case, some tunneling effect between the characteristic wells of f mixes
their corresponding pre-exponential factors, see [29] for more details. Our hypotheses
remain however very general and lead to explicit Eyring-Kramers type formulas in
Theorem [3

1.4 Strategy and organization of the paper

In works such as [TTL[16L17,19,24,29], a part of the analysis relies on the construction
of O-forms (i.e. functions) quasi-modes supported in some characteristic wells of
the potential f and of 1-forms quasi-modes supported near the saddle points of f,
and, in [TTLI7,24], near its so-called generalized saddle points on the boundary. Very



accurate WKB approximations of these local 1-forms quasi-modes then finally lead to
the asymptotic expansions of the low-lying spectrum of the Witten Laplacian acting
on functions. This approach is based on the supersymmetric structure of the latter
operator, once restricted to the interplay between 0- and 1-forms.

Near the generalized saddle points on the boundary as considered in [17,24], where one
recalls that |V f| # 0 there and actually where the normal derivative Oy, f does not
vanish, this construction means solving non characteristic transport equations with
prescribed initial boundary conditions, see in particular [17,23.24]. Near a usual sad-
dle point z in 2 (i.e. a critical point z with index 1), this construction follows from
the work [18] of Helffer-Sjostrand and means solving transport equations which are
degenerate at z (see in particular Section 2 there). In this case, the problem is well-
posed only for prescribed initial condition at the single point z. In particular, when
one drops the assumption (Bl and z is a usual saddle point which belongs to d€2, the
corresponding transport equations, which are the same as for interior saddle points,
are uniquely solved as in [I8], but the resulting WKB ansatz does not in general sat-
isfy the required boundary conditions, except its leading term when the boundary 92
has a specific shape near z. To be more precise, and to make the connection with
the hypotheses of Theorems Il and Bll (and Theorems 2] and B]), the leading term of
this WKB ansatz satisfies the required boundary conditions if and only if 9 coin-
cides near z with the stable manifold of z for the dynamics X = —V f(X) (see (I2)
in Section ). This compatibility condition imposes in particular that ng(z) spans
the negative direction of Hess f(z). The fact that the remaining part of the WKB
ansatz does in general not satisfy the required boundary conditions for a compatible
boundary 0f) arises from the curvature of this boundary.

The above considerations show that, when z € 9 is a saddle point of f and ng(z) does
not span the negative direction of Hess f(z), the classical WKB ansatz constructed
near z will not be an accurate approximation of the local 1-form quasi-mode associated
with z. They also imply that the potential existence of full asymptotic expansions
of the small eigenvalues of A? 5, Will in general not follow from the existence of these
WKB ansétze when f admits saddle points on the boundary. Moreover, we expect
that sharp asymptotic equivalents such as ([I]) are not valid in general when ng(z)
does not span the negative direction of Hess f(z) at the relevant saddle points z €
0f). In the latter case, we expect that the corresponding possible sharp asymptotic
equivalents should also rely on the angle between ng(z) and the negative direction of

Hess f(z).

In this work, we follow a different strategy based on the constructions of very accurate
quasi-modes for A?’ - This approach, which is partly inspired by the quasi-modal
construction made in [9] (see also [5,2232]), requires a careful construction of these
functions quasi-modes around the relevant (possibly generalized) saddle points z of
f, whereas these points were not in the supports of the corresponding quasi-modes
constructed in [TTI6,I719,2429]. One advantage of this method is to avoid a careful
study of the Witten Laplacian acting on 1-forms near the boundary 92, which would



finally lead to more stringent hypotheses on f and on f|sq, that is precisely to the
hypotheses made in the statement of Theorem

The rest of the paper is organized as follows. In Section 2] we prove Theorem [l about
the number of small eigenvalues of A?’ 5~ This is done using spectral and localization
arguments. Then, in Section Bl we construct the map j characterizing the relevant
wells of the potential function f. This permits to construct very accurate quasi-modes
in Section M and then to state and prove our main results, namely Theorems [2 and
B in Section Bl As in [11,[16]17,19L24,29], the analysis of the precise asymptotic
behaviour of the low-lying spectrum of AJ? n= d?’;d? 5, 1s finally reduced to the
computation of the small singular values of dJ? h-

2 On the number of small eigenvalues of A]fj, b

This section is dedicated to the proof of Theorem [l Before going into its proof, we
briefly recall basic facts about smooth Morse functions on a C'*° compact Riemannian
manifold with boundary Q = Q U 99 of dimension d.

Let z € 05). Let us consider a neighborhood V., of z in Q and a coordinate system
peEV, = x= (2,2 € R? = R x R_ such that: z(z) =0, {p € V., z4(p) <
0} =NV, and {p € V,, z4(p) = 0} = 02N V,. By definition, the function f is
C on V, if, in the z-coordinates, the function f : x(V,) — R is the restriction of a
C* function defined on an open subset O of R? containing (V). Moreover, z € 99
is a non degenerate critical point of f : @ — R of index p € {0,...,d} if it is a non
degenerate critical point of index p for this extension. Notice that this definition is
independent of the choice of the extension. A C* function f : Q — R is then said to
be a Morse function if all its critical points in Q are non degenerate. In the following,
we will also say that z € Q is a saddle point of the Morse function f if it is a critical
point of f with index 1.

Let now f :  — R be a Morse fonction. By the above, there exist a C*> Riemannian
manifold (without boundary) of dimension d and a C* Morse function f : Q>R
such that
flﬁzf and Q c Q.

For a critical point z € Q of f, the sets Wt(z) and W~ (z) will respectively denote
the so-called stable and unstable manifolds of z for the dynamics X = —V f(X) in Q.
In other words, denoting by X,(t) the solution to %Xy(t) = —Vf(X,(t)) with initial
condition X,(0) =y € Q, one has (see for example [2I], Definition 7.3.2)):

WE(z) = {yeQ sit. Xy(t) € Q for every +¢ > 0 and tlgcn Xy(t) =z} (12)

We recall that when z has index p € {0,...,d}, the sets WT(2) and W~ (z2) are
indeed smooth submanifolds of €2; they moreover intersect orthogonally at z and

2 For example, in the statement of Corollary Bl the “1-form approach”would require that all the
local minima of f|aq are non degenerate and that no(z) spans the negative direction of Hess f(z) at
any saddle point z € 9.

10



have respective dimensions d — p and p (see for example [21I, Theorem 7.3.1 and
Corollary 7.4.1]). Note lastly that the part of W*(z) leaving outside Q of course
depends on the choice of the extension f.

2.1 Preliminary results

In order to prove Theorem [, one will make use of the following proposition which
results from [I8, Théoreme 1.4].

Proposition 4. Let O be an oriented C™ compact and connected Riemannian man-
ifold of dimension d with interior O and non empty boundary 00, let ¢ : O = R be a
C> Morse function, and let xo be a critical point of ¢ in O with index ¢ € {0,...,d}
such that xo is the only critical point of ¢ in O. Then, the Dirichlet realization
Agh(O) of the Witten Laplacian acting on functions on O satisfies the following
estimate: there exist ng > 0 and hg > 0 such that for all h € (0, hy),

dim Ran g o] (Agh(O)) = 04,0
The following result is a direct consequence of Proposition [l

Corollary 5. Let O, ¢, zg, and { € {0,...,d} be as in Proposition[j] Let us assume
that £ = 0, di.e. that xg is a local minimum of ¢ in O, and that ¢ only attains
its minimal value on O at xg. Let moreover, for every h small enough, ¥ > 0 be
the L?(0)-normalized eigenfunction of Agh(O) associated with its unique eigenvalue
An in (0,moh] (see Proposition [ and Remark [1l). Lastly, let & € C°(0,[0,1]) be
a cut-off function such that € = 1 in a neighborhood of xog in O. Then, defining
ge?
~ leema?]

£2(0)

, there exists ¢ > 0 such that for every h small enough:

U=x+ O(e_%) in L*(0) and 0< )\, < Hd@thilLQ(o <e R, (13)

)

Proof. The proof of (I3) is standard but we give it for the sake of completeness. As

in the statement of Corollary [, let us define
gen?
P T e TE—
[€e h¢|’L2(O)

From the definition of £ and the Laplace method together with the fact that ¢ only
attains its minimal value on O at zg, it holds

(mh)?

—+o)2 -
1€ e[| 0, /det Hess ¢(zq)

According to Proposition [ there exist g > 0 and hg > 0 such that for all A €
(0,h0), T0,noh) (A?h(O)) is the orthogonal projector on Span{¥}. Moreover, using the

=100 (14 O(h)).

following spectral estimate, valid for any nonnegative self-adjoint operator (7, D(T"))
on a Hilbert space (H, || - ||) with associated quadratic form (g7, Q(T)),

2 < QT(U)

Vo> 0, YueQ(T), ||mpo0)(T)ul|” < o (14)
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it holds (see (2)) and (3]))

2 Hd@hXHilL?(O) _h fo|d€|2€7%¢

D
HX = o (824 ()Y 12(0) ~ moh e gy

Hence, since £ = 1 in a neighborhood of xy and thus, for some ¢ > 0, ¢(y) > ¢(z¢) + ¢
for every y € supp d§, one has for every h > 0 small enough,

<eh, (1)

. 2
Hd¢,hXHilL2(o) <e n and HX ~ T[0,m0h] (Agyh(o))x‘ L2(0)

where ¢ > 0 is independent of . Since ||x|[z2(0y = 1, the first relation in (I5]) together
with the Min-Max principle leads to (see (2]))
2 —c
Ap < <AD,h(O)X7X>L2(O) - Hdd)yhXHAlLQ(O) < eh.

Moreover, using the second relation in ([I5]) and the Pythagorean theorem, one obtains
for every h > 0 small enough:

70,0001 (AER(ON) x| 20y = 1 + Ole™ ). (16)

In conclusion, from (I5)), (I6)), and since x and ¥ are nonnegative, it holds, in L?(0),
for some ¢ > 0 and every h > 0 small enough:

70,m0h) (Agh(o))x

ql =
170,100 (Agh(o))XHH(O)

This concludes the proof of (I3) and then the proof of Corollary [ |

We are now in position to prove Theorem 11

2.2 Proof of Theorem [I]

Let {z1,...,2,} be the set of the critical points of f in Q, i.e.

{z1,....,2,} = {2€Q, |Vf(z)|=0}.

From the preliminary discussion in the beginning of Section 2] there exist an oriented
C*° compact and connected Riemannian manifold Q of dimension d with interior
and boundary (9?2, and a C™ Morse function f : Q — R such that

f|§:f, Q C 6 and {xl,...,xn} c Q.

We recall that mg denotes the number of local minima of f in € (see Definition [2),
and thus that 0 < mg < n. When mg > 0, the elements z1,...,x, are moreover
ordered such that

{xl,...,xmo} = U().

12



In addition, one introduces for every j € {1,...,mg} a smooth open neighborhood
O; of z; such that O_] C € and such that z; is the only critical point of f in O_J
as well as the only point where f attains its minimal value in O_J Similarly, when
xj € 1 is not a local minimum of f, one introduces a smooth open neighborhood O;
of z; such that O_] C Q and such that x; is the only critical point of f in O_J Eastly,
when z; € 99, one now introduces a smooth open neighborhood O; of z; in Q such
that O_] C Q and such that xj is the only critical point of fin O_J When such a z;
is a local minimum of f, the set O; is moreover chosen small enough such that the
minimal value of f in O_j is only attained at x;. Let us also introduce a quadratic
partition of unity (x;)jef1,....n+1} such that:

1. Forall j € {1,...,n+ 1}, x; € C*(,[0,1]) and Z?;Lll X? —1on Q.

2. Forallj € {1,...,n}, x; = 1 near z; and supp x; C O;. In particular, supp x; C
2 when z; € Q.
3. For all (i,7) € {1,...,n}?, i # j implies supp x; Nsuppx; = 0.
In the following, we will also use the so-called IMS localization formula (see for
example [§]): for all ¢ € H{ (), it holds

n+1 n+1

Qra) = > Qralx; ) = > B [|IVx;1 ¥ 2 » (17)
j=1 =1

where @y, is the quadratic form defined in (3]).

Step 1. Let us first show that there exists ¢y > 0 such that for every h small enough,
it holds

dim Ran 7'('(0,6_%1) (A[?h) > mg. (18)

This relation is obvious when mg = 0. When mg > 0, the family (O_], f|of], x;) satisfies,
for every j € {1,...,mg}, the hypotheses of Corollary[Bl Then, according to (I3]), the
function

J = — 7
[xjex HL2(oj)

satisfies, for some ¢; > 0 and every h > 0 small enough (see (3))),

Qralthy) <e h.

Since the v;’s, j € {1,...,mog}, are unitary in L?(Q2) and have disjoint supports, it
follows from the Min-Max principle that A]l? ;, admits at least mp exponentially small
eigenvalues when h — 0, which proves (I8]).

Step 2. Let us now show that there exists ¢, > 0 such that for every h small enough,
it holds
dim Ran 7o ¢/ ) (A?h) < mgp. (19)

13



According to the Min-Max principle, it is sufficient to show that there exist hg > 0
and C > 0 such that for every h € (0, ho], there exist uy, ..., um, in L?(2) such that
for any 1 € D(Qys) = H}(Q), it holds

mo

Qrn(¥) > Ch|¥lizq) — Y (¥, ui)iz(q) - (20)
i=1
Analysis on supp xn+1-
Since supp Xn11 M does not meet {x1,...,x,}, there exists C > 0 such that |V f| >
3C on supp Xnt1 N Q. It then follows from (3] that there exists C' > 0 such that for
every h small enough and for every ¢ € H}(€2), it holds

Qrn(xnt1?) = (Xnpr®, (IVFP + hAHf)Xn+11/J>L2(Q)
> 2C | xnt19 1122 (0)- (21)

Analysis on supp x;, j € {1,...,mp}.

We assume here that mg > 0. We recall that for every j € {1,...,mq}, (Oy, f\o—j, xj)
satisfies the hypotheses of Corollary B, and we denote, for h > 0, by ¥; > 0
the L?(0;)-normalized eigenfunction of A 7 P, (0;) associated with its principal eigen-

value )\il (which is positive, and exponentially small when A — 0). It then follows
from Proposition Ml and Corollary Bl that for some C' > 0 and every A > 0 small
enough, it holds, for every j € {1,...,mq} and for every ¢ € H}(2),

Qrn(x5v)

v

M0G0, 5) 0y + 2CRIXG 8 — O, U)W 1720
2Ch X% 1172 () — 2Ch (3%, ¥5) (o
2Ch X% 172 () — (¥ us) T2 » (22)

v

where one has defined u; := vV2Ch x; ¥

Analysis on supp x;, when z; € ) is not a local minimum of f.

In this case, applying Proposition @ with O; and A]l? 1,(0;), it follows that for some
C > 0 and every h > 0 small enough, it holds, for every ¢ € H}(€2),

Qrn(xj) = 2Ch|x;¢|72q) - (23)

Analysis on supp x;j, when z; € 9Q is not a local minimum of f.

In this case, applying as previously Proposition dl with O; but here with A (O )
and denoting by @ ; FhO; its associated quadratic form, it follows that for some C >0

and every h > 0 small enough, it holds, for every v € HO(Q),
2
Qf,h,Oj(ij) - de,hijuAlm(oj) > 2Ch HXﬂpr(Q

Let us now consider the application ¢ € L2(Q) + 9 € LQ(?Z), where 1) extends 1)
on ) by mﬁ\ﬁ = 0. Since ¥ belongs to H}(Q) for every v € HZ(Q) with moreover
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(d@)’ﬁ\ﬁ = 0, it holds, for every h small enough and for every v € HZ(Q),

2 —\ 12
Qf,h(ij) = de,h(ij)HAllg(Q) = de,h(qu’Z))HAlLQ(Oj)
20h i) = 20k [l (240)

Analysis on supp x;, when z; € 92 is a local minimum of f.

Y

Let us now consider, as previously, the extension map ¢ € H(Q) — ) € H&(ﬁ)
by 0 outside 2, and let ¥; > 0 be the L?*(O;)-normalized eigenfunction of A? ,(05)

associated with its principal eigenvalue )\{L (see Remark[I]). Then, according to Propo-
sition @ one has for some C' > 0, for every h small enough, and for every v € HZ(Q),

Qrrlxi¥) = Qfpo,(G¥)

MAOGE, 50 20, + 6CRIXY = (38, 95) %5720,

6Ch X917 2(0,) — 6Ch (x;¥, V) 720,

6Ch |Ixj¥l72() — 6Ch (X%, ¥))T2(0n0,) - (25)

Moreover, applying Corollary Bl with O = O, ¢ = f \ij, and £ = xj, it follows from

AV

(I3) that for every h small enough, one has

12
Xje . B

qujHiQ(Qﬂo]’) - by IELZ(QOOJ) +0(e7n).
e HL2(o]~)

From the Laplace method together with the fact that f only attains its minimal value
on O_j at x;, it then holds in the limit & — 0:

2 1
H\I’J”m(ﬂmoj) ~ 9 +o(l).
According to (25)), this implies, using the Cauchy-Schwarz inequality
2 2 2
XY, )12 < “ij“LQ(Q)“\Ilj“LQ(QﬁOj)’
that for some C' > 0, for every h small enough, and for every ¢ € H&(Q), it holds:
Qrn(xj) = 2Ch|x;¢l72q) - (26)

Conclusion.

Adding the estimates ([2I) to (24) and (26]), we deduce from the IMS localization
formula ([I7)) that there exists C' > 0 such that for every h small enough and for every
Y € HL(R), it holds

n+1 n+1
2
Q) = ZQf,h(Xj V) — Z W ||V x;1 wHLQ(Q)
j=1 J=1
n+1 mo
> ZQC}LHXﬂ/}”%Q(Q) - Z<wauj>%2(ﬂ) + O(hQ)Hw”%%Q)
j=1 Jj=1
mo
> Ch[$lai0) — D W, u)3aq) -
j=1
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where, for j € {1,...,mo}, we recall that u; = vV2Ch x;¥;. This implies the rela-
tion (20)) and then (9], which concludes the proof of Theorem [I1

3 Study of the characteristic wells of the function f

In this section, one constructs two maps, j and C;. The map j associates each local
minimum of f in £ with a set of relevant saddle points, here called separating saddle
points, of f in Q, and the map C; associates each local minimum of f in Q with
a characteristic well, here called a critical component, of f in Q (see Definition [T
below). Our construction is strongly inspired by a similar construction made in [19]
in the case without boundary, where the notions of separating saddle point and of
critical component were defined in this setting. The depths of the wells Cj(x), « € Uy,
which can be expressed in terms of j(z), will finally give, up to some multiplicative
factor —2, the logarithmic equivalents of the small eigenvalues of A?, , (see indeed
Theorems 2] and 2)). The maps j and C; will also be used in the next section to define
accurate quasi-modes for A?, -

This section is organized as follows. In Section B.J], one defines the principal (charac-
teristic) wells of the function f in Q. Then, in Section B.2], one defines the separating
saddle points of f in Q and the critical components of f. Finally, Section B.3 is
dedicated to the constructions of the maps j and G;.

3.1 Principal wells of f in 2

Definition 6. Let f : Q — R be a C™ Morse function such that Uy # 0. For all
x € Ug (see Definition[d) and X > f(x), one defines

C(\,z) as the connected component of {f < A} in Q containing x.
Moreover, for every x € Ug, one defines
A(x) :=sup{\ > f(z) such that C(A\,z)NIN =0} and C(z):=C(\(x),z).

Since for every x € Ug, = is a non degenerate local minimum of f in €2, notice that
the real value A\(x) is well defined and belongs to (f(z),+0o0). The principal wells of
the function f in € are then defined as follows.

Definition 7. Let f : Q — R be a C™ Morse function such that Uy # (. The set
C={C(z), z € Up}

s called the set of principal wells of the function f in Q. The number of principal
wells is denoted by
N; := Card(C) S {1, ceey mo}.

Finally, the principal wells of f in Q (i.e. the elements of C) are denoted by:
C= {C1,17 e ?CLNl}'
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In Remark [[9 below, one explains why the elements of C are called the principal wells
of f in Q. Notice that they obviously satisfy 0C(x) C {f = A(z)} for every = € Uy.
These wells satisfy moreover the following property.

Proposition 8. Let f : Q — R be a C® Morse function such that Uy # 0 and let
C={Ci1,...,Cin,} be the set of its principal wells defined in Definition [7. Then,
for every k € {1,...,Ny}, it holds:

{ Cyk is an open subset of €1, and (27)

forall € {1,... Ny} with#Fk, CipyNCie=0.

Proof. The proof of (27)) is included in the proof of [10, Proposition 20]. Let us men-
tion that in [10, Proposition 20], it is also assumed that f|sq is a Morse function, but
this assumption is not used in the proof of (27)) there. 1

3.2 Separating saddle points
3.2.1 Separating saddle points of f in

Before giving the definition of the separating saddle points of f in €2, let us first recall
the local structure of the sublevel sets of f near a point z € 2.

Lemma 9. Let f: Q — R be a C>® Morse function, let z € Q, and let us recall that,
forr >0, B(z,r) == {x € Q s.t. |[x — z| < r}. For every r > 0 small enough, the
following holds:

1. When [V f(2)| # 0, the set {f < f(z)} N B(z,1) is connected.

2. When z is a critical point of f with index p € {0,...,d}, one has:

(a) if p=0, i.e. if z € Ug, then {f < f(z)} N B(z,r) =0,
(b) ifp=1, then {f < f(2)}NB(z,7) has precisely two connected components,
(c) ifp>2, then {f < f(2)} N B(z,7) is connected.

The notion of separating saddle point of f in Q was introduced in [19, Section 4.1]
for a Morse function on a manifold without boundary.

Definition 10. Let f : Q — R be a O Morse function. The point z € Q is a
separating saddle point of f in Q if it is a saddle point of f (i.e. a critical point of f
of index 1) and if for every r > 0 small enough, the two connected components of
{f < f(z)} N B(z,r) are contained in different connected components of {f < f(z)}.
The set of separating saddle points of f in Q is denoted by UTP(£2).

With this definition, one has the following result which will be needed later to con-
struct the maps j and C; in Section [3.31

Proposition 11. Let f : Q@ — R be a C™ Morse function such that Uy # 0. Let
us consider Cy 4 for g € {1,...,N1}. The set Ci4 and its sublevel sets satisfy the
following properties.
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1. It holds,
if 0C1a NI =10, ie. ifﬁ,q C Q, then 0Cy,NUTP(Q) # 0. (28)

2. Let Ay be such that Cy 4 is a connected component of {f < A} (see Definitions[d
and[7). Let A € (minm f,Aq] and C be a connected component of Cy ;N{f < A}.
Then, 7

(CNUTP(Q) #0) iff CnUg contains more than one point.

Moreover, let us define

o:= max f(y)
yeCNUTP(Q)

with the convention o = ming f when CNUTP(Q) = 0. Then, the following
assertions hold.

o Forallp € (o, ], the set CN{f < p} is a connected component of {f < u}.

o IfCNUTP(Q) # 0, one has CNUy C {f < o} and the boundary of any
of the connected components of CN{f < o} contains a separating saddle
point of f in Q (i.e. a point in UTP(Q)).

Proof. The proof of the first item of Proposition [IT] is the same as the proof of the
last point of [10, Proposition 20] (see Step 5 there), while the proof of the second item
of Proposition [[1]is the same as the proof of [10, Proposition 22], which follows from
the study of the sublevel sets of a Morse function on a manifold without boundary
(since the principal wells Cy ;’s are included in ). Again, the assumption that f|aq
is a Morse function made in [10] is not used in these proofs. |

3.2.2 Separating saddle points of f in Q

In this section, we specify and extend Definition [I0l in our setting by taking into
account the boundary of €2 and the principal wells {Cy,...,Cy,} of f introduced
in Definition [7l To this end, we first state the following result which describes the
local structure of f near Uke{l,...,Nl} 0Cy ;N 02 and which will be used to state an
additional assumption on f, assumption belovv7 ensuring that the critical points
of f in 9Cy N O are geometrical saddle points of f in O (see Remark [I5] below).

Proposition 12. Let f : Q@ — R be a C*° Morse function such that Uy # 0. Let
ke{l,...,Ni}. Then, if 0C; NOQ # 0, for z € 9Cy ;, N O (see Definition[7), one

has:
(a) If [V f(2)| # 0, then z is a local minimum of f|aq and O, f(z) > 0.

(b) If [Vf(z)] = 0, then z is saddle point of f. In addition, if the unit outward
normal vector no(z) to Q at z is an eigenvector of Hess f(z) associated with its
negative eigenvalue, then z is a non degenerate local minimum of flaq (where
Hess f(z) denotes the endomorphism of T,) canonically associated with the
usual symmetric bilinear form Hess f(2) : T,Q x T,Q — R via the metric g).
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Besides, it holds,
forall € {1,... Ny} with £ £k, C;,NCyy =0CxNICi, CUTP(Q). (29

Remark 13. As it will be clear from the proof of Proposition [12, the fact that f :
Q — R is a Morse function is not needed in the proof of item (a) in Proposition [I2.

Proof. Let z € 0Cy 1, N 0. Let V. be a neighborhood of z in Q and let
peV,—»x=(2',25) e RTIxR_ (30)
be a coordinate system such that x(z) = 0,
{peV,, z4(p) <0} =NV, and {peV,, z4(p) =0} =00NV, (31)

and

Vi,j €{1,...,d}, gz(i(z), aix](z)) =0;; and ai(z) =nq(z). (32)

ox; Ld
The set (V.) is a neighborhood of 0 in R~ x R_. With a slight abuse of notation,
the function f in the coordinates x is still denoted by f. The set x(Cy, NV;) is
included in {4 < 0} since Cy; C 2 (see Proposition B]). For ease of notation, the
set £(Cy . NV;) will also be denoted by C; . Let us now introduce a C'*° extension
of f:x(V,) C {x € R% x4 < 0} — R to a neighborhood Vg of 0 in R? such that
VoNn{z € RY 24 <0} C z(V,). In the following this extension is still denoted by f.
Note that according to ([B2]), the matrix Hess f(0) is then at the same time the matrix
of the symmetric bilinear form Hess f(2) : T, x T.Q2 — R and of its canonically
associated (via the metric g) endomorphism Hess f(2) : 7.Q — T.€, in the basis

(a%l(z), ce aimd(z) = nq(z)) of T
Let 7o > 0 be such that {z € R? |z| < 79} C Vo and let © € (0,70). To prove

Proposition M2, one will both work with the initial function f and with the above
associated function still denoted by f,

f:x=(2,2q) € Vo CRY— f(z) eR. (33)

The proof of Proposition [12] is divided into several steps.

Step 1. Proof of item (a) in Proposition Let us assume that |V f(z)| # 0.
According to Lemma[d, for all 7 > 0 small enough, the set {z € R, |z| < r and f(x) <
f(0)} is connected. Let us also notice that it clearly holds

0#Cipnfze R |z| < r} € {z € R, |z| < rand f(z) < f(0)}.
Let us now prove that
{r e R: |z| < rand f(z) < f(0)} C {24 < 0}. (34)

If it is not the case, there exists yo € {x € R% |z| < r} such that x4(y2) > 0 and
f(y2) < £(0). The set {x € R?, |z| <7 and f(z) < f(0)} is connected and thus, since
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it is locally path-connected, it is path-connected. Then, let y; € C; N {z € R, |z| <
r} and consider a continuous curve v : [0,1] — {z € R, |z| < 7 and f(z) < f(0)}
such that v(0) = y; and v(1) = ya2. Let us define ¢y := inf{t > 0, z4(v(t)) > 0}.
Since x4(v(0)) < 0 and z4(y(1)) > 0, it holds ¢ty > 0. Then, for all ¢ € [0, o], it holds
zq(vy(t)) < 0 (with equality if and only if ¢ = tg), |v(¢)] < r, and f(v(t)) < f(0).
Therefore, since by definition C; x is a connected component of {g € Q, f(q) < f(2)},
it holds ~(tg) € Ci C {zq < 0}. This contradicts z4(v(to)) = 0 and proves (34]).
Hence, since C; j is a connected component of {f < f(z)} in  which intersects the
connected set p({x € RY, |z| < r and f(x) < f(0)}) C Q, it holds

Cipn{zeRy|z| <7} ={z e R%|z| <rand f(z) < f(0)}. (35)

Equations (31]) and (34]) imply that z is a local minimum of f|sqn. Using in addition the
fact that |V f(z)| # 0, it holds On, f(2) # 0 and hence O, f(z) > 0, since Oy, f(2) < 0
would imply that z is a local minimum of f in  which would thus not belong to m
This proves item (a) in Proposition Let us mention that one can prove in addition
that 002 and 0C; j are tangent at z.

Step 2. Proof of item (b) in Proposition Let us now assume that |V f(z)| = 0.

Step 2a. Let us prove that 0 is a saddle point of f : Vo — R. The point 0 is a non
degenerate critical point of f. Moreover, because 0 is not a local minimum of f in
{xq < 0} (since 0 € 0Cy ), Hess f(0) has at least one negative eigenvalue. To prove
that 0 is a saddle point of f, let us argue by contradiction: assume that Hess f(0) has
at least two negative eigenvalues. Then, according to Lemma [ (with p > 2 there),
for all 7 € (0,79) small enough, the set {x € R%, f(z) < f(0)} N {z € RY, |z| < r} is
connected. In particular, the same arguments as those used to prove (34 and (B5])
imply that:

CipN{zeRY|z| <r}={z e R |z| <rand f(z) < f(0)} C{za<0}. (36)
To conclude, let us now prove that
{x eRY |z| <r and f(z) < f(0)} N {z e RY x4y =0} # 0, (37)

which will contradict (B6). To this end, let (e1,es,...,eq) C R? be an orthonormal
basis of eigenvectors of Hess f(0) associated with its eigenvalues (u1, ..., puq) ordered
such that p; < 0 and pe < 0. Since {x4 = 0} is a d— 1 dimensional vector space, there
exists v € {zg = 0} NSpan(ey,e2)\{0}. An order 2 Taylor expansion then shows that
f(tv) < f(0) for every ¢t > 0 small enough, which implies [B7)) since tv € {zy = 0}.
Thus, Hess f(0) has only one negative eigenvalue, i.e. 0 is a saddle point of f.

Step 2b. Let us now end the proof of item (b) in Proposition[I2l The point 0 is clearly
a critical point of f|¢,,—oy since it is a critical point, and more precisely a saddle point
by the above analysis, of f : Vg — R. Let us also emphasize here that without any
additional assumption, 0 is not necessarily a non degenerate critical point of f| {2a=0}>

nor a local minimum of f[, o (see indeed Remark [I6] below). Let us now make
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the following additional assumption: let us assume that the unit outward normal
vector ng(z) is an eigenvector of Hess f(z) associated with its negative eigenvalue.
According to BI) and (B2), this means that e; = (0,...,0,1) € R? is an eigenvector
of Hess f(0) associated with its unique negative eigenvalue. Since in the Euclidean
space R%, it holds {z4 = 0} = e, it follows that Hess fliz,=0y(0) is positive definite
and hence that 0 is a non degenerate local minimum of f[;,,_g;. This concludes the
proof of item (b) in Proposition

Step 3. Proof of the relation (29). Let us recall that for every k, the set C;y, is an
open subset of © such that for all £ # k, it holds C; 4N Cy = 0 (see Proposition B,
and hence m N m = 0C; N OCy . The proof of ([29) is divided into two steps.

Step 3a. Let us prove that for all £ € {1,... Ny}, £ # k, it holds
8(:17@ N 8(:17]g c Q. (38)

To this end, let us consider z € 9C; ;, N €2, Let us work again in the z-coordinates
satisfying ([B0) and (BI]), and with the function

frox= (2 zq) eVoCRY— f(z) €R

which was introduced in (33]).

Let us first consider the case when |V f(0)| # 0. Let us recall that according to
Lemma [@ and (33)), for » > 0 small enough, {z € R? |z| < r and f(z) < f(0)} is
connected and equals Cy ;N {x € R% || < r}. Let £ € {1,...,Ny}, £ # k. Since in
addition C;,NCyp = 0, one has 0 ¢ 9Cy 4. This concludes the proof of (B8] when

IVF(0)] #0.

Let us now consider the case when |V f(0)] = 0. According to item (b), 0 is a
saddle point of f. According to Lemma [@ and since 0 is a non degenerate saddle
point of f, for 7 > 0 small enough, {z € RY |z| < r and f(x) < f(0)} has two
connected components which are denoted by A; and As. To prove ([B)), let us argue
by contradiction and let us assume that 0 € 9C; , N IC; , for some £ € {1,...,Ny}
with £ # k. Since both Cy , and C; » meet A; UAg, the same arguments as those used
to prove (34]) and (B5]) then lead, up to switching A; and Ag, to

Cipn{zeRy |zl <r}=A; and Cipn{zeRe|z|<r}=Ay
and to
{x € RY |z| < rand f(z) < f(0)} = AjUA;y C {24 < 0}. (39)

This imposes that the eigenvector ey of Hess f(0) associated with its negative eigen-
value satisfies

eq € {zxq = 0}.

Indeed, if it was not the case, an order 2 Taylor expansion of ¢ — f(teg) at t = 0
would imply that f — f(0) admits negative values in {4 > 0} N {|z| < r} for every
r > 0, contradicting (39]). Thus, e; € {xq = 0}. Then, the order 2 Taylor expansion of
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t— f(teq) at t = 0 shows that f— f(0) admits negative values in {z4 = 0} N{|z| < r}
for every r > 0, which also contradicts ([89). This concludes the proof of ([B8) when
IVF(0)] = 0.

Step 3b. Proof of (29). According to (B8]), for all £ # k, it holds 0Cy , N ICy, C Q.
Let us now consider z € 9Cy , NIC; ¢ when the latter set in non empty, which implies
that Cy; and C;, are two connected components of {f < f(z)}. Then, for r > 0
small enough, {f < f(z)} N B(z,r) has at least two connected components, respec-
tively included in Cyj and in C;y. From Lemma [ z is then a saddle point of f
and, according to Definition [I0} it thus belongs to UTP(Q2). This concludes the proof
of (29) and then the proof of Proposition ]

We are now in position to state the following assumption which will be used to
construct the maps j and Cj at the end of this section. Before stating it, let us recall
that from item (b) in Proposition 2 any point z belonging to 9Cy j N I for some
ke {1,...,N;} and such that |V f(z)| = 0 is a saddle point of f. Using moreover
(29), such a z does not belong to C1, when ¢ € {1,...,N;}\ {k}.

Assumption (H1). The function f : Q — R is a C™ Morse function such that Uy #
0 and whose principal wells Cy 1,...,Cyn, defined in Definition[7 satisfy the following
property: for every k € {1,...,N1} and every z € 0Cy N OQ such that |Vf(z)| =
0, the unit outward normal vector ng(z) to Q at z is an eigenvector of Hess f(z)
associated with its negative eigenvalue, where Hess f(z) denotes the endomorphism of
T.Q canonically associated with the symmetric bilinear form Hess f(z) : T.Q x T, —
R wvia the metric g.

When |(H1)| is satisfied, according to Proposition [[2] the sublevel sets {f < f(2)}
have the following local structure near the points z € UZ‘;I 0Cy 1, N OSL.

Corollary 14. Let f: Q — R be a C> Morse function satisfying [(H1)| Then, for
all k€ {1,...,N1} such that 0Cy ;, N OQ # 0 and for all z € 0Cy ;, N O, one has:

(a) If [V f(2)| # 0, z is a local minimum of f|aq and On, f(2) > 0 (see Figure[d).

(b) If IV f(2)| =0, z is a saddle point of f and the unit outward normal vector ng(z)
to Q) at z is an eigenvector of Hess f(z) associated with its negative eigenvalue.
Moreover, the point z is a non degenerate local minimum of f|sq (see Figure[2).

Note that when |(H1)|is satisfied, it follows from Corollary [[4] that the points z €
U,’;‘;l 0Cy N OQ such that |[Vf(z)] = 0 are isolated in U,’;‘;l 0Cyi N OQ. Indeed,
they are non degenerate critical points of f|sn and U,':';l 0Cyq 1, N O is composed of

critical points of f|gpn. Note also that this is in general not the case for the points
z € U,':';l 0Cy N O such that |V f(z)| # 0.

Remark 15. When|(H1)| holds, it follows from items (a) and (b) in Corollary[T] that
the elements ofullzlil (BCMHBQ) play geometrically the role of saddle points of f in ).
Indeed, when f is extended by —oo outside QU (this extension is consistent with the
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f>f)}
{ ~-{f= 1)}
0 Ci B V() = Ong f(2) na(2)
RS0

Figure 1: Behaviour of f in a neighborhood of z € 0Cy N OY when |V f(2)| # 0 and
z s isolated in OCq N OS).

W*(z)
o0
—{F= 1)
Ar>r@3 { }
Q Cik ~~~::‘ ‘:.Z—> no(2)
- {f>Ff(2)}

Figure 2: Behaviour of f in a neighborhood of z € 0Cy N OY when |V f(2)| =0 and
(H1)| is satisfied. On this figure, Wt (2) is the stable manifold of z for the
dynamics X = -V f(X).

Dirichlet boundary conditions used to define A?h), the points z € U,':';l 0Cy N are
local minima of f|aq and local mazima of f|p,, where D, is the straight line passing
through z and orthogonal to O at z. Note however that when |V f(z)| # 0, z can
be a degenerate local minimum of flaq (which can even be constant around z). This
extends the definition of generalized saddle points of f in 0Q as introduced in [17,
Definition 3.2.2] to the case when f|sq is not a Morse function and f has critical
points on 0N). Moreover, when does not hold, the points z € UZ‘;I 0Cy;, N ON
such that |V f(z)| = 0, which are thus saddle points of f according to Proposition [12,
do actually not necessarily play the role of saddle points of f in Q in the above sense,
as explained in Remark below.

Remark 16. Let k € {1,...,Ny} and z € 0Cy; N IQ be such that |V f(z)| = 0.
We recall that, according to Proposition [12, z is a saddle point of f, and that, by
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Corollary when nq(z) is an eigenvector of Hess f(z) associated with its negative
eigenvalue, z is a local minimum of flaq and thus a geometrical saddle point of f
in Q in the sense of Remark [I3. We show below that the latter property fails to be
true in general when z € 0Cy N O is only assumed to be a critical point, and is
hence a saddle point, of f. To this end, let us consider, in the canonical basis (e;,ey)
of R?, the Morse function

(x,y) =y° —a°,

whose only critical point in R? is 0 and is a saddle point. Let us then introduce the

two vectors

1
u= ﬁ(ex —ey) and v = ﬁ(ex +ey).
In the orthonormal basis (u,v), the function 1 writes ¥(u,v) = —2uv. Hence, defining

the smooth curve
I':= {p = (u,u?) in the basis (u,v),u € R} (see Figure[3),

it holds |r : p = (u,u?) € T = —2u? and 0 is then not a local minimum of f|r. In
particular, if, in a neighborhood of 0 in R2, 0Q coincides with T' and Q is chosen such
that nq(0) = v, and if f = 1, then, locally around 0 in Q, {f < 0}N{x < 0} is a
connected component of { f < 0} included in Q such that {f < 0} N {z < 0}NON = {0}
but 0 is not a local minimum of flaq (see Figure[3).

{¢ >0} r
\\\\ ,', -__{wzo}

A
.
. 4 .
ey,

N

\\ v
{v < 0} i< —
/,, 0 v

o {e<o)

N
’
4 N

i > 0)

Figure 3: The function 1 and the curve I' in a neighborhood of 0 in R2.

When [(H1)| holds, one adapts the definition of a separating saddle point of f in 2
given in Definition [I0] to our setting by: i) only considering the relevant elements of
UTP(Q) for our study, and ii) taking into account the points in yi\lzll 0C; N 02 which
are, according to Remark T8l geometrical saddle points of f in €2. Note in particular
that with this definition of U (Q) given below, it does not hold U (Q) c UTP(Q)

in general.

Definition 17. Let f : @ — R be a C™ Morse function satisfying [(H1)| and let
Ci,..-,Cin, be its principal wells defined in Definition [7.
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1. A point z € Q is a separating saddle point of f in Q if

N1 Nl
either z € U (mﬂ U?p(Q)) , orz € U (8(:171? N 8(2).
k=1 k=1

Notice that in the first case z € Q whereas in the second case z € 0. The set

of separating saddle points of f in Q is denoted by UTP(Q).

2. For any o € R, a connected component C of the sublevel set {f < o} in € is
called a critical connected component of f if 0C NUTP(Q) # 0. The family of
critical connected components is denoted by Cepiz.

Equation (28]) and item 1 in Definition[[7limply that the principal wells (C1 ¢)seqi,...... Ny}
are critical connected components, as stated in the next corollary. This will be used
in the first step of the construction of the maps j and C;.

Corollary 18. Let f : Q@ — R be a C® Morse function satisfying [(H1)| Then, it
holds:
forall 0 € {1,...,N1}, 9Cy,NUTP(Q) £ 0.

3.3 Construction of the maps j and G

Let us now construct the maps j and C;, which respectively associate each local min-

imum of f in  with a set of UT(2) and with an element of C.i (see Definition [I7T).
We closely follow the presentation of [I0, Section 2.4] in the case when f does not
have any critical point on the boundary and f|sq is a Morse function and which was
inspired by [19] in the case without boundary.

Let us assume that f : Q — R is a C°° Morse function satisfying [(H1)| (and thus
such that Uy # 0).) The maps j and C; are then defined recursively as follows.

1. Initialization (¢ = 1). Let us consider the principal wells Cy 1,...,Cin, of f
in Q (see Definition [7).

For every ¢ € {1,...,N1}, let us choose

x1, € argmin f.
Cie

Then, for all £ € {1,...,N;}, one defines

k1e:=max f, Cj(z1e) = Ciy, and j(z1,) := 0Cy NUTP(Q). (40)

Cie

From Definitions [@ and [0, 0Cj(z1¢) C {f = k1) for all £ € {1,...,N1}. Accord-
ing moreover to Corollary I8, one has j(zi,) # 0 for all £ € {1,...,N;} and thus,
Ci(z1,¢) € Cerit (see item 2 in Definition [7). Finally, it holds from (23,

Ve#qe{l,...,Ni}? 9C1,NICy, C UTP(Q).

2. First step (¢ = 2).

25



From item 2 in Proposition [T}, for each ¢ € {1,...,Ny}, C; yNUg # {z1 ¢} if and only
if UTP(Q) N Cy e # 0. Consequently, one has:

Uisp(Q) ﬂ (UZN:ll CI,Z) 7& @ iff {xLl, . 7.%'17N1} 7é UO-

If UTP(Q)N < Uy, CLZ) = () (or equivalently if N; = mq), the constructions of the

maps j and Cj are finished and one goes to item 4 below. If UTP(Q) N <Ul'>|:11C17g) # 0,
one defines

Ko 1= max flx) € < min f, max /iM).
zeUP @) N (UM, Cy) Upt Cp,p €N}

The set

N1

U (CLg N {f < KQ})

/=1
is then the union of finitely many connected components. We denote by Ca1,...,Can,
(with Ny > 1) the connected components of U?':ll (Ce N {f < K2}) which do not
contain any of the minima {x11,...,2;n,}. From item 2 in Proposition [l (applied

for each £ € {1,...,N;} with C=C; N {f < K2} there) and item 2 in Definition 7]
\2AS {15 KR N2}a CQ,@ € Ccrit-

Let us mention that the other connected components (i.e. those containing
the points {x11,..., 21N, }) may be not critical. For each 1 < ¢ < Ny, one then con-
siders an element o ¢ arbitrarily chosen in arg minm f=arg ming, , f (the equality
follows from 0Cqop C {f = k2}) and one defines:

Cj(wo,) = Cop and j(woy) := 0Cap NUTP(Q) (# 0) C UTP(Q) N {[ = ra}.
3. Recurrence (g > 3).

If all the local minima of f in 2 have been labeled at the end of the previous step,
ie. if U?:1{xj,17 .szjN,; } = Ug (or equivalently if Ny 4+ N2 = mg), the constructions
of the maps C; and j are finished, all the local minima of f have been labeled and
one goes to item 4 below. If it is not the case, from item 2 in Proposition [I1] there
exists m € N* such that

N1
for all g € {2,...,m+ 1}, U@ (U (cM n{f < mq}) £0, (41
/=1

where the decreasing sequence (kq)q=3,....m+2 is defined recursively by

Kq = max flz) € ( min f, mq,l).
€U @ MU, (Coen{f<rg-1}) UYL, Cue

Let now m* € N* be the largest m € N* such that (Il holds. Notice that m* is well

defined since the cardinal of UT™(Q) is finite. By definition of m*, one has moreover:

N1
@ U (Cl,é n{f< Hm*+2}) = 0. (42)
=1
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Then, one repeats recursively m* times the procedure described above defining

(CZ,K’j(xQ,K)? C_] (x275))1§2§N2 : for q € {2, s ,m* + 1}5 one defines (Cq+1,ﬁ)€€{1,...,Nq+1}
as the set of the connected components of

CJ <C1,z n{f< qu+1}>
=1

which do not contain any of the local minima ngl{ﬂ?j,l, . ,a:j7|\|j} of f in Q which
have been previously labeled. From items 1 and 2 in Proposition [[T] (applied for each
te{l,...,Ni} with C=Cy N {f < Kgy1} there),

V€ S {17 ceey Nq+1}7 Cq+17g € CCT‘it-

For £ € {1,...,Ngq1}, we then associate with each C4y1, one point x4, arbitrarily

chosen in arg mimcq+ ., J and we define:

Ci(wgy1,0) := Cyp1e and j(zgq1,) := 0Cqr1,0N UTP(Q) (# 0) C {f = Kg1}-

From ([#2]) and item 2 in Proposition Il Uy = Ugfz{xﬂ, -.szjN, }- Thus, all the
local minima of f in  are labeled. This finishes the constructions of the maps j and
C;. We refer to Figures 8 and 9 in [10] to illustrate these constructions.

4. Properties of the maps j and C;.

Let us now give important features of the map j which follow directly from its con-
struction and which will be used in the sequel. Two maps have been defined

G : Up—Ceir and j : Uy — P(USP(Q)) (43)

which are clearly injective. For every z € Ug, the set j(z) is the set made of the
separating saddle points of f in Q on 0Cj(z). Notice that the j(z), x € Ug, are not
disjoint in general. For all x € Uy, the set f(j(z)) contains exactly one value, which
will be denoted by f(j(z)). Moreover, for all € Uy, it holds

f((@)) = f(x) > 0. (44)

Since UgN:llCl,g C Q (see the first statement in (27))), one has Cj(z) C Q for all z € U.
Moreover, only the boundaries of the principal wells can contain separating saddle
points of f on 012, i.e.:

Vo € Up\ {z11,..., 21N, ) §(z) C UTP(Q) (see Definition [I0). (45)

In addition, for all z,y € Ug such that z # y, since by construction j(y) N j(z) =
0C;(y) N 9C5(x) (see (29)), one has two possible cases:

(i) either j(z) N j(y) = 0, in which case either Cj(y) N Cj(z) = 0 or, up to inter-
changing x with y, C;(y) C Cj(z),

(ii) or j(z) N j(y) # 0, in which case f(j(z)) = f(j(y)) and the sets Cj(x) and C;(y)
are two different connected components of {f < f(j(x))}.
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Finally, for all £ € {1,...,N1} and all € Ug N Cj(x1) \ {x1,¢}, note that

f@) = flere), fG(2) < f((z1e)) and then f(j(z)) — f(x) < f(i(z10)) = f@10)-

Let us also mention that the maps j and Cj are not uniquely defined as soon as
there exists some Cy ¢, k> 1, £ € {1,...,Ng}, such that f has more than one global
minimum in C; . However, this non-uniqueness has no influence on the results proven
below (in particular Theorems [2 and [3]).

Remark 19. The relevant wells of the potential f for our study are the sets Cj(x),
x € U, and the elements of C (see Definition[7) are called the principal wells of f in
Q since, for any x € Uy, Cj(x) is either an element of C or a subset of an element of C.

Let us end this section with the following result which will be used in the proof of
Proposition B3] below.

Lemma 20. Let us assume that f : Q@ — R is a C° Morse function which satis-

fies |[(H1) Let (Cj(x))zecu, be as defined in ([3) and let k > 1. Let us consider, for
some m > 1, {Cl, e ,Cm} C {Cj(azhl), cen Cj($k,Nk)} such that

Uy, C% is connected, and
for all C € {Cj(xk71),. .. ,Cj(xk,Nk)} \ {Cl, .. .,Cm}, cn Uzﬂzl Ct = 0.

Then, there exist £y € {1,...,m} and z € UTP(Q) such that
2 e aCh\ (ug;lwg acf). (46)

Proof. Let {Cl, .. ,Cm} be as in Lemma 20

When k = 1, the set {Cj(z1,1),...,Cj(x1,n,)} is the set of the principal wells of f, i.e.
the set C of Definition [7, and the proof of Lemma M6 follows exactly the same lines
as the proof of [10, Lemma 21].

Let us now consider the case when k > 2. Let us first notice that according to the
construction of the maps j and Cj, for all £ € {1,...,m}, C’ is a connected component
of {f < Ky} which has been labelled at the k-th iteration. Since |J;-, C? is connected,
there exists ¢ € {1,...,N;} such that (JJ", C* € C1, = {f < K14}, where, since k >
2, Ky < K14 Since, from Corollary [[8 it holds () # 9Cy , NUTP(Q) C {f = K14}, one
can define k* € (Kg, K1,¢] as the minimum of the A € (K, k1 4] such that the connected
component of {f < A} N Cy, containing U’szlﬁ is critical (see Definition [I7)). We
then define C* as the connected component of {f < x*} N Cy 4 containing J;", [«
By definition, C* is critical, and, from the construction of the maps j and C;, it thus
holds:

C Uiz, i} # 0. (47)

Moreover, since all the C%s are critical, and thus C* N U$*P(Q) # 0, the definitions
of k* and C* together with item 2 in Proposition [[1l applied to C = C* imply that

pe = max  f(y),
yeC*NUTP(Q)
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where we recall that ki < k*. Therefore, using again item 2 in Proposition [[1] with
C=C
{f <k} NC" is connected and C*NUyC {f <k}, (48)

where the first claim follows from the fact that, for every A € (K, k*), C*N{f < A}
is connected.

To prove (@), one argues by contradiction assuming that (46) is not satisfied. It
then follows from the local structure of the sublevel sets of a Morse function given in
Lemma [ that there exists some open set O C Q2 such that O N {f < ki } = Uy~ ct
(see, in [10], the arguments used to prove Equation (50) there for more details). In
other words, the connected set U?Llﬁ is open in {f < ki} and thus, since it is
closed and then closed in {f < ki}, it is a connected component of {f < ki}. It
thus follows from (@S] that {f < kx} NC* = U’szlﬁ contains all the local minima
of fin C*. According to (1), this implies, since |J;~, OCY does not contain any
local minimum of f, that at least one of the C%s, ¢ € {1,...,m}, does intersect
Uf;ll{:cj,l, -.»zjnN,; }. This leads to a contradiction since the Chs (0 € {1,...,m})
are labelled at the k-th iteration (k > 2) and thus, each C* (¢ € {1,...,m}) does not
intersect U?;ll{xM, .-»2jN, }- This concludes the proof of Lemma 1

4 Quasi-modal construction

The aim of this section is to construct, for every € Up, a quasi-mode 1, associated
with z, or more exactly with C;j(x), and whose energy in the limit A — 0 will be
shown to give the asymptotic behaviour of one of the my first eigenvalues of A?’ 5 s
exhibited in Theorems Pf] and 2

More precisely, our quasi-modes (¢3)zcu, are built as suitable normalisations of aux-
iliary functions (¢z)zeu,, which are first explicitly constructed in a neighborhood of
the elements of j(z) C €, and then suitably extended to Q. This construction is
partly inspired by the construction made in [9] when Q = R?, see also [5,22,[32]. We
also refer to [TIL[16]17,[19L24,27,29] for related constructions.

This section is organized as follows. In Section 1], one introduces adapted coordinate
systems in a neighborhood of the elements of j(x), where x € Uy, which then permit
in Section to construct the auxiliary functions ¢, in a neighborhood of j(z). The
functions (¢z)zeu, and (z)zcu, are then defined in Section [£.31

Before, let us introduce the following assumption which will be used throughout the
rest of this work.

Assumption (H2). The function f : Q — R is a C™ Morse function such that Uy #
0. Moreover, for all z € Ug;l 0Cy N0 (see Definition[7) such that |V f(z)| # 0 (we

recall that in this case, z is a local minimum of f|sq by item (a) in Proposition [12),

z 1s a non degenerate local minimum of flaq (49)
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When f satisfies the assumptions [(H1)| and [(H2)] it holds

N1
Card( U 9Cy,NON) < oo and then Card( U J(,I)) < 0. (50)
k=1 x€Ug

Indeed, Card(Uggeuoj(x) N Q) < oo since Ureu, J(#) N2 is composed of non degen-
erate saddle points of f in € (see the construction of the map j in Section B.3] and
Definition [[0)) and, according to item (b) in Corollary [[4] and to (49]), the elements of

N1
U jx)no = U 0Cy N O are non degenerate local minima of flapn. (51)
zeUg k=1

In the rest of this section, one assumes that f : Q — R is a C°° Morse function which
satisfies the assumptions [((H1)|and [(H2)|

4.1 Adapted coordinate systems

Let us recall that for any = € Ug, from the construction of the map j made in Sec-
tion 3.3l and from [(H1)H(H2)] j(x) contains saddle points of f in  (see Definition [I7))
which are in finite number and may be of two kinds: the elements z € j(x) N 99,
such that either |V f(2)| # 0 or [V f(z)| = 0, and the elements z € j(x) N2, such that
IVf(z)] = 0.

For any = € Up and z € j(z), we first construct a coordinate systems in a neighborhood
of z as follows.

1.a) The case when z € 9 and |V f(z)| # 0.

Let us recall that, thanks to [(H2)| z is in this case a non degenerate local minimum
of flaa and that p := Oy, f(2) > 0. Then, according for example to [I7, Section 3.4],
there exists a neighbourhood V., of z in Q and a coordinate system

peV.—uv=(,v9) = (v1,...,09-1,v4) € R x R_ (52)
such that
v(z) =0, {peV,,vip) <0} =NV, {peV,,vip)=0}=00NV,, (53)

and

Vi, je{1,...,d}, gz(%(z), (%J(Z)) =¢;; and (%d(z) = nq(z2), (54)

with moreover, in the v coordinates,
1
F(v'va) = £(0) + pva + 5 (/) " Hess £y, (0) v'. (55)

For 6; > 0 and Jo > 0 small enough, one then defines the following neighborhood of z
in 012,
Vi (2) i= {p € V2, va(p) = 0 and [v/(p)| < 62} (see (B2)-(53)) (56)
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and the following neighbourhood of z in €,
V%’62(2’) = {p e V., |V (p)| < 62 and v4(p) € [-261,0]}. (57)

1.b) The case when z € 9Q and |V f(z)| = 0.
Let V. be a neighborhood of z in € and let

peV,v=(v,vg) ERTI xR_ (58)
be a coordinate system such that
v(z) =0, {pe V., vi(p) <0} =NV, {peV,,vlp) =0}=00NnV,, (59)

and

Vi, je{1,...,d}, gz(%(z), %(2’)) =¢;; and Bivd(z) =nq(z). (60)

Let us also recall that z is a non degenerate saddle point of f in 02 such that,
according to no(z) is an eigenvector associated with the negative eigenvalue py
of Hess f(z). Thus, denoting by puq, ..., pug—1 the positive eigenvalues of Hess f(z), the
coordinates v' = (v1,...,v4_1) can be chosen so that it holds, in the v coordinates,

d d—1

1 1 1

F) = J0)+5 3 w2 +O(uf) = FO)+5 3 lugl? 2 lual 03 +0(wl?) . (61)
i=1 i=1

Therefore, up to choosing V, again smaller, one can assume that

arg min (f(v) + [ualvd) = {=}- (62)

A

For ;1 > 0 and d2 > 0 small enough, one defines the following neighborhood of z
in 09,
Vii(2) i= {p € V2, va(p) = 0 and [v/(p)| < &5} (see (BR)-(EI)), (63)

and the following neighbourhood of z in €,
V2 () = {p € V., [v/(p)| < 62 and va(p) € [~201,0]}. (64)

2. The case when z € Q.

Let us recall that in this case z is a non degenerate saddle point of f in . Let
(e1,...,eq) be an orthonormal basis of eigenvectors of Hess f(z) associated with its
eigenvalues (p1,. .., tq) with pg < 0 and, for all j € {1,...,d — 1}, p; > 0. Then,
since ey is normal to W, (z), as in the case when z € 99 and |V f(z)| = 0 and up to
replacing e; by —ey, there exists a coordinate system

peV.—v=(,v)eR xR (65)
such that

v(z) =0, Cj(x)NV, C {p € Vs, va(p) < 0}, {p € Vs, va(p) = 0} = W, (2)NV., (66)
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and
0 0

Vi,j €{1,...,d}, gz(a—vi(z), 8—?)](2)) =0;; and ——(z) = ey, (67)

with moreover, in the v coordinates,

d d—1
F0) = FO)+5 Dm0 +O(el) = F0)+5 3 sl v = 3 lnal o3+ O(IeP). (69)

J=1 J=

Then, up to choosing V, smaller, one can assume that

arg\/lrlin (f(0) + |palvg) = {z}. (69)

Then, for 6; > 0 and J2 > 0 small enough, one defines the following neighbourhood

of z in WT(2) (see (65) and (66])),
V%Jr(z) = {p € VZ7 Ud(p) =0 and ’U,(p)’ < 52} - W+(Z)7 (70)

and the following neighbourhood of z in €,

V%’62(Z) = {p e V., [V (p)] <y and vy € [—251,251]}. (71)
Notice that one has:
argmin f = {z}. (72)
VeZ, (2)

Some properties of these coordinate systems.

The sets defined in (&7), ([64]), and (7)) are cylinders centred at z in the respective
system of coordinates. Up to choosing d; > 0 and do > 0 smaller, one can assume
that all these cylinders are two by two disjoint. Schematic representations of these
sets introduced in (BO)—(TI]) are given in Figures @ [l and [6

Let us conclude this section by giving several properties of the sets previously intro-
duced which will be needed for upcoming computations. Let us recall that, from (44,
when z € j(x) for some x € Uy, it holds f(z) > f(z). Moreover, by construction of
the map j in Section B3] it obviously holds Uy N Uzey,j(x) = 0. Therefore, up to
choosing §; > 0 and ds > 0 small enough, the following properties are satisfied:

1. When z € 92N j(x) for some x € Uy, it holds

min f> f(z), V2?2(z)nUy =0, (73)
RIS “
Q
and
argmin f = {z} (which follows from (&1I)). (74)
Vaa(2)

2. When z € QN j(z) for some = € Uy, it holds:

min f > f(z) and VO (2) NUg = 0. (75)

§1,62
Vﬁ (2)
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The parameter do > 0 is now kept fixed. Finally, using (72)), (74]), and up to choosing
01 > 0 smaller, there exists r > 0 such that (see Figures @] bl and [@)):

1. For all z € 00 N j(z) for some = € Uy,
{p e V=, [v'(p)| = 02 and va(p) € 261,01} < {f = f(z) +r}.  (76)
2. For all z € QN j(z) for some = € Uy,

{p e V.,|v'(p)| = &2 and vy € [-261,261)} C {f > f(2) +7}. (77)

The parameter d; > 0 is now kept fixed.

/

>7G@Dy 26
________ ~-‘~~§~ V%l’62(2) N {"Ul|:(52 and 'Ude[_25170}}
- {f = fG@))}
G(=) ’Z v
{F<s6@} |~ 2
{f>rG=)}
o0

Figure 4: Schematic representation of the cylinder V%’(SQ(Z), in the v-coordinates,
when z € j(x) N OQ (for some x € Up) is such that |V f(z)| # 0. One
recalls that j(x) C 0C5(x) and that, in this case, z is a non degenerate local
minimum of flaq and On, f(z) > 0.

4.2 Quasi-modal construction near the elements of U,cy,j()
Let us introduce an even cut-off function xy € C*°(R, [0, 1]) such that

01 0
supp x C [—d1,01] and x =1 on [—51,51} (78)

Let 2z € Ugey,J(®). Then, the function ¢, associated with 2 and = is defined as

follows:

1. Let us assume that z € 99).
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) 26,
N — {[V'| = d2 and vy € [-261,0]}
e V() - {f=fG)}
Q \\\\
|,
Cj(z) —e Vg
{f < 16N} 7 5
{f>fG@)}
o0

Figure 5: Schematic representation of the cylinder V%’éQ(z), in the v-coordinates,
when z € j(z) N OQ (for some z € Ugy) is such that |Vf(z)] = 0. One
recalls that j(x) C 0Cj(x) and that, in this case, z is a non degenerate

saddle point of f and a non degenerate local minimum of f|aq.

v
A= g6}y,
— {|V/| = 6y and v € [~261,26,]}
Ve Lo o AF =16}
Ci(a) - v
{F < 56N}, 4~ S = IUED)
{7 > £G))}
W (2)

Figure 6: Schematic representation of the cylinder V%’éQ(z), in the v-coordinates,

when z € j(x)NQ for some x € Ug. One recalls that j(x) C 0C;(x) and that,
in this case, z is a separating saddle point of f in Q (see Definition [10).

(a) When |V f(z)| # 0, one defines (see (52)), (53)), and (E7))):
S x(terntat
ffzal X(t)e%“tdt’

where we recall that y = On, f(2) > 0. Note that the function ¢, only

Yo = (v,vg) € v(V%’é2 (z)), 0. (v, vg) ==
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depends on the variable vy. Moreover, it holds (see (78))),

0. € C(v(V2%(2)), [0, 1]) and
{ V(' vg) € ( %1’62 (z ), 0. (V' vg) = 1if vg € [—201, —d1]. (80)
(b) When |V f(z)| = 0, one defines (see (58), (59), and (©4)):
0 y(t)e nlmalt® gt
Vo = (v, vg) € v(V%’(SQ(z)), 0. (v, vg) == fvd xX®) (81)

fSZ(Sl X(t) e_%lﬂ/dthdt’

where we recall that pg < 0 is the negative eigenvalue of Hessf(z). The
function ¢, thus only depends on the variable vg and it holds

{ 0. € C(uv(V2%(2)), [0, 1]) and

82
V(v vg) € v(Vﬁl’(SQ(z ), p=(v/,vg) = 1if vg € [-261, —61]. (82)

2. Let us assume that z € ). We recall that in this case, z is a separating saddle
point of f in © (by construction of the map j, see also Definition [I0). Then,
one defines the function (see (63]), ([€6), and (71))):

261 X(t) 6_%|Md‘ tht
fgisl X(t) e~ wleal® gy’

Vo = (v',vq4) € v(V%’62(z)), 0. (v, vg) == (83)

where 4 is the negative eigenvalue of Hess f(z). Again, ¢, only depends on
the variable vy and it holds:

e =010, 1) o
and for all (v/,vg) € 1)(V%1’62 (2’))7

0. (v, vq) = 1 if vg € [-261, —01] and @, (v, vg) =0 if vg € [01,261].  (85)

4.3 Construction of my quasi-modes for A?h

In the following, one considers some arbitrary
x € Ug.

Let us recall the geometry of f near the boundary of the critical component 9C;(x).
Let us consider a point p € 9C;(x) \ j(x). Since j(z) = C;(z) NUTP(Q) and C;(z)N
90 C j(z), p € Q\ UTP(Q). Thus, there are two possible cases:

e Either p is a saddle point of f in Q. From Lemmal[d {f < f(j(x))} N B(p,r) has
then, for 7 > 0 small enough, two connected components which are included
in Cj(x), since p is not separating (see Figure [§).

e Or p is not a saddle point of f in Q. According to Lemma @ {f < f(j(z))} N
B(p,r) is then connected for 7 > 0 small enough and is thus included in Cj(z).
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In conclusion, when p € 0C;(x)\ j(z), {f < f(j(z))} N B(p,r) is included in Cj(x) N2
for r > 0 small enough. Moreover, one constructed in (57), (64]), and (71), disjoint
cylinders in neighborhoods of each z € Uycy,j(y) which satisfy (Z3) and (Z2)-(Z0).

This makes possible the construction used in the definition below.

Definition 21. Let f : Q@ — R be a C® Morse function which satisfies [(H1)|
and [((H2)| Then Uy # 0 and, for each x € Ug, there exist two C™ connected open
sets Qi(x) and Qa(x) of Q satisfying the following properties:

1. For all x € Ug, it holds

Ci(z) C Q(x) U0 and argmin f = argmin f.
Q1 (z) Cj(x)

2. For all z € Uy, Qa(z) € Qi(z) and the strip Qi(z) \ Qz(z) equal:

@)\ @) = |J Ve [ 0i@), (86)

z€j(w)

where there exists ¢ > 0 such that:

Vg € O1(z), flg) = f((z)) +c (87)

Notice that item 1, B8], (87), and the first statements in ([(3) and in (T5) imply
that argmin f = argmin f = argmin f.
Q1 (z) Q2 (z) Cj (@)

3. For all x,y € Uy such that x # vy, it holds (depending on the two possible cases
described in items 4.(i) and 4.(ii) in Section[3.3):

(i) If j(y) N j(z) = 0:
{ ez’therw N CJ-( z) =0 and Qi (z)NQ(y) :0

or, up to switching x and y, C;(y) C Cj(x) and Q1 (y) C Qa(x).

(it) If j(y) N j(z) # O (in this case, one recalls that f(j(y)) = f(j(x)) and
thus, Ci(y) and Cj(x) are two connected components of {f < f(j(x))}),
then:

e N = U va©e U o),

2€j(y) Nj(2)
where Oy(z,y) C O1(x) and Oz(z,y) DV%’52 (2) =0 for all z € j(y) U j(x).
For z € Uy, schematic representations of Q;(x), Qa(x), and O;(x) are given in Fig-

ures [l and [8l With the help of the sets Q;(x) and Qa(x) introduced in Definition 2]

one defines a smooth function ¢, : Q — [0, 1] associated with each z € Uy as follows.

Definition 22. Let f : Q@ — R be a C* Morse function which satisfies [(HL)|
and [(H2). For each x € Ug, a function ¢, : Q — [0,1] is constructed as follows:
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1. For every z € j(x), ¢ is defined on the cylinder V%’62 (2) (see [@0), ©4), and

) by

Vp € V(5§1’52(2)7 oz(p) == . (v(p)), see @), ), and B3). (88)

2. From [80), 82), B4), [B5), and the facts that Qa(x) C Qq(z) (see Definition[Z1])

and ([86)) holds, ¢, can be extended to Q such that

e =0 on Q\ Q(x), ¢r=1o0nQ(x), and ¢, € C(Q,[0,1]). (89)

Notice that (89) implies that:
suppdey C N (x) \ Qo(z).

(90)

Finally, in view of ([[9), 1), 83), and (80), ¢, can be chosen on Oy such that
for some C > 0 and for every h small enough (see indeed (Q9)), (I05]), and (I09)

below):
C
Va € N, |a| € {1,2}, | 3
W* (1)
{f> 16} 2 {f>16@)} Q)

\ Zl///, .

{r< f(J(l“))%’ 2L Gl %

0 f> f(j(w)-)_m
V51,52( ) {f > f(.](x))} ( { }

Ql(ﬂf)

(91)

o0

41,0
e VAR ()

Figure 7: Schematic representation of Qa(x), Q1(x), and Oq1(x) (see Definition [21]).
On the figure, j(z) = {z1, 22} with z1 € Q and z € 0Q (|Vf(z2)| =0).

Let us now define, for each = € Uy, the quasi-mode 1, : Q — RT of A?h as follows.

Definition 23. Let f : Q@ — R be a C® Morse function which satisfies [(HL)|

and |(H2)| For every x € Uy, one defines

 Qze”
g = Z

>~

and Zy = H¢x e_%HB(Q)’

where ¢y s the function introduced in Definition [22.
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{f> fi)}

Figure 8: Schematic representation of O1(x) (see (7)) in a neighborhood of a non
separating saddle point z of f on 0C;j(x).

By construction of ¢, in Definition B2 v, € C*°(Q,R") and ¢, = 0 on 9Q (see
indeed (89) together with the fact that Q;(x) C Q, see Definition [21]). In particular:

e € D(AY)) = H*(Q) N Hy(Q). (92)

5 Asymptotic equivalents of the small eigenvalues of A? L
5.1 First quasi-modal estimates

Let us start