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Small eigenvalues of the Witten Laplacian with Dirichlet

boundary conditions: the case with critical points on the

boundary

Dorian Le Peutrec∗ and Boris Nectoux †

Abstract

In this work, we give sharp asymptotic equivalents in the limit h → 0 of the

small eigenvalues of the Witten Laplacian, that is the operator associated with

the quadratic form

ψ ∈ H1

0 (Ω) 7→ h2
∫

Ω

∣∣∇
(
e

1

h
fψ

)∣∣2 e− 2

h
f ,

where Ω = Ω ∪ ∂Ω is an oriented C∞ compact and connected Riemannian man-

ifold with non empty boundary ∂Ω and f : Ω → R is a C∞ Morse function. The

function f is allowed to admit critical points on ∂Ω, which is the main novelty

of this work in comparison with the existing literature.

Keywords: Witten Laplacian, overdamped Langevin dynamics, semiclassical

analysis, metastability, spectral theory, Eyring-Kramers formulas.
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1 Introduction

1.1 Setting

Let (Ω, g) be an oriented C∞ compact and connected Riemannian manifold of di-

mension d with interior Ω and non empty boundary ∂Ω, and let f : Ω → R be a

C∞ function. Let us moreover denote by d the exterior derivative acting on functions

on Ω and by d∗ its formal adjoint (called the co-differential) acting on 1-forms (which

are naturally identified with vector fields). For any h > 0, the semiclassical Witten

Laplacian acting on functions on Ω is then the Schrödinger operator defined by

∆f,h := d∗f,hdf,h = h2∆H + |∇f |2 + h∆Hf ,

where ∆H = d∗d is the Hodge Laplacian acting on functions, that is the negative of

the Laplace–Beltrami operator, and

df,h := h e−
f
hd e

f
h and d∗f,h = h e

f
hd∗ e−

f
h

are respectively the distorted exterior derivative and co-differential. This operator

was originally introduced by Witten in [42] and acts more generally on the algebra of

differential forms. Note also the relation

∆f,h = h e−
V
2h

(
h∆H +∇V · ∇

)
e

V
2h where V = 2f, (1)

where the notation ∇V · ∇ stands for g(∇V,∇·). It is then equivalent to study the

Witten Laplacian ∆f,h acting in the flat space L2(Ω) = L2(Ω, dVolΩ) or the weighted

Laplacian

LV,h := h∆H +∇V · ∇ = d∗V,h d
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acting in the weighted space L2(Ω, e−
V
h dVolΩ).

Let us now consider the usual self-adjoint Dirichlet realization ∆D
f,h of the Witten

Laplacian ∆f,h on the Hilbert space L2(Ω). Its domain is given by

D
(
∆D
f,h

)
= H2(Ω) ∩H1

0 (Ω),

where, for p ∈ N
∗, we denote by Hp(Ω) the usual Sobolev space with order p and

by H1
0 (Ω) the set made of the functions in H1(Ω) with vanishing trace on ∂Ω. We

refer for instance to [35] for more material about Sobolev spaces on manifolds with

boundary. The operator ∆D
f,h has a compact resolvent, and thus its spectrum σ(∆D

f,h)

is discrete. This operator is moreover nonnegative since it satisfies:

∀ψ ∈ D
(
∆D
f,h

)
, 〈∆D

f,hψ,ψ〉L2(Ω) = ‖df,hψ‖2Λ1L2(Ω) = h2
∫

Ω
|d(e f

hψ)|2e− 2f
h , (2)

where Λ1L2(Ω) denotes the space of 1-forms in L2(Ω) and ‖df,hψ‖2Λ1L2(Ω) =
∫
Ω |df,hψ|2.

Let us also mention here that the (closed) quadratic form Qf,h associated with ∆D
f,h

has domain H1
0 (Ω) and satisfies, for every ψ ∈ H1

0 (Ω),

Qf,h(ψ) := Qf,h(ψ,ψ) = ‖df,hψ‖2Λ1L2(Ω) = h2
∫

Ω
|dψ|2+

∫

Ω

(
|∇f |2+h∆Hf

) ∣∣ψ
∣∣2 . (3)

Remark 1. From standard results on elliptic operators, the principal eigenvalue of

∆D
f,h, which is positive since e−

f
h /∈ H1

0 (Ω) (see (2)), is moreover non degenerate and

any associated eigenfunction has a sign on Ω (see for example [12,15]).

1.2 Spectral approach of metastability in statistical physics

The operator LV,h = 1
h
e

f
h ∆f,he

− f
h , where we recall that V = 2f (see (1)), is the

infinitesimal generator of the overdamped Langevin process

dXt = −∇V (Xt)dt+
√
2h dBt (4)

which is for instance used to describe the motion of the atoms of a molecule or the

diffusion of impurities in a crystal. When the temperature of the system is small,

i.e. when h ≪ 1, the process (4) is typically metastable: it is trapped during a long

period of time in a neighborhood of a local minimum of V , called a metastable region,

before reaching another metastable region.

When one looks at the process (4) on a metastable region Ω with absorbing bound-

ary conditions, the evolution of observables is in particular given by the semigroup

e−tL
D
V,h , where LDV,h := 1

h
e−

f
h ∆D

f,he
− f

h is the Dirichlet realization of the weighted

Laplacian LV,h in the weighted space L2(Ω, e−
V
h dVolΩ), see (1). A first description of

the metastability of the process (4) with absorbing boundary conditions is then given

by the behaviour of the low-lying spectrum of the Dirichlet realization ∆D
f,h of the

Witten Laplacian in the limit h → 0. The metastable behaviour of the dynamics is

more precisely characterized by the fact that the low-lying spectrum of ∆D
f,h contains

3



exponentially small eigenvalues, i.e. eigenvalues of order O(e−
c
h ) where C > 0. The

first mathematical results in this direction probably go back to the works of Freidlin-

Wentzell in the framework of their large deviation theory developed in the 70’s and

we refer in particular to their book [14] for an overview on this topic. In this context,

when λh is some exponentially small eigenvalue of ∆D
f,h, the limit of h lnλh has been

investigated assuming that (see [14, Section 6.7])

|∇f | 6= 0 on ∂Ω. (5)

The results of [14] imply in particular that, when ∂nf > 0 on ∂Ω and Ω contains a

unique critical point of f which is non degenerate and is hence the global minimum

of f in Ω, the principal eigenvalue λ1,h of ∆D
f,h satisfies

lim
h→0

h lnλ1,h = −2 (min
∂Ω

f −min
Ω
f) .

The asymptotic logarithmic behaviour of the low-lying spectrum of ∆D
f,h has also been

studied in [28] dropping the assumption (5). When f and f |∂Ω are smooth Morse

functions and (5) holds, precise asymptotic formulas in the limit h → 0 have been

given by Helffer-Nier in [17] where they prove in particular that under additional

generic hypotheses on the function f , any exponentially small eigenvalue λh of ∆D
f,h

satisfies the following Eyring-Kramers type formula when h→ 0:

λh = Ahγ e−
2
h
E
(
1 + ε(h)

)
, (6)

where A > 0, E > 0, and γ ∈ {1
2 , 1} are explicit, and the error term ε(h) is of the

order O(h) and admits a full asymptotic expansion in h. The constants E’s involved

in (6) are the depths of some characteristic wells of the potential f in Ω. The results

of [17], obtained by a semiclassical approach, were following similar results obtained

in the case without boundary in [5,6,20,30] by a probabilistic approach and in [16] by

a semiclassical approach. We also refer to [19, 29] for a generalization of the results

obtained in [16] in the case without boundary (see also [2, 3, 22] for related results),

to [11]1 for a generalization of the results obtained in [17] in the case of Dirichlet

boundary conditions (see also [4, 26, 27, 32] for related results), and to [24, 28] in the

case of Neumann boundary conditions. Finally, we refer to [1,25] for a comprehensive

review on this topic.

1.3 Motivation and results

Motivation. These past few years, several efficient algorithms have been designed

to accelerate the sampling of the exit event from a metastable region Ω, such as for

instance the Monte Carlo methods [7, 13, 33, 34, 40, 41] or the accelerated dynamics

algorithms [37–39]. These algorithms rely on a very precise asymptotic understanding

of the metastable behaviour of the process (Xt)t≥0 in a metastable region Ω when

h → 0, and in particular on the validity of Eyring-Kramers type formulas of the

1This work corresponds to the first part of the preprint [10].
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type (6) in the limit h→ 0. Moreover, though the hypothesis (5) considered in [11,17]

is generic, in most applications of the accelerated algorithms mentioned above, the

domain Ω is the basin of attraction of some local minimum of f for the dynamics

Ẋ = −∇f(X) so that the function f admits critical points on the boundary of Ω.

In this work, we precisely aim at giving a precise description of the low-lying spectrum

of ∆D
f,h in the limit h→ 0 of the type (6) in a rather general geometric setting covering

the latter case (though we assume Ω to have a smooth boundary). This establishes the

first step to precisely describe the metastable behaviour of the overdamped Langevin

process (4) with absorbing boundary conditions in Ω when ∂Ω contains critical points

of f . Let us also point out that, though the spectrum of ∆D
f,h (or equivalently of LDV,h)

has been widely studied these past few decades, up to our knowledge, this setting

has not been treated in the mathematical literature. Our techniques come from

semiclassical analysis and, in Section 1.4 below, we detail various difficulties arising

when considering critical points of f on ∂Ω with such techniques.

Results. We recall that we assume that Ω is a C∞ oriented compact and connected

Riemannian manifold of dimension d with interior Ω and boundary ∂Ω 6= ∅, and that

f : Ω → R is a C∞ Morse function. For µ ∈ R, we will use the notation

{f ≤ µ} = {x ∈ Ω, f(x) ≤ µ}, {f < µ} = {x ∈ Ω, f(x) < µ},

and

{f = µ} = {x ∈ Ω, f(x) = µ}.
Moreover, for all z ∈ ∂Ω, nΩ(z) will denote the unit outward vector to Ω at z. Finally,

for r > 0 and y ∈ Ω, B(y, r) will denote the open ball of radius r centered at y in Ω:

B(y, r) := {z ∈ Ω, |y − z| < r},

where, for y ∈ Ω, |y − z| is the geodesic distance between y and z in Ω.

Since stating our main results, which are Theorems 2 and 3 (see Section 5.4), requires

substantial additional material, we just give here simplified (and weaker) versions of

these results. We first give a preliminary result stating that, when f : Ω → R is

a Morse function, the number of small eigenvalues of ∆D
f,h is the number of local

minima of f in Ω. This requires the following definition.

Definition 2. Let us assume that f : Ω → R is a C∞ Morse function. The set of

local minima of f in Ω is then denoted by U0 and one defines

m0 := Card
(
U0

)
∈ N.

Theorem 1. Let us assume that f : Ω → R is a C∞ Morse function. Then, there

exist c0 > 0 and h0 > 0 such that for all h ∈ (0, h0):

dim Ranπ[0,c0h]
(
∆D
f,h

)
= dim Ranπ

(0,e−
c0
h )

(
∆D
f,h

)
= m0 ,

where, for a Borel set E ⊂ R, πE(∆
D
f,h

)
denotes the spectral projector associated with

∆D
f,h and E, and the nonnegative integer m0 is defined in Definition 2.
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Let us emphasize that the local minima of f included in ∂Ω are not listed in U0. This

preliminary result is expected from works such as [17,18] but we did not find any such

statement in the literature in our setting when the boundary admits critical points

of f . Theorem 1 will be proven in Section 2.

In the sequel, when m0 > 0, we will denote by

0 < λ1,h < λ2,h ≤ · · · ≤ λm0,h

the m0 exponentially small eigenvalues of ∆D
f,h in the limit h → 0 (see Theorem 1).

The first main result of this paper is Theorem 2, which is stated and proven in

Section 5.4. Here is a simplified version of this result, in a less general setting. The

notation Hess f(z) at a critical point z of f below stands for the endomorphism of

the tangent space TzΩ canonically associated with the usual symmetric bilinear form

Hess f(z) on TzΩ× TzΩ via the metric g.

Theorem 2’. Let us assume that the number of local minima m0 of the Morse func-

tion f is positive, that f |∂Ω has only non degenerate local minima, and that at any

saddle point (i.e. critical point of index 1) z of f which belongs to ∂Ω, nΩ(z) is an

eigenvector of Hess f(z) associated with its unique negative eigenvalue. Then, there

exists C > 0 such that one has in the limit h→ 0:

∀j ∈ {1, . . . ,m0} ,
1

C
hγj e−

2
h
Ej ≤ λj,h ≤ C hγj e−

2
h
Ej , (7)

where, for j ∈ {1, . . . ,m0}, Ej > 0, and γj are explicit with moreover γj ∈ {1
2 , 1}.

The above constants Ej ’s are the depths of some characteristic wells of the potential f

in Ω which are defined through the map

j : U0 → P(Ussp
1 (Ω)) (8)

constructed in Section 3.3 (see (43) there). Here P(Ussp
1 (Ω)) denotes the power set of

U
ssp
1 (Ω), the set of relevant generalized saddle points (or critical points of index 1) of

f in Ω (see Definition 17 at the end of Section 3.2). To be a little more precise here,

we have the inclusion

U
ssp
1 (Ω) ⊂ {critical points of f in Ω of index 1}

∪ {local minima z of f |∂Ω in ∂Ω such that ∂nΩf(z) > 0},

where ∂nΩf(z) = nΩ(z) ·∇f(z) denotes the normal derivative of f at z. Moreover, f is

constant on each j(x), x ∈ U0, and the Ej ’s are precisely the f(j(x))− f(x)’s, where,

with a slight abuse of notation, we have identified f(j(x)) with its unique element, see

Section 3 for precise statements. Note that the Ej’s give the logarithmic equivalents

of the small eigenvalues of ∆D
f,h since the relation (7) obviously implies:

∀j ∈ {1, . . . ,m0} , lim
h→0

h ln λj,h = −2Ej .

Note also that when Ω is the basin of attraction of some local minimum (or of some

family of local minima) of some Morse function f for the flow of Ẋ = −∇f(X) and z is
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a saddle point of f which belongs to ∂Ω, the following holds: ∂Ω is a smooth manifold

of dimension d− 1 near z and nΩ(z) is an eigenvector of Hess f(z) associated with its

unique negative eigenvalue. More precisely, ∂Ω coincides with the stable manifold of

z for the dynamics Ẋ = −∇f(X) near the saddle point z (see (12) in Section 2). In

Theorem 2, the corresponding assumption is more general since we just assume that

the boundary ∂Ω of Ω is, at the saddle points z ∈ j(U0) ∩ ∂Ω, tangent to the stable

manifold of z.

Finally, the second main result of this work is Theorem 3, which is stated and proven

in Section 5.4. It states that, under the hypotheses of Theorem 2, which, we recall,

are a little more general than the ones of Theorem 2’, plus additional very general

generic hypotheses on the separation of the characteristic wells of f defined through

the map j : U0 → P(Ussp
1 (Ω)) (see (8) and the lines below), one has in the limit h→ 0

sharp asymptotic estimates of the type (6) on all or part of the smallest eigenvalues

of ∆D
f,h. We state below a simplified version of Theorem 3, in a less general setting,

where we do not make explicit the pre-exponential factors (see Theorem 3 for explicit

formulas).

Theorem 3’. Let us assume the hypotheses of Theorem 2’. Then, under generic hy-

potheses on the characteristic wells of f defined through the map j : U0 → P(Ussp
1 (Ω))

defined in 43, one has in the limit h→ 0:

∀j ∈ {1, . . . ,m0} , λj,h = Aj h
γj e−

2
h
Ej

(
1 +O(

√
h)
)
, (9)

where, for j ∈ {1, . . . ,m0}, Aj > 0, Ej > 0, and γj are explicit with moreover γj ∈
{1
2 , 1}, and the remainder term O(

√
h) is actually of the order O(h) when the boundary

of the associated characteristic well does not meet both (|∇f |)−1({0}) and ∂Ω.

In addition, when m0 ≥ 2 and Em∗ > Em∗+1 for some m∗ ∈ {1, . . . ,m0 − 1}, the

previous estimates remain valid for λ1,h, . . . , λm∗,h under more general hypotheses:

∀j ∈ {1, . . . ,m∗} , λj,h = Aj h
γj e−

2
h
Ej

(
1 +O(

√
h)
)
, (10)

where, for j ∈ {1, . . . ,m0}, Aj > 0, Ej > 0, and γj are explicit with moreover γj ∈
{1
2 , 1}, and the remainder term O(

√
h) is actually of the order O(h) when the boundary

of the associated characteristic well does not meet both (|∇f |)−1({0}) and ∂Ω.

Let us now comment about this result.

First, the above error terms O(
√
h) or O(h) are in general optimal, see indeed Re-

mark 39 below.

Moreover, even when m∗ = m0 in Theorem 3’, the geometric assumptions on the

characteristic wells of f are still more general than the generic hypotheses made e.g.

in [6, 16] in the case without boundary or in [17] in the case with boundary, see

indeed [17, Assumption 5.3.1]. For instance, our hypotheses neither imply that the

Ej ’s are distinct, nor that the j(x), x ∈ U0, are singletons, as assumed in [17]. More

precisely, the main result of [17] is a particular case of Theorem 3’ when |∇f | 6= 0

7



on ∂Ω, except that we do not prove in this work the possible existence of a full

asymptotic expansion of the low-lying spectrum of ∆D
f,h.

Furthermore, our results have the advantage to give assumptions on f leading to sharp

asymptotic estimates on the sole m∗ smallest eigenvalues λ1,h, . . . , λm∗,h of ∆D
f,h when

m∗ < m0, and the more m∗ is small, the less restrictive are these assumptions. This

was not allowed in [17]. In particular, in the case when m∗ = 1 is given a sharp

equivalent of the sole principal eigenvalue λ1,h. This is appreciable since it gives the

leading term of the semigroup (e−t∆
D
f,h)t≥0 under very general assumptions. On this

point, Theorem 3 also generalizes [11, Theorem 3] when f admits critical points on

∂Ω. To be a little more precise here, we have for example the following corollary of

Theorem 3 (see also Remark 40 in this connection).

Corollary 3. Let us assume that f is a Morse function, that {f < min∂Ω f} is non

empty, connected, contains all the local minima of f in Ω, and that

{f < min
∂Ω

f} ∩ ∂Ω = {z1, . . . , zN} ,

where N ∈ N
∗ and, for k ∈ {1, . . . , N}, zk is a saddle point of f such that nΩ(zk)

is an eigenvector of Hess f(zk) associated with its unique negative eigenvalue λ(zk).

The principal eigenvalue of ∆D
f,h then satisfies the following Eyring-Kramers formula

in the limit h→ 0:

λ1,h =
2

π

∑N
k=1 |λ(zk)| |det Hess f(zk)|−

1
2

∑
y∈argminΩ f

(
detHess f(y)

)− 1
2

h e−
2
h
(min∂Ω f−minΩ f)

(
1 +O(

√
h)
)
. (11)

Let us also mention the work [29], where the author treats the case of general Morse

functions in the case without boundary. We believe that the analysis done in [29] can

be adapted to our setting, which would lead to the existence of an Eyring-Kramers

type formula for each small eigenvalue of ∆D
f,h under the sole assumptions of The-

orem 2’. Nevertheless, we made the choice to not follow this way here since these

precise formulas are in general very complicated to make explicit. Indeed, the pre-

exponential factors are not computed in general in [29], but are shown to be com-

putable by following an arbitrary long algorithm. This follows from the fact that in

the general case, some tunneling effect between the characteristic wells of f mixes

their corresponding pre-exponential factors, see [29] for more details. Our hypotheses

remain however very general and lead to explicit Eyring-Kramers type formulas in

Theorem 3.

1.4 Strategy and organization of the paper

In works such as [11,16,17,19,24,29], a part of the analysis relies on the construction

of 0-forms (i.e. functions) quasi-modes supported in some characteristic wells of

the potential f and of 1-forms quasi-modes supported near the saddle points of f ,

and, in [11,17,24], near its so-called generalized saddle points on the boundary. Very
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accurate WKB approximations of these local 1-forms quasi-modes then finally lead to

the asymptotic expansions of the low-lying spectrum of the Witten Laplacian acting

on functions. This approach is based on the supersymmetric structure of the latter

operator, once restricted to the interplay between 0- and 1-forms.

Near the generalized saddle points on the boundary as considered in [17,24], where one

recalls that |∇f | 6= 0 there and actually where the normal derivative ∂nΩf does not

vanish, this construction means solving non characteristic transport equations with

prescribed initial boundary conditions, see in particular [17,23,24]. Near a usual sad-

dle point z in Ω (i.e. a critical point z with index 1), this construction follows from

the work [18] of Helffer-Sjöstrand and means solving transport equations which are

degenerate at z (see in particular Section 2 there). In this case, the problem is well-

posed only for prescribed initial condition at the single point z. In particular, when

one drops the assumption (5) and z is a usual saddle point which belongs to ∂Ω, the

corresponding transport equations, which are the same as for interior saddle points,

are uniquely solved as in [18], but the resulting WKB ansatz does not in general sat-

isfy the required boundary conditions, except its leading term when the boundary ∂Ω

has a specific shape near z. To be more precise, and to make the connection with

the hypotheses of Theorems 2’ and 3’ (and Theorems 2 and 3), the leading term of

this WKB ansatz satisfies the required boundary conditions if and only if ∂Ω coin-

cides near z with the stable manifold of z for the dynamics Ẋ = −∇f(X) (see (12)

in Section 2). This compatibility condition imposes in particular that nΩ(z) spans

the negative direction of Hess f(z). The fact that the remaining part of the WKB

ansatz does in general not satisfy the required boundary conditions for a compatible

boundary ∂Ω arises from the curvature of this boundary.

The above considerations show that, when z ∈ ∂Ω is a saddle point of f and nΩ(z) does

not span the negative direction of Hess f(z), the classical WKB ansatz constructed

near z will not be an accurate approximation of the local 1-form quasi-mode associated

with z. They also imply that the potential existence of full asymptotic expansions

of the small eigenvalues of ∆D
f,h will in general not follow from the existence of these

WKB ansätze when f admits saddle points on the boundary. Moreover, we expect

that sharp asymptotic equivalents such as (11) are not valid in general when nΩ(z)

does not span the negative direction of Hess f(z) at the relevant saddle points z ∈
∂Ω. In the latter case, we expect that the corresponding possible sharp asymptotic

equivalents should also rely on the angle between nΩ(z) and the negative direction of

Hess f(z).

In this work, we follow a different strategy based on the constructions of very accurate

quasi-modes for ∆D
f,h. This approach, which is partly inspired by the quasi-modal

construction made in [9] (see also [5, 22,32]), requires a careful construction of these

functions quasi-modes around the relevant (possibly generalized) saddle points z of

f , whereas these points were not in the supports of the corresponding quasi-modes

constructed in [11,16,17,19,24,29]. One advantage of this method is to avoid a careful

study of the Witten Laplacian acting on 1-forms near the boundary ∂Ω, which would

9



finally lead to more stringent hypotheses on f and on f |∂Ω, that is precisely to the

hypotheses made in the statement of Theorem 2’2

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1 about

the number of small eigenvalues of ∆D
f,h. This is done using spectral and localization

arguments. Then, in Section 3, we construct the map j characterizing the relevant

wells of the potential function f . This permits to construct very accurate quasi-modes

in Section 4 and then to state and prove our main results, namely Theorems 2 and

3, in Section 5. As in [11, 16, 17, 19, 24, 29], the analysis of the precise asymptotic

behaviour of the low-lying spectrum of ∆D
f,h = dD,∗f,h d

D
f,h is finally reduced to the

computation of the small singular values of dDf,h.

2 On the number of small eigenvalues of ∆D
f,h

This section is dedicated to the proof of Theorem 1. Before going into its proof, we

briefly recall basic facts about smooth Morse functions on a C∞ compact Riemannian

manifold with boundary Ω = Ω ∪ ∂Ω of dimension d.

Let z ∈ ∂Ω. Let us consider a neighborhood Vz of z in Ω and a coordinate system

p ∈ Vz 7→ x = (x′, xd) ∈ R
d
− = R

d−1 × R− such that: x(z) = 0, {p ∈ Vz, xd(p) <

0} = Ω ∩ Vz and {p ∈ Vz, xd(p) = 0} = ∂Ω ∩ Vz. By definition, the function f is

C∞ on Vz if, in the x-coordinates, the function f : x(Vz) → R is the restriction of a

C∞ function defined on an open subset O of Rd containing x(Vz). Moreover, z ∈ ∂Ω

is a non degenerate critical point of f : Ω → R of index p ∈ {0, . . . , d} if it is a non

degenerate critical point of index p for this extension. Notice that this definition is

independent of the choice of the extension. A C∞ function f : Ω → R is then said to

be a Morse function if all its critical points in Ω are non degenerate. In the following,

we will also say that z ∈ Ω is a saddle point of the Morse function f if it is a critical

point of f with index 1.

Let now f : Ω → R be a Morse fonction. By the above, there exist a C∞ Riemannian

manifold Ω̃ (without boundary) of dimension d and a C∞ Morse function f̃ : Ω̃ → R

such that

f̃ |Ω = f and Ω ⊂ Ω̃ .

For a critical point z ∈ Ω of f̃ , the sets W+(z) and W−(z) will respectively denote

the so-called stable and unstable manifolds of z for the dynamics Ẋ = −∇f̃(X) in Ω̃.

In other words, denoting by Xy(t) the solution to d
dt
Xy(t) = −∇f̃(Xy(t)) with initial

condition Xy(0) = y ∈ Ω̃, one has (see for example [21, Definition 7.3.2]):

W
±(z) = {y ∈ Ω̃ s.t. Xy(t) ∈ Ω̃ for every ±t ≥ 0 and lim

t→±∞
Xy(t) = z}. (12)

We recall that when z has index p ∈ {0, . . . , d}, the sets W+(z) and W−(z) are

indeed smooth submanifolds of Ω̃; they moreover intersect orthogonally at z and

2 For example, in the statement of Corollary 3, the “1-form approach”would require that all the

local minima of f |∂Ω are non degenerate and that nΩ(z) spans the negative direction of Hess f(z) at

any saddle point z ∈ ∂Ω.
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have respective dimensions d − p and p (see for example [21, Theorem 7.3.1 and

Corollary 7.4.1]). Note lastly that the part of W±(z) leaving outside Ω of course

depends on the choice of the extension f̃ .

2.1 Preliminary results

In order to prove Theorem 1, one will make use of the following proposition which

results from [18, Théorème 1.4].

Proposition 4. Let O be an oriented C∞ compact and connected Riemannian man-

ifold of dimension d with interior O and non empty boundary ∂O, let φ : O → R be a

C∞ Morse function, and let x0 be a critical point of φ in O with index ℓ ∈ {0, . . . , d}
such that x0 is the only critical point of φ in O. Then, the Dirichlet realization

∆D
φ,h(O) of the Witten Laplacian acting on functions on O satisfies the following

estimate: there exist η0 > 0 and h0 > 0 such that for all h ∈ (0, h0),

dimRanπ[0,η0h]
(
∆D
φ,h(O)

)
= δℓ,0.

The following result is a direct consequence of Proposition 4.

Corollary 5. Let O, φ, x0, and ℓ ∈ {0, . . . , d} be as in Proposition 4. Let us assume

that ℓ = 0, i.e. that x0 is a local minimum of φ in O, and that φ only attains

its minimal value on O at x0. Let moreover, for every h small enough, Ψ ≥ 0 be

the L2(O)-normalized eigenfunction of ∆D
φ,h(O) associated with its unique eigenvalue

λh in (0, η0h] (see Proposition 4 and Remark 1). Lastly, let ξ ∈ C∞
c (O, [0, 1]) be

a cut-off function such that ξ = 1 in a neighborhood of x0 in O. Then, defining

χ := ξ e
− 1

h
φ∥∥ξ e− 1

h
φ
∥∥

L2(O)

, there exists c > 0 such that for every h small enough:

Ψ = χ+O
(
e−

c
h

)
in L2(O) and 0 < λh ≤

∥∥dφ,hχ
∥∥2
Λ1L2(O)

≤ e−
c
h . (13)

Proof. The proof of (13) is standard but we give it for the sake of completeness. As

in the statement of Corollary 5, let us define

χ :=
ξ e−

1
h
φ

∥∥ξ e− 1
h
φ
∥∥
L2(O)

.

From the definition of ξ and the Laplace method together with the fact that φ only

attains its minimal value on O at x0, it holds

∥∥ξ e− 1
h
φ
∥∥2
L2(O)

=
(πh)

d
2

√
detHessφ(x0)

e−
2
h
φ(x0)

(
1 +O(h)

)
.

According to Proposition 4, there exist η0 > 0 and h0 > 0 such that for all h ∈
(0, h0), π[0,η0h]

(
∆D
f,h(O)

)
is the orthogonal projector on Span{Ψ}. Moreover, using the

following spectral estimate, valid for any nonnegative self-adjoint operator (T,D(T ))

on a Hilbert space (H, ‖ · ‖) with associated quadratic form (qT , Q(T )),

∀b > 0 , ∀u ∈ Q (T ) ,
∥∥π[b,+∞)(T )u

∥∥2 ≤ qT (u)

b
, (14)
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it holds (see (2) and (3))

∥∥∥χ− π[0,η0h]
(
∆D
φ,h(O)

)
χ
∥∥∥
2

L2(O)
≤

∥∥dφ,hχ
∥∥2
Λ1L2(O)

η0h
=

h

η0

∫
O
|dξ|2e− 2

h
φ

∥∥ξ e− 1
h
φ
∥∥2
L2(O)

.

Hence, since ξ = 1 in a neighborhood of x0 and thus, for some c > 0, φ(y) ≥ φ(x0)+c

for every y ∈ supp dξ, one has for every h > 0 small enough,

∥∥dφ,hχ
∥∥2
Λ1L2(O)

≤ e−
c
h and

∥∥∥χ− π[0,η0h]
(
∆D
φ,h(O)

)
χ
∥∥∥
2

L2(O)
≤ e−

c
h , (15)

where c > 0 is independent of h. Since ‖χ‖L2(O) = 1, the first relation in (15) together

with the Min-Max principle leads to (see (2))

λh ≤ 〈∆D
φ,h(O)χ, χ〉L2(O) =

∥∥dφ,hχ
∥∥2
Λ1L2(O)

≤ e−
c
h .

Moreover, using the second relation in (15) and the Pythagorean theorem, one obtains

for every h > 0 small enough:

∥∥π[0,η0h]
(
∆D
φ,h(O)

)
χ
∥∥
L2(O)

= 1 +O(e−
c
h ). (16)

In conclusion, from (15), (16), and since χ and Ψ are nonnegative, it holds, in L2(O),

for some c > 0 and every h > 0 small enough:

Ψ =
π[0,η0h]

(
∆D
φ,h(O)

)
χ

∥∥π[0,η0h]
(
∆D
φ,h(O)

)
χ
∥∥
L2(O)

= χ+O
(
e−

c
h

)
.

This concludes the proof of (13) and then the proof of Corollary 5.

We are now in position to prove Theorem 1.

2.2 Proof of Theorem 1

Let {x1, . . . , xn} be the set of the critical points of f in Ω, i.e.

{
x1, . . . , xn

}
=

{
x ∈ Ω, |∇f(x)| = 0

}
.

From the preliminary discussion in the beginning of Section 2, there exist an oriented

C∞ compact and connected Riemannian manifold Ω̃ of dimension d with interior Ω̃

and boundary ∂Ω̃, and a C∞ Morse function f̃ : Ω̃ → R such that

f̃ |Ω = f , Ω ⊂ Ω̃ and
{
x1, . . . , xn

}
⊂ Ω̃ .

We recall that m0 denotes the number of local minima of f in Ω (see Definition 2),

and thus that 0 ≤ m0 ≤ n. When m0 > 0, the elements x1, . . . , xn are moreover

ordered such that {
x1, . . . , xm0

}
= U0.
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In addition, one introduces for every j ∈ {1, . . . ,m0} a smooth open neighborhood

Oj of xj such that Oj ⊂ Ω and such that xj is the only critical point of f in Oj

as well as the only point where f attains its minimal value in Oj . Similarly, when

xj ∈ Ω is not a local minimum of f , one introduces a smooth open neighborhood Oj

of xj such that Oj ⊂ Ω and such that xj is the only critical point of f in Oj . Lastly,

when xj ∈ ∂Ω, one now introduces a smooth open neighborhood Oj of xj in Ω̃ such

that Oj ⊂ Ω̃ and such that xj is the only critical point of f̃ in Oj . When such a xj
is a local minimum of f , the set Oj is moreover chosen small enough such that the

minimal value of f̃ in Oj is only attained at xj . Let us also introduce a quadratic

partition of unity (χj)j∈{1,...,n+1} such that:

1. For all j ∈ {1, . . . , n+ 1}, χj ∈ C∞(Ω̃, [0, 1]) and
∑n+1

j=1 χ
2
j = 1 on Ω̃.

2. For all j ∈ {1, . . . , n}, χj = 1 near xj and suppχj ⊂ Oj . In particular, suppχj ⊂
Ω when xj ∈ Ω.

3. For all (i, j) ∈ {1, . . . , n}2, i 6= j implies suppχi ∩ suppχj = ∅.

In the following, we will also use the so-called IMS localization formula (see for

example [8]): for all ψ ∈ H1
0 (Ω), it holds

Qf,h(ψ) =
n+1∑

j=1

Qf,h(χj ψ)−
n+1∑

j=1

h2
∥∥|∇χj|ψ

∥∥2
L2(Ω)

, (17)

where Qf,h is the quadratic form defined in (3).

Step 1. Let us first show that there exists c0 > 0 such that for every h small enough,

it holds

dim Ran π
(0,e−

c0
h )

(
∆D
f,h

)
≥ m0 . (18)

This relation is obvious whenm0 = 0. Whenm0 > 0, the family (Oj , f |Oj
, xj) satisfies,

for every j ∈ {1, . . . ,m0}, the hypotheses of Corollary 5. Then, according to (13), the

function

ψj :=
χje

− f
h

‖χje−
f
h ‖L2(Oj)

satisfies, for some cj > 0 and every h > 0 small enough (see (3)),

Qf,h(ψj) ≤ e−
cj
h .

Since the ψj ’s, j ∈ {1, . . . ,m0}, are unitary in L2(Ω) and have disjoint supports, it

follows from the Min-Max principle that ∆D
f,h admits at least m0 exponentially small

eigenvalues when h→ 0, which proves (18).

Step 2. Let us now show that there exists c′0 > 0 such that for every h small enough,

it holds

dim Ranπ[0,c′0h]
(
∆D
f,h

)
≤ m0 . (19)
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According to the Min-Max principle, it is sufficient to show that there exist h0 > 0

and C > 0 such that for every h ∈ (0, h0], there exist u1, . . . , um0 in L2(Ω) such that

for any ψ ∈ D(Qf,h) = H1
0 (Ω), it holds

Qf,h(ψ) ≥ Ch ‖ψ‖2L2(Ω) −
m0∑

i=1

〈ψ, ui〉2L2(Ω) . (20)

Analysis on suppχn+1.

Since suppχn+1 ∩Ω does not meet {x1, . . . , xn}, there exists C > 0 such that |∇f | ≥
3C on suppχn+1 ∩ Ω. It then follows from (3) that there exists C > 0 such that for

every h small enough and for every ψ ∈ H1
0 (Ω), it holds

Qf,h(χn+1ψ) ≥
〈
χn+1ψ,

(
|∇f |2 + h∆Hf

)
χn+1ψ

〉
L2(Ω)

≥ 2C ‖χn+1ψ‖2L2(Ω). (21)

Analysis on suppχj, j ∈ {1, . . . ,m0}.
We assume here that m0 > 0. We recall that for every j ∈ {1, . . . ,m0}, (Oj , f |Oj

, xj)

satisfies the hypotheses of Corollary 5, and we denote, for h > 0, by Ψj ≥ 0

the L2(Oj)-normalized eigenfunction of ∆D
f,h(Oj) associated with its principal eigen-

value λjh (which is positive, and exponentially small when h → 0). It then follows

from Proposition 4 and Corollary 5 that for some C > 0 and every h > 0 small

enough, it holds, for every j ∈ {1, . . . ,m0} and for every ψ ∈ H1
0 (Ω),

Qf,h(χjψ) ≥ λjh〈χjψ,Ψj〉2L2(Ω) + 2Ch‖χjψ − 〈χjψ,Ψj〉Ψj‖2L2(Ω)

≥ 2Ch ‖χjψ‖2L2(Ω) − 2Ch 〈χjψ,Ψj〉2L2(Ω)

= 2Ch ‖χjψ‖2L2(Ω) − 〈ψ, uj〉2L2(Ω) , (22)

where one has defined uj :=
√
2ChχjΨj.

Analysis on suppχj, when xj ∈ Ω is not a local minimum of f .

In this case, applying Proposition 4 with Oj and ∆D
f,h(Oj), it follows that for some

C > 0 and every h > 0 small enough, it holds, for every ψ ∈ H1
0 (Ω),

Qf,h(χjψ) ≥ 2Ch ‖χjψ‖2L2(Ω) . (23)

Analysis on suppχj, when xj ∈ ∂Ω is not a local minimum of f .

In this case, applying as previously Proposition 4 with Oj but here with ∆D
f̃,h

(Oj)

and denoting by Q
f̃ ,h,Oj

its associated quadratic form, it follows that for some C > 0

and every h > 0 small enough, it holds, for every ψ ∈ H1
0 (Ω̃),

Q
f̃ ,h,Oj

(χjψ) =
∥∥d

f̃ ,h
χjψ

∥∥2
Λ1L2(Oj)

≥ 2Ch ‖χjψ‖2L2(Ω̃)
.

Let us now consider the application ψ ∈ L2(Ω) 7→ ψ ∈ L2(Ω̃), where ψ extends ψ

on Ω̃ by ψ|
Ω̃\Ω = 0. Since ψ belongs to H1

0 (Ω̃) for every ψ ∈ H1
0 (Ω) with moreover
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(dψ)|
Ω̃\Ω = 0, it holds, for every h small enough and for every ψ ∈ H1

0 (Ω),

Qf,h(χjψ) =
∥∥df,h(χjψ)

∥∥2
Λ1L2(Ω)

=
∥∥d

f̃ ,h
(χjψ)

∥∥2
Λ1L2(Oj)

≥ 2Ch ‖χjψ‖2L2(Ω̃)
= 2Ch ‖χjψ‖2L2(Ω) . (24)

Analysis on suppχj, when xj ∈ ∂Ω is a local minimum of f .

Let us now consider, as previously, the extension map ψ ∈ H1
0 (Ω) 7→ ψ ∈ H1

0 (Ω̃)

by 0 outside Ω, and let Ψj ≥ 0 be the L2(Oj)-normalized eigenfunction of ∆D
f̃,h

(Oj)

associated with its principal eigenvalue λjh (see Remark 1). Then, according to Propo-

sition 4, one has for some C > 0, for every h small enough, and for every ψ ∈ H1
0 (Ω),

Qf,h(χjψ) = Q
f̃ ,h,Oj

(χjψ)

≥ λjh〈χjψ,Ψj〉2L2(Oj)
+ 6Ch‖χjψ − 〈χjψ,Ψj〉Ψj‖2L2(Oj)

≥ 6Ch ‖χjψ‖2L2(Oj)
− 6Ch 〈χjψ,Ψj〉2L2(Oj)

= 6Ch ‖χjψ‖2L2(Ω) − 6Ch 〈χjψ,Ψj〉2L2(Ω∩Oj)
. (25)

Moreover, applying Corollary 5 with O = Oj , φ = f̃ |Oj
, and ξ = χj , it follows from

(13) that for every h small enough, one has

∥∥Ψj

∥∥2
L2(Ω∩Oj)

=

∥∥χje−
1
h
f̃
∥∥2
L2(Ω∩Oj)∥∥χje−

1
h
f̃
∥∥2
L2(Oj)

+O
(
e−

c
h

)
.

From the Laplace method together with the fact that f̃ only attains its minimal value

on Oj at xj , it then holds in the limit h→ 0:

∥∥Ψj

∥∥2
L2(Ω∩Oj )

=
1

2
+ o(1) .

According to (25), this implies, using the Cauchy-Schwarz inequality

〈χjψ,Ψj〉2L2(Ω) ≤
∥∥χjψ

∥∥2
L2(Ω)

∥∥Ψj

∥∥2
L2(Ω∩Oj)

,

that for some C > 0, for every h small enough, and for every ψ ∈ H1
0 (Ω), it holds:

Qf,h(χjψ) ≥ 2Ch ‖χjψ‖2L2(Ω) . (26)

Conclusion.

Adding the estimates (21) to (24) and (26), we deduce from the IMS localization

formula (17) that there exists C > 0 such that for every h small enough and for every

ψ ∈ H1
0 (Ω), it holds

Qf,h(ψ) =

n+1∑

j=1

Qf,h(χj ψ)−
n+1∑

j=1

h2
∥∥|∇χj|ψ

∥∥2
L2(Ω)

≥
n+1∑

j=1

2Ch‖χjψ‖2L2(Ω) −
m0∑

j=1

〈ψ, uj〉2L2(Ω) +O(h2)‖ψ‖2L2(Ω)

≥ Ch ‖ψ‖2L2(Ω) −
m0∑

j=1

〈ψ, uj〉2L2(Ω) ,
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where, for j ∈ {1, . . . ,m0}, we recall that uj =
√
2ChχjΨj. This implies the rela-

tion (20) and then (19), which concludes the proof of Theorem 1.

3 Study of the characteristic wells of the function f

In this section, one constructs two maps, j and Cj. The map j associates each local

minimum of f in Ω with a set of relevant saddle points, here called separating saddle

points, of f in Ω, and the map Cj associates each local minimum of f in Ω with

a characteristic well, here called a critical component, of f in Ω (see Definition 17

below). Our construction is strongly inspired by a similar construction made in [19]

in the case without boundary, where the notions of separating saddle point and of

critical component were defined in this setting. The depths of the wells Cj(x), x ∈ U0,

which can be expressed in terms of j(x), will finally give, up to some multiplicative

factor −2, the logarithmic equivalents of the small eigenvalues of ∆D
f,h (see indeed

Theorems 2’ and 2). The maps j and Cj will also be used in the next section to define

accurate quasi-modes for ∆D
f,h.

This section is organized as follows. In Section 3.1, one defines the principal (charac-

teristic) wells of the function f in Ω. Then, in Section 3.2, one defines the separating

saddle points of f in Ω and the critical components of f . Finally, Section 3.3 is

dedicated to the constructions of the maps j and Cj.

3.1 Principal wells of f in Ω

Definition 6. Let f : Ω → R be a C∞ Morse function such that U0 6= ∅. For all

x ∈ U0 (see Definition 2) and λ > f(x), one defines

C(λ, x) as the connected component of {f < λ} in Ω containing x.

Moreover, for every x ∈ U0, one defines

λ(x) := sup{λ > f(x) such that C(λ, x) ∩ ∂Ω = ∅} and C(x) := C(λ(x), x).

Since for every x ∈ U0, x is a non degenerate local minimum of f in Ω, notice that

the real value λ(x) is well defined and belongs to (f(x),+∞). The principal wells of

the function f in Ω are then defined as follows.

Definition 7. Let f : Ω → R be a C∞ Morse function such that U0 6= ∅. The set

C =
{
C(x), x ∈ U0

}

is called the set of principal wells of the function f in Ω. The number of principal

wells is denoted by

N1 := Card(C) ∈ {1, . . . ,m0}.
Finally, the principal wells of f in Ω (i.e. the elements of C) are denoted by:

C = {C1,1, . . . ,C1,N1}.
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In Remark 19 below, one explains why the elements of C are called the principal wells

of f in Ω. Notice that they obviously satisfy ∂C(x) ⊂ {f = λ(x)} for every x ∈ U0.

These wells satisfy moreover the following property.

Proposition 8. Let f : Ω → R be a C∞ Morse function such that U0 6= ∅ and let

C = {C1,1, . . . ,C1,N1} be the set of its principal wells defined in Definition 7. Then,

for every k ∈ {1, . . . ,N1}, it holds:
{

C1,k is an open subset of Ω, and

for all ℓ ∈ {1, . . . ,N1} with ℓ 6= k, C1,k ∩ C1,ℓ = ∅. (27)

Proof. The proof of (27) is included in the proof of [10, Proposition 20]. Let us men-

tion that in [10, Proposition 20], it is also assumed that f |∂Ω is a Morse function, but

this assumption is not used in the proof of (27) there.

3.2 Separating saddle points

3.2.1 Separating saddle points of f in Ω

Before giving the definition of the separating saddle points of f in Ω, let us first recall

the local structure of the sublevel sets of f near a point z ∈ Ω.

Lemma 9. Let f : Ω → R be a C∞ Morse function, let z ∈ Ω, and let us recall that,

for r > 0, B(z, r) := {x ∈ Ω s.t. |x − z| < r}. For every r > 0 small enough, the

following holds:

1. When |∇f(z)| 6= 0, the set {f < f(z)} ∩B(z, r) is connected.

2. When z is a critical point of f with index p ∈ {0, . . . , d}, one has:

(a) if p = 0, i.e. if z ∈ U0, then {f < f(z)} ∩B(z, r) = ∅,
(b) if p = 1, then {f < f(z)}∩B(z, r) has precisely two connected components,

(c) if p ≥ 2, then {f < f(z)} ∩B(z, r) is connected.

The notion of separating saddle point of f in Ω was introduced in [19, Section 4.1]

for a Morse function on a manifold without boundary.

Definition 10. Let f : Ω → R be a C∞ Morse function. The point z ∈ Ω is a

separating saddle point of f in Ω if it is a saddle point of f (i.e. a critical point of f

of index 1) and if for every r > 0 small enough, the two connected components of

{f < f(z)} ∩B(z, r) are contained in different connected components of {f < f(z)}.
The set of separating saddle points of f in Ω is denoted by U

ssp
1 (Ω).

With this definition, one has the following result which will be needed later to con-

struct the maps j and Cj in Section 3.3.

Proposition 11. Let f : Ω → R be a C∞ Morse function such that U0 6= ∅. Let

us consider C1,q for q ∈ {1, . . . ,N1}. The set C1,q and its sublevel sets satisfy the

following properties.
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1. It holds,

if ∂C1,q ∩ ∂Ω = ∅ , i.e. if C1,q ⊂ Ω, then ∂C1,q ∩ U
ssp
1 (Ω) 6= ∅. (28)

2. Let λq be such that C1,q is a connected component of {f < λq} (see Definitions 6

and 7). Let λ ∈ (minC1,q
f, λq] and C be a connected component of C1,q∩{f < λ}.

Then,
(
C ∩ U

ssp
1 (Ω) 6= ∅

)
iff C ∩ U0 contains more than one point.

Moreover, let us define

σ := max
y∈C∩Ussp

1 (Ω)
f(y)

with the convention σ = minC f when C ∩ U
ssp
1 (Ω) = ∅. Then, the following

assertions hold.

• For all µ ∈ (σ, λ], the set C∩{f < µ} is a connected component of {f < µ}.
• If C ∩ U

ssp
1 (Ω) 6= ∅, one has C ∩ U0 ⊂ {f < σ} and the boundary of any

of the connected components of C ∩ {f < σ} contains a separating saddle

point of f in Ω (i.e. a point in U
ssp
1 (Ω)).

Proof. The proof of the first item of Proposition 11 is the same as the proof of the

last point of [10, Proposition 20] (see Step 5 there), while the proof of the second item

of Proposition 11 is the same as the proof of [10, Proposition 22], which follows from

the study of the sublevel sets of a Morse function on a manifold without boundary

(since the principal wells C1,k’s are included in Ω). Again, the assumption that f |∂Ω
is a Morse function made in [10] is not used in these proofs.

3.2.2 Separating saddle points of f in Ω

In this section, we specify and extend Definition 10 in our setting by taking into

account the boundary of Ω and the principal wells {C1, . . . ,CN1} of f introduced

in Definition 7. To this end, we first state the following result which describes the

local structure of f near
⋃
k∈{1,...,N1} ∂C1,k ∩ ∂Ω and which will be used to state an

additional assumption on f , assumption (H1) below, ensuring that the critical points

of f in ∂C1,k ∩ ∂Ω are geometrical saddle points of f in Ω (see Remark 15 below).

Proposition 12. Let f : Ω → R be a C∞ Morse function such that U0 6= ∅. Let

k ∈ {1, . . . ,N1}. Then, if ∂C1,k ∩ ∂Ω 6= ∅, for z ∈ ∂C1,k ∩ ∂Ω (see Definition 7), one

has:

(a) If |∇f(z)| 6= 0, then z is a local minimum of f |∂Ω and ∂nΩf(z) > 0.

(b) If |∇f(z)| = 0, then z is saddle point of f . In addition, if the unit outward

normal vector nΩ(z) to Ω at z is an eigenvector of Hess f(z) associated with its

negative eigenvalue, then z is a non degenerate local minimum of f |∂Ω (where

Hess f(z) denotes the endomorphism of TzΩ canonically associated with the

usual symmetric bilinear form Hess f(z) : TzΩ× TzΩ → R via the metric g).
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Besides, it holds,

for all ℓ ∈ {1, . . . ,N1} with ℓ 6= k, C1,ℓ ∩ C1,k = ∂C1,k ∩ ∂C1,ℓ ⊂ U
ssp
1 (Ω). (29)

Remark 13. As it will be clear from the proof of Proposition 12, the fact that f :

Ω → R is a Morse function is not needed in the proof of item (a) in Proposition 12.

Proof. Let z ∈ ∂C1,k ∩ ∂Ω. Let Vz be a neighborhood of z in Ω and let

p ∈ Vz 7→ x = (x′, xd) ∈ R
d−1 × R− (30)

be a coordinate system such that x(z) = 0,

{p ∈ Vz, xd(p) < 0} = Ω ∩ Vz and {p ∈ Vz, xd(p) = 0} = ∂Ω ∩ Vz (31)

and

∀i, j ∈ {1, . . . , d} , gz
( ∂

∂xi
(z),

∂

∂xj
(z)

)
= δij and

∂

∂xd
(z) = nΩ(z) . (32)

The set x(Vz) is a neighborhood of 0 in R
d−1 ×R−. With a slight abuse of notation,

the function f in the coordinates x is still denoted by f . The set x(C1,k ∩ Vz) is

included in {xd < 0} since C1,k ⊂ Ω (see Proposition 8). For ease of notation, the

set x(C1,k ∩ Vz) will also be denoted by C1,k. Let us now introduce a C∞ extension

of f : x(Vz) ⊂ {x ∈ R
d, xd ≤ 0} → R to a neighborhood V0 of 0 in R

d such that

V0 ∩ {x ∈ R
d, xd ≤ 0} ⊂ x(Vz). In the following this extension is still denoted by f .

Note that according to (32), the matrix Hess f(0) is then at the same time the matrix

of the symmetric bilinear form Hess f(z) : TzΩ × TzΩ → R and of its canonically

associated (via the metric g) endomorphism Hess f(z) : TzΩ → TzΩ, in the basis(
∂
∂x1

(z), . . . , ∂
∂xd

(z) = nΩ(z)
)
of TzΩ.

Let r0 > 0 be such that {x ∈ R
d, |x| < r0} ⊂ V0 and let r ∈ (0, r0). To prove

Proposition 12, one will both work with the initial function f and with the above

associated function still denoted by f ,

f : x = (x′, xd) ∈ V0 ⊂ R
d 7→ f(x) ∈ R. (33)

The proof of Proposition 12 is divided into several steps.

Step 1. Proof of item (a) in Proposition 12. Let us assume that |∇f(z)| 6= 0.

According to Lemma 9, for all r > 0 small enough, the set {x ∈ R
d, |x| < r and f(x) <

f(0)} is connected. Let us also notice that it clearly holds

∅ 6= C1,k ∩ {x ∈ R
d, |x| < r} ⊂ {x ∈ R

d, |x| < r and f(x) < f(0)}.

Let us now prove that

{x ∈ R
d, |x| < r and f(x) < f(0)} ⊂ {xd < 0}. (34)

If it is not the case, there exists y2 ∈ {x ∈ R
d, |x| < r} such that xd(y2) ≥ 0 and

f(y2) < f(0). The set {x ∈ R
d, |x| < r and f(x) < f(0)} is connected and thus, since
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it is locally path-connected, it is path-connected. Then, let y1 ∈ C1,k ∩{x ∈ R
d, |x| <

r} and consider a continuous curve γ : [0, 1] → {x ∈ R
d, |x| < r and f(x) < f(0)}

such that γ(0) = y1 and γ(1) = y2. Let us define t0 := inf{t ≥ 0, xd(γ(t)) ≥ 0}.
Since xd(γ(0)) < 0 and xd(γ(1)) ≥ 0, it holds t0 > 0. Then, for all t ∈ [0, t0], it holds

xd(γ(t)) ≤ 0 (with equality if and only if t = t0), |γ(t)| < r, and f(γ(t)) < f(0).

Therefore, since by definition C1,k is a connected component of {q ∈ Ω, f(q) < f(z)},
it holds γ(t0) ∈ C1,k ⊂ {xd < 0}. This contradicts xd(γ(t0)) = 0 and proves (34).

Hence, since C1,k is a connected component of {f < f(z)} in Ω which intersects the

connected set p({x ∈ R
d, |x| < r and f(x) < f(0)}) ⊂ Ω, it holds

C1,k ∩ {x ∈ R
d, |x| < r} = {x ∈ R

d, |x| < r and f(x) < f(0)}. (35)

Equations (31) and (34) imply that z is a local minimum of f |∂Ω. Using in addition the

fact that |∇f(z)| 6= 0, it holds ∂nΩf(z) 6= 0 and hence ∂nΩf(z) > 0, since ∂nΩf(z) < 0

would imply that z is a local minimum of f in Ω which would thus not belong to C1,k.

This proves item (a) in Proposition 12. Let us mention that one can prove in addition

that ∂Ω and ∂C1,k are tangent at z.

Step 2. Proof of item (b) in Proposition 12. Let us now assume that |∇f(z)| = 0.

Step 2a. Let us prove that 0 is a saddle point of f : V0 → R. The point 0 is a non

degenerate critical point of f . Moreover, because 0 is not a local minimum of f in

{xd ≤ 0} (since 0 ∈ ∂C1,k), Hess f(0) has at least one negative eigenvalue. To prove

that 0 is a saddle point of f , let us argue by contradiction: assume that Hess f(0) has

at least two negative eigenvalues. Then, according to Lemma 9 (with p ≥ 2 there),

for all r ∈ (0, r0) small enough, the set {x ∈ R
d, f(x) < f(0)} ∩ {x ∈ R

d, |x| < r} is

connected. In particular, the same arguments as those used to prove (34) and (35)

imply that:

C1,k ∩ {x ∈ R
d, |x| < r} = {x ∈ R

d, |x| < r and f(x) < f(0)} ⊂ {xd < 0}. (36)

To conclude, let us now prove that

{x ∈ R
d, |x| < r and f(x) < f(0)} ∩ {x ∈ R

d, xd = 0} 6= ∅, (37)

which will contradict (36). To this end, let (e1, e2, . . . , ed) ⊂ R
d be an orthonormal

basis of eigenvectors of Hess f(0) associated with its eigenvalues (µ1, . . . , µd) ordered

such that µ1 < 0 and µ2 < 0. Since {xd = 0} is a d−1 dimensional vector space, there

exists v ∈ {xd = 0}∩Span(e1, e2)\{0}. An order 2 Taylor expansion then shows that

f(t v) < f(0) for every t > 0 small enough, which implies (37) since t v ∈ {xd = 0}.
Thus, Hess f(0) has only one negative eigenvalue, i.e. 0 is a saddle point of f .

Step 2b. Let us now end the proof of item (b) in Proposition 12. The point 0 is clearly

a critical point of f |{xd=0} since it is a critical point, and more precisely a saddle point

by the above analysis, of f : V0 → R. Let us also emphasize here that without any

additional assumption, 0 is not necessarily a non degenerate critical point of f |{xd=0},
nor a local minimum of f |{xd=0} (see indeed Remark 16 below). Let us now make
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the following additional assumption: let us assume that the unit outward normal

vector nΩ(z) is an eigenvector of Hess f(z) associated with its negative eigenvalue.

According to (31) and (32), this means that ed = (0, . . . , 0, 1) ∈ R
d is an eigenvector

of Hess f(0) associated with its unique negative eigenvalue. Since in the Euclidean

space R
d, it holds {xd = 0} = e⊥d , it follows that Hess f |{xd=0}(0) is positive definite

and hence that 0 is a non degenerate local minimum of f |{xd=0}. This concludes the
proof of item (b) in Proposition 12.

Step 3. Proof of the relation (29). Let us recall that for every k, the set C1,k is an

open subset of Ω such that for all ℓ 6= k, it holds C1,ℓ ∩ C1,k = ∅ (see Proposition 8),

and hence C1,ℓ ∩ C1,k = ∂C1,ℓ ∩ ∂C1,k. The proof of (29) is divided into two steps.

Step 3a. Let us prove that for all ℓ ∈ {1, . . . ,N1}, ℓ 6= k, it holds

∂C1,ℓ ∩ ∂C1,k ⊂ Ω. (38)

To this end, let us consider z ∈ ∂C1,k ∩ ∂Ω. Let us work again in the x-coordinates

satisfying (30) and (31), and with the function

f : x = (x′, xd) ∈ V0 ⊂ R
d 7→ f(x) ∈ R

which was introduced in (33).

Let us first consider the case when |∇f(0)| 6= 0. Let us recall that according to

Lemma 9 and (35), for r > 0 small enough, {x ∈ R
d, |x| < r and f(x) < f(0)} is

connected and equals C1,k ∩ {x ∈ R
d, |x| < r}. Let ℓ ∈ {1, . . . ,N1}, ℓ 6= k. Since in

addition C1,ℓ ∩ C1,k = ∅, one has 0 /∈ ∂C1,ℓ. This concludes the proof of (38) when

|∇f(0)| 6= 0.

Let us now consider the case when |∇f(0)| = 0. According to item (b), 0 is a

saddle point of f . According to Lemma 9 and since 0 is a non degenerate saddle

point of f , for r > 0 small enough, {x ∈ R
d, |x| < r and f(x) < f(0)} has two

connected components which are denoted by A1 and A2. To prove (38), let us argue

by contradiction and let us assume that 0 ∈ ∂C1,ℓ ∩ ∂C1,k for some ℓ ∈ {1, . . . ,N1}
with ℓ 6= k. Since both C1,k and C1,ℓ meet A1 ∪A2, the same arguments as those used

to prove (34) and (35) then lead, up to switching A1 and A2, to

C1,k ∩ {x ∈ R
d, |x| < r} = A1 and C1,ℓ ∩ {x ∈ R

d, |x| < r} = A2

and to

{x ∈ R
d, |x| < r and f(x) < f(0)} = A1 ∪ A2 ⊂ {xd < 0}. (39)

This imposes that the eigenvector ed of Hess f(0) associated with its negative eigen-

value satisfies

ed ∈ {xd = 0}.

Indeed, if it was not the case, an order 2 Taylor expansion of t 7→ f(t ed) at t = 0

would imply that f − f(0) admits negative values in {xd > 0} ∩ {|x| < r} for every

r > 0, contradicting (39). Thus, ed ∈ {xd = 0}. Then, the order 2 Taylor expansion of
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t 7→ f(t ed) at t = 0 shows that f−f(0) admits negative values in {xd = 0}∩{|x| < r}
for every r > 0, which also contradicts (39). This concludes the proof of (38) when

|∇f(0)| = 0.

Step 3b. Proof of (29). According to (38), for all ℓ 6= k, it holds ∂C1,k ∩ ∂C1,ℓ ⊂ Ω.

Let us now consider z ∈ ∂C1,k ∩∂C1,ℓ when the latter set in non empty, which implies

that C1,k and C1,ℓ are two connected components of {f < f(z)}. Then, for r > 0

small enough, {f < f(z)} ∩B(z, r) has at least two connected components, respec-

tively included in C1,k and in C1,ℓ. From Lemma 9, z is then a saddle point of f

and, according to Definition 10, it thus belongs to U
ssp
1 (Ω). This concludes the proof

of (29) and then the proof of Proposition 12.

We are now in position to state the following assumption which will be used to

construct the maps j and Cj at the end of this section. Before stating it, let us recall

that from item (b) in Proposition 12, any point z belonging to ∂C1,k ∩ ∂Ω for some

k ∈ {1, . . . ,N1} and such that |∇f(z)| = 0 is a saddle point of f . Using moreover

(29), such a z does not belong to C1,ℓ when ℓ ∈ {1, . . . ,N1} \ {k}.

Assumption (H1). The function f : Ω → R is a C∞ Morse function such that U0 6=
∅ and whose principal wells C1,1, . . . ,C1,N1 defined in Definition 7 satisfy the following

property: for every k ∈ {1, . . . ,N1} and every z ∈ ∂C1,k ∩ ∂Ω such that |∇f(z)| =
0, the unit outward normal vector nΩ(z) to Ω at z is an eigenvector of Hess f(z)

associated with its negative eigenvalue, where Hess f(z) denotes the endomorphism of

TzΩ canonically associated with the symmetric bilinear form Hess f(z) : TzΩ×TzΩ →
R via the metric g.

When (H1) is satisfied, according to Proposition 12, the sublevel sets {f < f(z)}
have the following local structure near the points z ∈ ⋃N1

k=1 ∂C1,k ∩ ∂Ω.

Corollary 14. Let f : Ω → R be a C∞ Morse function satisfying (H1). Then, for

all k ∈ {1, . . . ,N1} such that ∂C1,k ∩ ∂Ω 6= ∅ and for all z ∈ ∂C1,k ∩ ∂Ω, one has:

(a) If |∇f(z)| 6= 0, z is a local minimum of f |∂Ω and ∂nΩf(z) > 0 (see Figure 1).

(b) If |∇f(z)| = 0, z is a saddle point of f and the unit outward normal vector nΩ(z)

to Ω at z is an eigenvector of Hess f(z) associated with its negative eigenvalue.

Moreover, the point z is a non degenerate local minimum of f |∂Ω (see Figure 2).

Note that when (H1) is satisfied, it follows from Corollary 14 that the points z ∈⋃N1
k=1 ∂C1,k ∩ ∂Ω such that |∇f(z)| = 0 are isolated in

⋃N1
k=1 ∂C1,k ∩ ∂Ω. Indeed,

they are non degenerate critical points of f |∂Ω and
⋃N1
k=1 ∂C1,k ∩ ∂Ω is composed of

critical points of f |∂Ω. Note also that this is in general not the case for the points

z ∈ ⋃N1
k=1 ∂C1,k ∩ ∂Ω such that |∇f(z)| 6= 0.

Remark 15. When (H1) holds, it follows from items (a) and (b) in Corollary 14 that

the elements of
⋃N1
k=1

(
∂C1,k∩∂Ω

)
play geometrically the role of saddle points of f in Ω.

Indeed, when f is extended by −∞ outside Ω (this extension is consistent with the

22



∇f(z) = ∂nΩf(z) nΩ(z)
z

Ω C1,k

∂Ω{
f > f(z)

}

{
f > f(z)

}

{
f = f(z)

}

Figure 1: Behaviour of f in a neighborhood of z ∈ ∂C1,k ∩ ∂Ω when |∇f(z)| 6= 0 and

z is isolated in ∂C1,k ∩ ∂Ω.

nΩ(z)

∂Ω

Ω
z

C1,k

W+(z)

{
f > f(z)

}

{
f > f(z)

}

{
f = f(z)

}

Figure 2: Behaviour of f in a neighborhood of z ∈ ∂C1,k ∩ ∂Ω when |∇f(z)| = 0 and

(H1) is satisfied. On this figure, W+(z) is the stable manifold of z for the

dynamics Ẋ = −∇f(X).

Dirichlet boundary conditions used to define ∆D
f,h), the points z ∈ ⋃N1

k=1 ∂C1,k∩∂Ω are

local minima of f |∂Ω and local maxima of f |Dz , where Dz is the straight line passing

through z and orthogonal to ∂Ω at z. Note however that when |∇f(z)| 6= 0, z can

be a degenerate local minimum of f |∂Ω (which can even be constant around z). This

extends the definition of generalized saddle points of f in ∂Ω as introduced in [17,

Definition 3.2.2] to the case when f |∂Ω is not a Morse function and f has critical

points on ∂Ω. Moreover, when (H1) does not hold, the points z ∈ ⋃N1
k=1 ∂C1,k ∩ ∂Ω

such that |∇f(z)| = 0, which are thus saddle points of f according to Proposition 12,

do actually not necessarily play the role of saddle points of f in Ω in the above sense,

as explained in Remark 16 below.

Remark 16. Let k ∈ {1, . . . ,N1} and z ∈ ∂C1,k ∩ ∂Ω be such that |∇f(z)| = 0.

We recall that, according to Proposition 12, z is a saddle point of f , and that, by
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Corollary 14, when nΩ(z) is an eigenvector of Hess f(z) associated with its negative

eigenvalue, z is a local minimum of f |∂Ω and thus a geometrical saddle point of f

in Ω in the sense of Remark 15. We show below that the latter property fails to be

true in general when z ∈ ∂C1,k ∩ ∂Ω is only assumed to be a critical point, and is

hence a saddle point, of f . To this end, let us consider, in the canonical basis (ex, ey)

of R2, the Morse function

ψ(x, y) = y2 − x2 ,

whose only critical point in R
2 is 0 and is a saddle point. Let us then introduce the

two vectors

u =
1√
2
(ex − ey) and v =

1√
2
(ex + ey).

In the orthonormal basis (u, v), the function ψ writes ψ(u, v) = −2uv. Hence, defining

the smooth curve

Γ := {p = (u, u2) in the basis (u, v), u ∈ R} (see Figure 3),

it holds ψ|Γ : p = (u, u2) ∈ Γ 7→ −2u3 and 0 is then not a local minimum of f |Γ. In

particular, if, in a neighborhood of 0 in R
2, ∂Ω coincides with Γ and Ω is chosen such

that nΩ(0) = v, and if f = ψ, then, locally around 0 in Ω, {f < 0} ∩ {x < 0} is a

connected component of {f < 0} included in Ω such that {f < 0} ∩ {x < 0}∩∂Ω = {0}
but 0 is not a local minimum of f |∂Ω (see Figure 3).

ex0

ey

{
ψ < 0

}

{
ψ < 0

}

{
ψ > 0

}

{
ψ > 0

}
Γ

v

u

{
ψ = 0

}

Figure 3: The function ψ and the curve Γ in a neighborhood of 0 in R
2.

When (H1) holds, one adapts the definition of a separating saddle point of f in Ω

given in Definition 10 to our setting by: i) only considering the relevant elements of

U
ssp
1 (Ω) for our study, and ii) taking into account the points in

⋃N1
i=1 ∂Ci ∩ ∂Ω which

are, according to Remark 15, geometrical saddle points of f in Ω. Note in particular

that with this definition of Ussp
1 (Ω) given below, it does not hold U

ssp
1 (Ω) ⊂ U

ssp
1 (Ω)

in general.

Definition 17. Let f : Ω → R be a C∞ Morse function satisfying (H1) and let

C1,1, . . . ,C1,N1 be its principal wells defined in Definition 7.
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1. A point z ∈ Ω is a separating saddle point of f in Ω if

either z ∈
N1⋃

k=1

(
C1,k ∩ U

ssp
1 (Ω)

)
, or z ∈

N1⋃

k=1

(
∂C1,k ∩ ∂Ω

)
.

Notice that in the first case z ∈ Ω whereas in the second case z ∈ ∂Ω. The set

of separating saddle points of f in Ω is denoted by U
ssp
1 (Ω).

2. For any σ ∈ R, a connected component C of the sublevel set {f < σ} in Ω is

called a critical connected component of f if ∂C ∩ U
ssp
1 (Ω) 6= ∅. The family of

critical connected components is denoted by Ccrit.

Equation (28) and item 1 in Definition 17 imply that the principal wells (C1,ℓ)ℓ∈{1,......,N1}
are critical connected components, as stated in the next corollary. This will be used

in the first step of the construction of the maps j and Cj.

Corollary 18. Let f : Ω → R be a C∞ Morse function satisfying (H1). Then, it

holds:

for all ℓ ∈ {1, . . . ,N1}, ∂C1,ℓ ∩ U
ssp
1 (Ω) 6= ∅.

3.3 Construction of the maps j and Cj

Let us now construct the maps j and Cj, which respectively associate each local min-

imum of f in Ω with a set of Ussp
1 (Ω) and with an element of Ccrit (see Definition 17).

We closely follow the presentation of [10, Section 2.4] in the case when f does not

have any critical point on the boundary and f |∂Ω is a Morse function and which was

inspired by [19] in the case without boundary.

Let us assume that f : Ω → R is a C∞ Morse function satisfying (H1) (and thus

such that U0 6= ∅.) The maps j and Cj are then defined recursively as follows.

1. Initialization (q = 1). Let us consider the principal wells C1,1, . . . ,C1,N1 of f

in Ω (see Definition 7).

For every ℓ ∈ {1, . . . ,N1}, let us choose

x1,ℓ ∈ argmin
C1,ℓ

f.

Then, for all ℓ ∈ {1, . . . ,N1}, one defines

κ1,ℓ := max
C1,ℓ

f, Cj(x1,ℓ) := C1,ℓ, and j(x1,ℓ) := ∂C1,ℓ ∩ U
ssp
1 (Ω). (40)

From Definitions 6 and 7, ∂Cj(x1,ℓ) ⊂ {f = κ1,ℓ} for all ℓ ∈ {1, . . . ,N1}. Accord-

ing moreover to Corollary 18, one has j(x1,ℓ) 6= ∅ for all ℓ ∈ {1, . . . ,N1} and thus,

Cj(x1,ℓ) ∈ Ccrit (see item 2 in Definition 17). Finally, it holds from (29),

∀ℓ 6= q ∈ {1, . . . ,N1}2, ∂C1,ℓ ∩ ∂C1,q ⊂ U
ssp
1 (Ω).

2. First step (q = 2).
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From item 2 in Proposition 11, for each ℓ ∈ {1, . . . ,N1}, C1,ℓ∩U0 6= {x1,ℓ} if and only

if Ussp
1 (Ω) ∩ C1,ℓ 6= ∅. Consequently, one has:

U
ssp
1 (Ω)

⋂(
∪N1
ℓ=1 C1,ℓ

)
6= ∅ iff {x1,1, . . . , x1,N1} 6= U0.

If Ussp
1 (Ω)

⋂(
∪N1
ℓ=1 C1,ℓ

)
= ∅ (or equivalently if N1 = m0), the constructions of the

maps j and Cj are finished and one goes to item 4 below. If Ussp
1 (Ω)

⋂(
∪N1
ℓ=1C1,ℓ

)
6= ∅,

one defines

κ2 := max
x∈Ussp

1 (Ω)
⋂(

∪N1
ℓ=1C1,ℓ

) f(x) ∈
(

min
∪N1
ℓ=1C1,ℓ

f, max
ℓ∈{1,...,N1}

κ1,ℓ

)
.

The set
N1⋃

ℓ=1

(
C1,ℓ ∩ {f < κ2}

)

is then the union of finitely many connected components. We denote by C2,1, . . . ,C2,N2

(with N2 ≥ 1) the connected components of
⋃N1
ℓ=1

(
C1,ℓ ∩ {f < κ2}

)
which do not

contain any of the minima {x1,1, . . . , x1,N1}. From item 2 in Proposition 11 (applied

for each ℓ ∈ {1, . . . ,N1} with C = C1,ℓ ∩ {f < κ2} there) and item 2 in Definition 17,

∀ℓ ∈ {1, . . . ,N2}, C2,ℓ ∈ Ccrit.

Let us mention that the other connected components (i.e. those containing

the points {x1,1, . . . , x1,N1}) may be not critical. For each 1 ≤ ℓ ≤ N2, one then con-

siders an element x2,ℓ arbitrarily chosen in argminC2,ℓ
f = argminC2,ℓ

f (the equality

follows from ∂C2,ℓ ⊂ {f = κ2}) and one defines:

Cj(x2,ℓ) := C2,ℓ and j(x2,ℓ) := ∂C2,ℓ ∩ U
ssp
1 (Ω) (6= ∅) ⊂ U

ssp
1 (Ω) ∩ {f = κ2}.

3. Recurrence (q ≥ 3).

If all the local minima of f in Ω have been labeled at the end of the previous step,

i.e. if ∪2
j=1{xj,1, . . . , xj,Nj

} = U0 (or equivalently if N1 + N2 = m0), the constructions

of the maps Cj and j are finished, all the local minima of f have been labeled and

one goes to item 4 below. If it is not the case, from item 2 in Proposition 11, there

exists m ∈ N
∗ such that

for all q ∈ {2, . . . ,m+ 1}, Ussp
1 (Ω)

⋂ N1⋃

ℓ=1

(
C1,ℓ ∩ {f < κq}

)
6= ∅, (41)

where the decreasing sequence (κq)q=3,...,m+2 is defined recursively by

κq := max
x∈Ussp

1 (Ω)
⋂⋃N1

ℓ=1

(
C1,ℓ∩{f<κq−1}

) f(x) ∈
(

min
∪N1
ℓ=1C1,ℓ

f, κq−1

)
.

Let now m∗ ∈ N
∗ be the largest m ∈ N

∗ such that (41) holds. Notice that m∗ is well

defined since the cardinal of Ussp
1 (Ω) is finite. By definition of m∗, one has moreover:

U
ssp
1 (Ω)

⋂ N1⋃

ℓ=1

(
C1,ℓ ∩ {f < κm∗+2}

)
= ∅. (42)
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Then, one repeats recursively m∗ times the procedure described above defining(
C2,ℓ, j(x2,ℓ),Cj(x2,ℓ)

)
1≤ℓ≤N2

: for q ∈ {2, . . . ,m∗+1}, one defines (Cq+1,ℓ)ℓ∈{1,...,Nq+1}
as the set of the connected components of

N1⋃

ℓ=1

(
C1,ℓ ∩ {f < κq+1}

)

which do not contain any of the local minima ∪qj=1{xj,1, . . . , xj,Nj
} of f in Ω which

have been previously labeled. From items 1 and 2 in Proposition 11 (applied for each

ℓ ∈ {1, . . . ,N1} with C = C1,ℓ ∩ {f < κq+1} there),

∀ℓ ∈ {1, . . . ,Nq+1}, Cq+1,ℓ ∈ Ccrit.

For ℓ ∈ {1, . . . ,Nq+1}, we then associate with each Cq+1,ℓ one point xq+1,ℓ arbitrarily

chosen in argminCq+1,ℓ
f and we define:

Cj(xq+1,ℓ) := Cq+1,ℓ and j(xq+1,ℓ) := ∂Cq+1,ℓ ∩ U
ssp
1 (Ω) (6= ∅) ⊂ {f = κq+1}.

From (42) and item 2 in Proposition 11, U0 = ∪m∗+2
j=1 {xj,1, . . . , xj,Nj

}. Thus, all the

local minima of f in Ω are labeled. This finishes the constructions of the maps j and

Cj. We refer to Figures 8 and 9 in [10] to illustrate these constructions.

4. Properties of the maps j and Cj.

Let us now give important features of the map j which follow directly from its con-

struction and which will be used in the sequel. Two maps have been defined

Cj : U0 −→ Ccrit and j : U0 −→ P(Ussp
1 (Ω)) (43)

which are clearly injective. For every x ∈ U0, the set j(x) is the set made of the

separating saddle points of f in Ω on ∂Cj(x). Notice that the j(x), x ∈ U0, are not

disjoint in general. For all x ∈ U0, the set f(j(x)) contains exactly one value, which

will be denoted by f(j(x)). Moreover, for all x ∈ U0, it holds

f(j(x))− f(x) > 0. (44)

Since ∪N1
ℓ=1C1,ℓ ⊂ Ω (see the first statement in (27)), one has Cj(x) ⊂ Ω for all x ∈ U0.

Moreover, only the boundaries of the principal wells can contain separating saddle

points of f on ∂Ω, i.e.:

∀x ∈ U0 \ {x1,1, . . . , x1,N1}, j(x) ⊂ U
ssp
1 (Ω) (see Definition 10). (45)

In addition, for all x, y ∈ U0 such that x 6= y, since by construction j(y) ∩ j(x) =

∂Cj(y) ∩ ∂Cj(x) (see (29)), one has two possible cases:

(i) either j(x) ∩ j(y) = ∅, in which case either Cj(y) ∩ Cj(x) = ∅ or, up to inter-

changing x with y, Cj(y) ⊂ Cj(x),

(ii) or j(x) ∩ j(y) 6= ∅, in which case f(j(x)) = f(j(y)) and the sets Cj(x) and Cj(y)

are two different connected components of {f < f(j(x))}.
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Finally, for all ℓ ∈ {1, . . . ,N1} and all x ∈ U0 ∩ Cj(x1,ℓ) \ {x1,ℓ}, note that

f(x) ≥ f(x1,ℓ) , f(j(x)) < f(j(x1,ℓ)) and then f(j(x))− f(x) < f(j(x1,ℓ))− f(x1,ℓ).

Let us also mention that the maps j and Cj are not uniquely defined as soon as

there exists some Ck,ℓ, k ≥ 1, ℓ ∈ {1, . . . ,Nk}, such that f has more than one global

minimum in Ck,ℓ. However, this non-uniqueness has no influence on the results proven

below (in particular Theorems 2 and 3).

Remark 19. The relevant wells of the potential f for our study are the sets Cj(x),

x ∈ U0, and the elements of C (see Definition 7) are called the principal wells of f in

Ω since, for any x ∈ U0, Cj(x) is either an element of C or a subset of an element of C.

Let us end this section with the following result which will be used in the proof of

Proposition 33 below.

Lemma 20. Let us assume that f : Ω → R is a C∞ Morse function which satis-

fies (H1). Let (Cj(x))x∈U0 be as defined in (43) and let k ≥ 1. Let us consider, for

some m ≥ 1,
{
C1, . . . ,Cm

}
⊂

{
Cj(xk,1), . . . ,Cj(xk,Nk

)
}
such that

{ ⋃m
ℓ=1 C

ℓ is connected, and

for all C ∈
{
Cj(xk,1), . . . ,Cj(xk,Nk

)
}
\
{
C1, . . . ,Cm

}
, C ∩⋃m

ℓ=1 C
ℓ = ∅.

Then, there exist ℓ0 ∈ {1, . . . ,m} and z ∈ U
ssp
1 (Ω) such that

z ∈ ∂Cℓ0 \
(
∪mℓ=1,ℓ 6=ℓ0 ∂C

ℓ
)
. (46)

Proof. Let
{
C1, . . . ,Cm

}
be as in Lemma 20.

When k = 1, the set
{
Cj(x1,1), . . . ,Cj(x1,N1)

}
is the set of the principal wells of f , i.e.

the set C of Definition 7, and the proof of Lemma 46 follows exactly the same lines

as the proof of [10, Lemma 21].

Let us now consider the case when k ≥ 2. Let us first notice that according to the

construction of the maps j and Cj, for all ℓ ∈ {1, . . . ,m}, Cℓ is a connected component

of {f < κk} which has been labelled at the k-th iteration. Since
⋃m
ℓ=1 C

ℓ is connected,

there exists q ∈ {1, . . . ,N1} such that
⋃m
ℓ=1 C

ℓ ⊂ C1,q = {f < κ1,q}, where, since k ≥
2, κk < κ1,q. Since, from Corollary 18, it holds ∅ 6= ∂C1,q ∩U

ssp
1 (Ω) ⊂ {f = κ1,q}, one

can define κ∗ ∈ (κk, κ1,q] as the minimum of the λ ∈ (κk, κ1,q] such that the connected

component of {f < λ} ∩ C1,q containing
⋃m
ℓ=1 C

ℓ is critical (see Definition 17). We

then define C∗ as the connected component of {f < κ∗} ∩ C1,q containing
⋃m
ℓ=1 C

ℓ.

By definition, C∗ is critical, and, from the construction of the maps j and Cj, it thus

holds:

C
∗⋂∪k−1

j=1{xj,1, . . . , xj,Nj
} 6= ∅. (47)

Moreover, since all the Cℓ’s are critical, and thus C∗ ∩ U
ssp
1 (Ω) 6= ∅, the definitions

of κ∗ and C∗ together with item 2 in Proposition 11 applied to C = C∗ imply that

κk = max
y∈C∗∩Ussp

1 (Ω)
f(y),
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where we recall that κk < κ∗. Therefore, using again item 2 in Proposition 11 with

C = C∗,
{f ≤ κk} ∩ C

∗ is connected and C
∗ ∩ U0 ⊂ {f < κk}, (48)

where the first claim follows from the fact that, for every λ ∈ (κk, κ
∗), C∗ ∩ {f < λ}

is connected.

To prove (46), one argues by contradiction assuming that (46) is not satisfied. It

then follows from the local structure of the sublevel sets of a Morse function given in

Lemma 9 that there exists some open set O ⊂ Ω such that O ∩ {f ≤ κk} =
⋃m
ℓ=1 C

ℓ

(see, in [10], the arguments used to prove Equation (50) there for more details). In

other words, the connected set
⋃m
ℓ=1 C

ℓ is open in {f ≤ κk} and thus, since it is

closed and then closed in {f ≤ κk}, it is a connected component of {f ≤ κk}. It

thus follows from (48) that {f ≤ κk} ∩ C∗ =
⋃m
ℓ=1 C

ℓ contains all the local minima

of f in C∗. According to (47), this implies, since
⋃m
ℓ=1 ∂C

ℓ does not contain any

local minimum of f , that at least one of the Cℓ’s, ℓ ∈ {1, . . . ,m}, does intersect

∪k−1
j=1{xj,1, . . . , xj,Nj

}. This leads to a contradiction since the Cℓ’s (ℓ ∈ {1, . . . ,m})
are labelled at the k-th iteration (k ≥ 2) and thus, each Cℓ (ℓ ∈ {1, . . . ,m}) does not
intersect ∪k−1

j=1{xj,1, . . . , xj,Nj
}. This concludes the proof of Lemma 20.

4 Quasi-modal construction

The aim of this section is to construct, for every x ∈ U0, a quasi-mode ψx associated

with x, or more exactly with Cj(x), and whose energy in the limit h → 0 will be

shown to give the asymptotic behaviour of one of the m0 first eigenvalues of ∆D
f,h as

exhibited in Theorems 2’ and 2.

More precisely, our quasi-modes (ψx)x∈U0 are built as suitable normalisations of aux-

iliary functions (φx)x∈U0 , which are first explicitly constructed in a neighborhood of

the elements of j(x) ⊂ Ω, and then suitably extended to Ω. This construction is

partly inspired by the construction made in [9] when Ω = R
d, see also [5, 22,32]. We

also refer to [11,16,17,19,24,27,29] for related constructions.

This section is organized as follows. In Section 4.1, one introduces adapted coordinate

systems in a neighborhood of the elements of j(x), where x ∈ U0, which then permit

in Section 4.2 to construct the auxiliary functions φx in a neighborhood of j(x). The

functions (φx)x∈U0 and (ψx)x∈U0 are then defined in Section 4.3.

Before, let us introduce the following assumption which will be used throughout the

rest of this work.

Assumption (H2). The function f : Ω → R is a C∞ Morse function such that U0 6=
∅. Moreover, for all z ∈ ⋃N1

k=1 ∂C1,k∩∂Ω (see Definition 7) such that |∇f(z)| 6= 0 (we

recall that in this case, z is a local minimum of f |∂Ω by item (a) in Proposition 12),

z is a non degenerate local minimum of f |∂Ω . (49)
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When f satisfies the assumptions (H1) and (H2), it holds

Card
( N1⋃

k=1

∂C1,k ∩ ∂Ω
)
<∞ and then Card

( ⋃

x∈U0

j(x)
)
<∞. (50)

Indeed, Card
(⋃

x∈U0
j(x) ∩ Ω

)
< ∞ since

⋃
x∈U0

j(x) ∩ Ω is composed of non degen-

erate saddle points of f in Ω (see the construction of the map j in Section 3.3 and

Definition 10) and, according to item (b) in Corollary 14 and to (49), the elements of

⋃

x∈U0

j(x) ∩ ∂Ω =

N1⋃

k=1

∂C1,k ∩ ∂Ω are non degenerate local minima of f |∂Ω. (51)

In the rest of this section, one assumes that f : Ω → R is a C∞ Morse function which

satisfies the assumptions (H1) and (H2).

4.1 Adapted coordinate systems

Let us recall that for any x ∈ U0, from the construction of the map j made in Sec-

tion 3.3 and from (H1)–(H2), j(x) contains saddle points of f in Ω (see Definition 17)

which are in finite number and may be of two kinds: the elements z ∈ j(x) ∩ ∂Ω,

such that either |∇f(z)| 6= 0 or |∇f(z)| = 0, and the elements z ∈ j(x)∩Ω, such that

|∇f(z)| = 0.

For any x ∈ U0 and z ∈ j(x), we first construct a coordinate systems in a neighborhood

of z as follows.

1.a) The case when z ∈ ∂Ω and |∇f(z)| 6= 0.

Let us recall that, thanks to (H2), z is in this case a non degenerate local minimum

of f |∂Ω and that µ := ∂nΩf(z) > 0. Then, according for example to [17, Section 3.4],

there exists a neighbourhood Vz of z in Ω and a coordinate system

p ∈ Vz 7→ v = (v′, vd) = (v1, . . . , vd−1, vd) ∈ R
d−1 ×R− (52)

such that

v(z) = 0 , {p ∈ Vz, vd(p) < 0} = Ω ∩ Vz, {p ∈ Vz, vd(p) = 0} = ∂Ω ∩ Vz, (53)

and

∀i, j ∈ {1, . . . , d}, gz
( ∂

∂vi
(z),

∂

∂vj
(z)

)
= δij and

∂

∂vd
(z) = nΩ(z), (54)

with moreover, in the v coordinates,

f(v′, vd) = f(0) + µvd +
1

2
(v′)THess f |{vd=0}(0) v

′. (55)

For δ1 > 0 and δ2 > 0 small enough, one then defines the following neighborhood of z

in ∂Ω,

V
δ2
∂Ω(z) := {p ∈ Vz, vd(p) = 0 and |v′(p)| ≤ δ2} (see (52)-(53)) (56)
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and the following neighbourhood of z in Ω,

V
δ1,δ2

Ω
(z) =

{
p ∈ Vz, |v′(p)| ≤ δ2 and vd(p) ∈ [−2δ1, 0]

}
. (57)

1.b) The case when z ∈ ∂Ω and |∇f(z)| = 0.

Let Vz be a neighborhood of z in Ω and let

p ∈ Vz 7→ v = (v′, vd) ∈ R
d−1 × R− (58)

be a coordinate system such that

v(z) = 0 , {p ∈ Vz, vd(p) < 0} = Ω ∩ Vz , {p ∈ Vz, vd(p) = 0} = ∂Ω ∩ Vz , (59)

and

∀i, j ∈ {1, . . . , d} , gz
( ∂

∂vi
(z),

∂

∂vj
(z)

)
= δij and

∂

∂vd
(z) = nΩ(z) . (60)

Let us also recall that z is a non degenerate saddle point of f in ∂Ω such that,

according to (H1), nΩ(z) is an eigenvector associated with the negative eigenvalue µd
of Hess f(z). Thus, denoting by µ1, . . . , µd−1 the positive eigenvalues of Hess f(z), the

coordinates v′ = (v1, . . . , vd−1) can be chosen so that it holds, in the v coordinates,

f(v) = f(0)+
1

2

d∑

j=1

µj v
2
j +O(|v|3) = f(0)+

1

2

d−1∑

j=1

|µj | v2j −
1

2
|µd| v2d+O(|v|3) . (61)

Therefore, up to choosing Vz again smaller, one can assume that

argmin
Vz

(
f(v) + |µd|v2d

)
= {z}. (62)

For δ1 > 0 and δ2 > 0 small enough, one defines the following neighborhood of z

in ∂Ω,

V
δ2
∂Ω(z) := {p ∈ Vz, vd(p) = 0 and |v′(p)| ≤ δ2} (see (58)-(59)), (63)

and the following neighbourhood of z in Ω,

V
δ1,δ2

Ω
(z) =

{
p ∈ Vz, |v′(p)| ≤ δ2 and vd(p) ∈ [−2δ1, 0]

}
. (64)

2. The case when z ∈ Ω.

Let us recall that in this case z is a non degenerate saddle point of f in Ω. Let

(e1, . . . , ed) be an orthonormal basis of eigenvectors of Hess f(z) associated with its

eigenvalues (µ1, . . . , µd) with µd < 0 and, for all j ∈ {1, . . . , d − 1}, µj > 0. Then,

since ed is normal to W+(z), as in the case when z ∈ ∂Ω and |∇f(z)| = 0 and up to

replacing ed by −ed, there exists a coordinate system

p ∈ Vz 7→ v = (v′, vd) ∈ R
d−1 ×R (65)

such that

v(z) = 0 , Cj(x)∩Vz ⊂ {p ∈ Vz, vd(p) < 0} , {p ∈ Vz, vd(p) = 0} = W+(z)∩Vz, (66)

31



and

∀i, j ∈ {1, . . . , d} , gz
( ∂

∂vi
(z),

∂

∂vj
(z)

)
= δij and

∂

∂vd
(z) = ed, (67)

with moreover, in the v coordinates,

f(v) = f(0)+
1

2

d∑

j=1

µj v
2
j +O(|v|3) = f(0)+

1

2

d−1∑

j=1

|µj | v2j −
1

2
|µd| v2d+O(|v|3). (68)

Then, up to choosing Vz smaller, one can assume that

argmin
Vz

(
f(v) + |µd|v2d

)
= {z}. (69)

Then, for δ1 > 0 and δ2 > 0 small enough, one defines the following neighbourhood

of z in W+(z) (see (65) and (66)),

V
δ2
W+(z) := {p ∈ Vz, vd(p) = 0 and |v′(p)| ≤ δ2} ⊂ W

+(z), (70)

and the following neighbourhood of z in Ω,

V
δ1,δ2

Ω
(z) =

{
p ∈ Vz, |v′(p)| ≤ δ2 and vd ∈ [−2δ1, 2δ1]

}
. (71)

Notice that one has:

argmin
V
δ2
W+(z)

f = {z}. (72)

Some properties of these coordinate systems.

The sets defined in (57), (64), and (71) are cylinders centred at z in the respective

system of coordinates. Up to choosing δ1 > 0 and δ2 > 0 smaller, one can assume

that all these cylinders are two by two disjoint. Schematic representations of these

sets introduced in (56)–(71) are given in Figures 4, 5 and 6.

Let us conclude this section by giving several properties of the sets previously intro-

duced which will be needed for upcoming computations. Let us recall that, from (44),

when z ∈ j(x) for some x ∈ U0, it holds f(z) > f(x). Moreover, by construction of

the map j in Section 3.3, it obviously holds U0 ∩ ∪x∈U0j(x) = ∅. Therefore, up to

choosing δ1 > 0 and δ2 > 0 small enough, the following properties are satisfied:

1. When z ∈ ∂Ω ∩ j(x) for some x ∈ U0, it holds

min
V
δ1,δ2
Ω

(z)

f > f(x), V
δ1,δ2

Ω
(z) ∩ U0 = ∅, (73)

and

argmin
V
δ2
∂Ω(z)

f = {z} (which follows from (51)). (74)

2. When z ∈ Ω ∩ j(x) for some x ∈ U0, it holds:

min
V
δ1,δ2
Ω

(z)

f > f(x) and V
δ1,δ2

Ω
(z) ∩ U0 = ∅. (75)
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The parameter δ2 > 0 is now kept fixed. Finally, using (72), (74), and up to choosing

δ1 > 0 smaller, there exists r > 0 such that (see Figures 4, 5 and 6):

1. For all z ∈ ∂Ω ∩ j(x) for some x ∈ U0,

{
p ∈ Vz, |v′(p)| = δ2 and vd(p) ∈ [−2δ1, 0]

}
⊂ {f ≥ f(z) + r}. (76)

2. For all z ∈ Ω ∩ j(x) for some x ∈ U0,

{
p ∈ Vz, |v′(p)| = δ2 and vd ∈ [−2δ1, 2δ1]

}
⊂ {f ≥ f(z) + r}. (77)

The parameter δ1 > 0 is now kept fixed.

vd

2δ1

v′

∂Ω

{
f < f(j(x))

}

{
f = f(j(x))

}{|v′| = δ2 and vd ∈ [−2δ1, 0]}

z

δ2

Ω

Cj(x)

{
f > f(j(x))

}

{
f > f(j(x))

}

V
δ1,δ2

Ω
(z)

Figure 4: Schematic representation of the cylinder V
δ1,δ2

Ω
(z), in the v-coordinates,

when z ∈ j(x) ∩ ∂Ω (for some x ∈ U0) is such that |∇f(z)| 6= 0. One

recalls that j(x) ⊂ ∂Cj(x) and that, in this case, z is a non degenerate local

minimum of f |∂Ω and ∂nΩf(z) > 0.

4.2 Quasi-modal construction near the elements of ∪x∈U0j(x)

Let us introduce an even cut-off function χ ∈ C∞(R, [0, 1]) such that

supp χ ⊂ [−δ1, δ1] and χ = 1 on
[
− δ1

2
,
δ1
2

]
. (78)

Let z ∈ ⋃
x∈U0

j(x). Then, the function ϕz associated with z and x is defined as

follows:

1. Let us assume that z ∈ ∂Ω.
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vd

2δ1

v′

∂Ω

V
δ1,δ2

Ω
(z)

z

{
f < f(j(x))

}

{
f = f(j(x))

}{|v′| = δ2 and vd ∈ [−2δ1, 0]}

δ2

Ω

Cj(x)

{
f > f(j(x))

}

{
f > f(j(x))

}

Figure 5: Schematic representation of the cylinder V
δ1,δ2

Ω
(z), in the v-coordinates,

when z ∈ j(x) ∩ ∂Ω (for some x ∈ U0) is such that |∇f(z)| = 0. One

recalls that j(x) ⊂ ∂Cj(x) and that, in this case, z is a non degenerate

saddle point of f and a non degenerate local minimum of f |∂Ω.

vd

4δ1

z

v′

W+(z)

V
δ1,δ2

Ω
(z)

{
f < f(j(x))

} {
f < f(j(x))

}

{
f = f(j(x))

}{|v′| = δ2 and vd ∈ [−2δ1, 2δ1]}

Cj(x)

{
f > f(j(x))

}

{
f > f(j(x))

}

δ2

Figure 6: Schematic representation of the cylinder V
δ1,δ2

Ω
(z), in the v-coordinates,

when z ∈ j(x)∩Ω for some x ∈ U0. One recalls that j(x) ⊂ ∂Cj(x) and that,

in this case, z is a separating saddle point of f in Ω (see Definition 10).

(a) When |∇f(z)| 6= 0, one defines (see (52), (53), and (57)):

∀v = (v′, vd) ∈ v
(
V
δ1,δ2

Ω
(z)

)
, ϕz(v

′, vd) :=

∫ 0
vd
χ(t)e

2
h
µ tdt

∫ 0
−2δ1

χ(t)e
2
h
µ tdt

, (79)

where we recall that µ = ∂nΩf(z) > 0. Note that the function ϕz only
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depends on the variable vd. Moreover, it holds (see (78)),

{
ϕz ∈ C∞(

v
(
V
δ1,δ2

Ω
(z)

)
, [0, 1]

)
and

∀(v′, vd) ∈ v
(
V
δ1,δ2

Ω
(z)

)
, ϕz(v

′, vd) = 1 if vd ∈ [−2δ1,−δ1].
(80)

(b) When |∇f(z)| = 0, one defines (see (58), (59), and (64)):

∀v = (v′, vd) ∈ v
(
V
δ1,δ2

Ω
(z)

)
, ϕz(v

′, vd) :=

∫ 0
vd
χ(t)e−

1
h
|µd| t2dt

∫ 0
−2δ1

χ(t) e−
1
h
|µd| t2dt

, (81)

where we recall that µd < 0 is the negative eigenvalue of Hessf(z). The

function ϕz thus only depends on the variable vd and it holds

{
ϕz ∈ C∞(

v
(
V
δ1,δ2

Ω
(z)

)
, [0, 1]

)
and

∀(v′, vd) ∈ v
(
V
δ1,δ2

Ω
(z)

)
, ϕz(v

′, vd) = 1 if vd ∈ [−2δ1,−δ1].
(82)

2. Let us assume that z ∈ Ω. We recall that in this case, z is a separating saddle

point of f in Ω (by construction of the map j, see also Definition 10). Then,

one defines the function (see (65), (66), and (71)):

∀v = (v′, vd) ∈ v
(
V
δ1,δ2

Ω
(z)

)
, ϕz(v

′, vd) :=

∫ 2δ1
vd

χ(t) e−
1
h
|µd| t2dt

∫ 2δ1
−2δ1

χ(t) e−
1
h
|µd| t2dt

, (83)

where µd is the negative eigenvalue of Hess f(z). Again, ϕz only depends on

the variable vd and it holds:

ϕz ∈ C∞
(
v
(
V
δ1,δ2

Ω
(z)

)
, [0, 1]

)
(84)

and for all (v′, vd) ∈ v
(
V
δ1,δ2

Ω
(z)

)
,

ϕz(v
′, vd) = 1 if vd ∈ [−2δ1,−δ1] and ϕz(v

′, vd) = 0 if vd ∈ [δ1, 2δ1]. (85)

4.3 Construction of m0 quasi-modes for ∆D
f,h

In the following, one considers some arbitrary

x ∈ U0.

Let us recall the geometry of f near the boundary of the critical component ∂Cj(x).

Let us consider a point p ∈ ∂Cj(x) \ j(x). Since j(x) = ∂Cj(x)∩U
ssp
1 (Ω) and ∂Cj(x)∩

∂Ω ⊂ j(x), p ∈ Ω \ Ussp
1 (Ω). Thus, there are two possible cases:

• Either p is a saddle point of f in Ω. From Lemma 9, {f < f(j(x))}∩B(p, r) has

then, for r > 0 small enough, two connected components which are included

in Cj(x), since p is not separating (see Figure 8).

• Or p is not a saddle point of f in Ω. According to Lemma 9, {f < f(j(x))} ∩
B(p, r) is then connected for r > 0 small enough and is thus included in Cj(x).
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In conclusion, when p ∈ ∂Cj(x)\ j(x), {f < f(j(x))}∩B(p, r) is included in Cj(x)∩Ω

for r > 0 small enough. Moreover, one constructed in (57), (64), and (71), disjoint

cylinders in neighborhoods of each z ∈ ∪y∈U0j(y) which satisfy (73) and (75)–(77).

This makes possible the construction used in the definition below.

Definition 21. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2). Then U0 6= ∅ and, for each x ∈ U0, there exist two C∞ connected open

sets Ω1(x) and Ω2(x) of Ω satisfying the following properties:

1. For all x ∈ U0, it holds

Cj(x) ⊂ Ω1(x) ∪ ∂Ω and argmin
Ω1(x)

f = argmin
Cj(x)

f.

2. For all x ∈ U0, Ω2(x) ⊂ Ω1(x) and the strip Ω1(x) \ Ω2(x) equal:

Ω1(x) \Ω2(x) =
⋃

z∈j(x)
V
δ1,δ2

Ω
(z)

⋃
O1(x), (86)

where there exists c > 0 such that:

∀q ∈ O1(x), f(q) ≥ f(j(x)) + c. (87)

Notice that item 1, (86), (87), and the first statements in (73) and in (75) imply

that argmin
Ω1(x)

f = argmin
Ω2(x)

f = argmin
Cj(x)

f .

3. For all x, y ∈ U0 such that x 6= y, it holds (depending on the two possible cases

described in items 4.(i) and 4.(ii) in Section 3.3):

(i) If j(y) ∩ j(x) = ∅:
{

either Cj(y) ∩ Cj(x) = ∅ and Ω1(x) ∩ Ω1(y) = ∅,
or, up to switching x and y, Cj(y) ⊂ Cj(x) and Ω1(y) ⊂ Ω2(x).

(ii) If j(y) ∩ j(x) 6= ∅ (in this case, one recalls that f(j(y)) = f(j(x)) and

thus, Cj(y) and Cj(x) are two connected components of {f < f(j(x))}),
then:

Ω1(x) ∩ Ω1(y) =
⋃

z∈j(y)∩ j(x)

V
δ1,δ2

Ω
(z)

⋃
O2(x, y),

where O2(x, y) ⊂ O1(x) and O2(x, y)∩V
δ1,δ2

Ω
(z) = ∅ for all z ∈ j(y) ∪ j(x).

For x ∈ U0, schematic representations of Ω1(x), Ω2(x), and O1(x) are given in Fig-

ures 7 and 8. With the help of the sets Ω1(x) and Ω2(x) introduced in Definition 21,

one defines a smooth function φx : Ω → [0, 1] associated with each x ∈ U0 as follows.

Definition 22. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2). For each x ∈ U0, a function φx : Ω → [0, 1] is constructed as follows:
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1. For every z ∈ j(x), φx is defined on the cylinder V
δ1,δ2

Ω
(z) (see (57), (64), and

(71)) by

∀p ∈ V
δ1,δ2

Ω
(z), φx(p) := ϕz(v(p)), see (79), (81), and (83). (88)

2. From (80), (82), (84), (85), and the facts that Ω2(x) ⊂ Ω1(x) (see Definition 21)

and (86) holds, φx can be extended to Ω such that

φx = 0 on Ω \ Ω1(x), φx = 1 on Ω2(x), and φx ∈ C∞(Ω, [0, 1]). (89)

Notice that (89) implies that:

suppdφx ⊂ Ω1(x) \Ω2(x). (90)

Finally, in view of (79), (81), (83), and (86), φx can be chosen on O1 such that

for some C > 0 and for every h small enough (see indeed (99), (105), and (109)

below):

∀α ∈ N
d, |α| ∈ {1, 2},

∥∥∂αφx
∥∥
L∞(O1(x))

≤ C

h2
. (91)

W+(z1)

•{
f < f(j(x))

} •xCj(x)

{
f > f(j(x))

}

Ω1(x)

Ω2(x)

{
f > f(j(x))

}

{
f > f(j(x))

}

{
f > f(j(x))

}

∂Ω

z2

O1(x)

O1(x)

V
δ1,δ2

Ω
(z2)

V
δ1,δ2

Ω
(z1)

z1

Figure 7: Schematic representation of Ω2(x), Ω1(x), and O1(x) (see Definition 21).

On the figure, j(x) = {z1, z2} with z1 ∈ Ω and z2 ∈ ∂Ω (|∇f(z2)| = 0).

Let us now define, for each x ∈ U0, the quasi-mode ψx : Ω → R
+ of ∆D

f,h as follows.

Definition 23. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2). For every x ∈ U0, one defines

ψx :=
φx e

− f
h

Zx
and Zx :=

∥∥φx e−
f
h

∥∥
L2(Ω)

,

where φx is the function introduced in Definition 22.
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•Cj(x) Cj(x)

{
f > f(j(x))

}

{
f > f(j(x))

}

O1(x)

z

O1(x)

Figure 8: Schematic representation of O1(x) (see (87)) in a neighborhood of a non

separating saddle point z of f on ∂Cj(x).

By construction of φx in Definition 22, ψx ∈ C∞(Ω,R+) and ψx = 0 on ∂Ω (see

indeed (89) together with the fact that Ω1(x) ⊂ Ω, see Definition 21). In particular:

ψx ∈ D(∆D
f,h) = H2(Ω) ∩H1

0 (Ω). (92)

5 Asymptotic equivalents of the small eigenvalues of ∆D
f,h

5.1 First quasi-modal estimates

Let us start with the following result which gives asymptotic estimates on the L2-

norms of df,h(ψx) and of ∆f,h(ψx) around the points z ∈ j(x) in the limit h→ 0.

Proposition 24. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2). Let x ∈ U0, ψx be as introduced in Definition 23, and z ∈ j(x).

1. Let us assume that z ∈ ∂Ω.

(a) When |∇f(z)| 6= 0 (recall that in this case z is a non degenerate local

minimum of f |∂Ω and ∂nΩf(z) > 0, see item (a) in Corollary 14 and (49)),

it holds in the limit h→ 0:




∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2 = cx,z

√
h e−

2
h
(f(j(x))−f(x))(1 +O(h)

)
,

where cx,z :=
2 ∂nΩf(z)√

π

(
detHess f |∂Ω(z)

)− 1
2

∑
q∈argminCj(x)

f

(
detHess f(q)

)− 1
2

.
(93)

Furthermore, one has when h→ 0:

∫

V
δ1,δ2
Ω

(z)

∣∣∆f,h ψx
∣∣2 = O(h2)

∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2.
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(b) When |∇f(z)| = 0 (recall that in this case z is a saddle point of f , see

item (b) in Corollary 14), it holds in the limit h→ 0:





∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2 = cx,z h e

− 2
h
(f(j(x))−f(x))(1 +O(

√
h)
)
,

where cx,z :=
2 |µd|
π

∣∣ detHess f(z)
∣∣− 1

2

∑
q∈argminCj(x)

f

(
detHess f(q)

)− 1
2

,
(94)

where we recall that µd < 0 is the negative eigenvalue of Hess f(z). More-

over, when h→ 0, one has:
∫

V
δ1,δ2
Ω

(z)

∣∣∆f,h ψx
∣∣2 = O(h2)

∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2.

2. Let us assume that z ∈ Ω (recall that in this case z is a saddle point of f in Ω).

Then, it holds in the limit h→ 0:




∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2 = cx,z h e

− 2
h
(f(j(x))−f(x))(1 +O(h)

)
,

where cx,z :=
|µd|
π

∣∣detHess f(z)
∣∣− 1

2

∑
q∈argminCj(x)

f

(
detHess f(q)

)− 1
2

,
(95)

where we recall that µd < 0 is the negative eigenvalue of Hess f(z). Finally,

when h→ 0, one has:
∫

V
δ1,δ2
Ω

(z)

∣∣∆f,h ψx
∣∣2 = O(h2)

∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2.

Remark 25. The remainder term O(
√
h) in (94) follows from the Laplace method

applied to
∫
Rd
−∩B(0,r) ϕ2 e

− 1
h
ϕ1 when |∇ϕ1(0)| = 0, Hessϕ1(0) > 0, and 0 is the unique

minimum of ϕ1 on B(0, r), see (106) and the lines below (when d = 1, this is also

known as Watson’s lemma). On the other hand, the O(h) in (95) arises from the

standard Laplace method, i.e. when considering
∫
B(0,r) ϕ2 e

− 1
h
ϕ1 . In particular, these

remainder terms are optimal.

Proof. Let x ∈ U0. Then, according to Definitions 23 and 22, one has

Z2
x =

∫

Ω
φ2x e

− 2
h =

∫

Ω1(x)
φ2x e

− 2
h
f =

∫

Ω2(x)
φ2x e

− 2
h
f +

∫

Ω1(x)\Ω2(x)
φ2x e

− 2
h
f .

Let us recall that by construction 0 ≤ φx ≤ 1 on Ω. Moreover, from the first

statements in (73) and (75) together with (86) and (87), there exists c > 0 such that

f ≥ f(x) + c on Ω1(x) \Ω2(x). Thus, it holds, for some C > 0 independent of h:

∫

Ω1(x)\Ω2(x)
φ2x e

− 2
h
f ≤ Ce−

2
h
(f(x)+c).
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In addition, since φx = 1 on Ω2(x) (see (89)) and

argmin
Ω1(x)

f = argmin
Ω2(x)

f = argmin
Cj(x)

f (see item 2 in Definition 21)

consists in a finite number of non degenerate local minima q of f in Ω such that

f(q) = f(x) (since by construction of Cj, x ∈ argminCj(x)
f), one has when h → 0,

using the Laplace method,

∫

Ω2(x)
φ2x e

− 2
h
f =

∑

q∈argmin
Cj(x)

f

(π h)
d
2

√
detHess f(q)

e−
2
h
f(x)

(
1 +O(h)

)
.

Therefore, when h→ 0,

Zx = (π h)
d
4

( ∑

q∈argminCj(x)
f

(
detHess f(q)

)− 1
2

) 1
2
e−

1
h
f(x)

(
1 +O(h)

)
. (96)

Let now z belong to j(x). The rest of the proof of Proposition 24 is divided into two

steps, whether z ∈ ∂Ω or z ∈ Ω.

Step 1.a) The case when z ∈ ∂Ω and |∇f(z)| 6= 0.

In this case, from Definition 23, one has

∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2 = h2

∫
V
δ1,δ2
Ω

(z)

∣∣dφx
∣∣2 e− 2

h
f

Z2
x

. (97)

Moreover, according to (88) and to (79), it holds:

∫

V
δ1,δ2
Ω

(z)

∣∣dφx
∣∣2 e− 2

h
f =

∫
|v′|≤δ2

∫ 0
vd=−2δ1

|dvd|2 χ2(vd) e
− 2

h
(f−2µvd) dgv

( ∫ 0
−2δ1

χ(t)e
2
h
µ tdt

)2 , (98)

where we recall that µ = ∂nΩf(z) > 0, and dgv =
√
det g dv denotes the Riemannian

volume form. A straightforward computation (see (78)) implies that there exists c > 0

such that in the limit h→ 0,

Nz :=

∫ 0

−2δ1

χ(t)e
2
h
µ tdt =

h

2µ

(
1 +O(e−

c
h )
)
. (99)

Moreover, from the Laplace method together with, (78), (55), and (54), one has when

h→ 0:

∫

|v′|≤δ2

∫ 0

−2δ1

|dvd|2 χ2(vd) e
− 2

h
(f−2µvd) dgv =

h

2µ

(πh)
d−1
2 e−

2
h
f(0)

(
detHess f |{vd=0}(0)

) 1
2

(
1 +O(h)

)
,

(100)

where we recall that with our notation, f(0) = f(z) = f(j(x)) since z ∈ j(x) (see

item 4 in Section 3.3). The relations (97)–(100) and (96) lead to the first statement
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of item 1.(a) in Proposition 24. Let us now prove the second statement of item 1.(a).

Since ∆f,h = 2he−
f
h

(
h
2∆H +∇f · ∇

)
e

f
h , one has

∆f,hψx =
2he−

f
h

Zx

( h
2
∆H +∇f · ∇

)
φx =

2he−
f
h

Zx

( h
2
d∗dφx + df(∇φx)

)
. (101)

Thus, according to (79) and to (54), (55), it holds on V
δ1,δ2

Ω
(z),

∆f,hψx =
2he−

f
h

Zx

( h
2
d∗dϕz + df(∇ϕz)

)

=
2he−

f
h

ZxNz

( h
2
d∗
(
− χ(vd)e

2
h
µvddvd

)
− µdvd

(
χ(vd)e

2
h
µvd∇vd

)
+O(|v|2) e 2

h
µvd

)

=
2he−

f
h e

2
h
µvd

ZxNz

(
O(h) +

h

2
χ(vd) dvd

(2
h
µ∇vd

)
− µdvd

(
χ(vd)∇vd

)
+O(|v|2)

)

=
h e−

1
h
(f−2µvd)

ZxNz

(
O(h) +O(|v|2)

)
, (102)

where Nz is defined by (99). It then follows from (96) that for every h small enough,

it holds
∫

V
δ1,δ2
Ω

(z)

∣∣∆f,h ψx
∣∣2 = O(h2)

√
h e−

2
h
(f(z)−f(x)) = O(h2)

∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2,

which concludes the proof of item 1.(a) in Proposition 24.

Step 1.b) The case when z ∈ ∂Ω and |∇f(z)| = 0.

From Definition 23, it holds

∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2 = h2

∫
V
δ1,δ2
Ω

(z)

∣∣dφx
∣∣2 e− 2

h
f

Zx
, (103)

where, according to (88) and (81),

∫

V
δ1,δ2
Ω

(z)

∣∣dφx
∣∣2 e− 2

h
f =

∫
|v′|≤δ2

∫ 0
vd=−2δ1

|dvd|2 χ2(vd) e
− 2

h
(f+|µd|v2d)dgv

( ∫ 0
−2δ1

χ(t) e−
1
h
|µd| t2dt

)2 , (104)

where we recall that µd is the negative eigenvalue of Hess f(z). A straightforward

computation (see (78)) implies that there exists c > 0 such that in the limit h→ 0,

Nz :=

∫ 0

−2δ1

χ(t) e−
1
h
|µd| t2dt =

√
πh

2
√

|µd|
(
1 +O(e−

c
h )
)
. (105)

Furthermore, from, (78), (60), (61), and (62) together with the Laplace method, one

has in the limit h→ 0:

∫

|u′|≤δ2

∫ 0

−2δ1

|dvd|2 χ2(vd) e
− 2

h
(f+|µd|v2d)dgv =

(πh)
d
2 e−

2
h
f(0)

√
µ1 · · · µd−1|µd|

(1
2
+O(

√
h)
)
, (106)
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where µ1, . . . , µd−1 are the positive eigenvalues of Hess f(z). Let us point out that

the integral in (106) has the form
∫
Rd
−∩B(0,r) ϕ2(v) e

− 1
h
ϕ1(v)dv. Hence, the terms of

the type
∫
Rd
−∩B(0,r) v

α e−
1
h

tvHessϕ1(0) vdv which appear when performing the Laplace

method do not cancel (up to an exponentially small error term) when |α| is odd,

contrary to the terms
∫
B(0,r) v

α e−
1
h

tvHessϕ1(0) vdv appearing in the standard Laplace

method (by a parity argument) as used to get (110). This justifies the optimality of

the O(
√
h) in (106) (see Remark 25 above).

Equations (103)–(106) and (96) lead to the first statement in item 1.(b) of Propo-

sition 24. Let us now prove the second statement in item 1.(b). Doing the same

computations as to obtain (102), one deduces from (81), (60), and (61) that on

V
δ1,δ2

Ω
(z),

∆f,hψx =
2he−

f
h

ZxNz

( h
2
d∗
(
− χ(vd)e

− 1
h
|µd|v2ddvd

)
+ |µd| vd dvd

(
χ(vd)e

− 1
h
|µd|v2d∇vd

)
+O(|v|2) e− 1

h
|µd|v2d

)

=
2h e−

1
h
(f+|µd|v2d)

ZxNz

(
O(h)− h

2
χ(vd) dvd

(1
h
|µd|∇v2d) + |µd| vd dvd

(
χ(vd)∇vd

)
+O(|v|2)

)

=
2h e−

1
h
(f+|µd|v2d)

ZxNz

(
O(h) +O(|v|2)

)
,

where Nz is defined by (105). It then follows from (105), (96), and (62) that in the

limit h→ 0,
∫

V
δ1,δ2
Ω

(z)

∣∣∆f,h ψx
∣∣2 = O(h3) e−

2
h
(f(z)−f(x)) = O(h2)

∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2.

This proves the second statement of item 1.(b) in Proposition 24.

Step 2. The case when z ∈ Ω.

According to Definition 23, one has

∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2 = h2

∫
V
δ1,δ2
Ω

(z)

∣∣dφx
∣∣2 e− 2

h
f

Zx
, (107)

where, from (88) and (83), one has:

∫

V
δ1,δ2
Ω

(z)

∣∣dφx
∣∣2 e− 2

h
f =

∫
|v′|≤δ2

∫ 2δ1
vd=−2δ1

|dvd|2 χ2(vd) e
− 2

h
(f+|µd|v2d)dgv

( ∫ 2δ1
−2δ1

χ(t) e−
1
h
|µd| t2dt

)2 , (108)

where µd is the negative eigenvalue of Hess f(z). A straightforward computation

(see (78)) implies the existence of c > 0 such that in the limit h→ 0,

Nz :=

∫ 2δ1

−2δ1

χ(t) e−
1
h
|µd| t2dt =

√
πh√
|µd|

(
1 +O(e−

c
h )
)
. (109)

Moreover, from, (78), (67), (68), (69) and the Laplace method, one has in the limit

h→ 0:
∫

|v′|≤δ2

∫ 2δ1

vd=−2δ1

|dvd|2 χ2(vd) e
− 2

h
(f+|µd|v2d)dgv =

(πh)
d
2 e−

2
h
f(0)

√
µ1 · · ·µd−1|µd|

(
1 +O(h)

)
, (110)

42



where µ1, . . . , µd−1 are the positive eigenvalues of Hess f(z). The relations (107)–(110)

and (96) imply the first statement of item 2 in Proposition 24. Let us lastly prove

the second statement in item 2. From (83), (67), and (68), the same computations as

those used to obtain (102) imply that on V
δ1,δ2

Ω
(z),

∆f,hψx =
2hχ e−

1
h
(f+|µd|v2d)

ZxNz

(
O(h) +O(|v|2)

)

and the relations (69), (109), and (96) then lead to

∫

V
δ1,δ2
Ω

(z)

∣∣∆f,h ψx
∣∣2 = O(h3) e−

2
h
(f(z)−f(x)) = O(h2)

∫

V
δ1,δ2
Ω

(z)

∣∣df,h ψx
∣∣2.

This concludes the proof of Proposition 24.

For every x ∈ U0, one defines the following constants:

K1,x :=
∑

z∈j(x)
|∇f(z)|6=0

cx,z and K2,x :=
∑

z∈j(x)
|∇f(z)|=0

cx,z, (111)

where the constants cx,z are defined in (93), (94), and (95), with the convention∑
∅ = 0. Let us recall that {z ∈ j(x), |∇f(z)| 6= 0} ⊂ ∂Ω. Finally, for y 6= x ∈ U0,

one defines:

Kx,y :=
∑

z∈j(x)∩j(y)

√
cx,z

√
cy,z, see (93)–(95). (112)

Let us mention that since for all x ∈ U0, one has j(x) 6= ∅, it holds (K1,x,K2,x) 6= (0, 0).

Proposition 24 has the following consequence.

Proposition 26. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2). Let x ∈ U0 and ψx be as introduced in Definition 23.

1. In the limit h→ 0, one has:

∥∥df,hψx
∥∥2
Λ1L2(Ω)

=
(√

hK1,x(1 +O(h )) + hK2,x(1 +O(
√
h ))

)
e−

2
h
(f(j(x))−f(x)),

where the constants K1,x and K2,x are defined in (111). When j(x) ∩ ∂Ω does

not contain any critical point of f , the term O(
√
h) is actually of order O(h).

Moreover, it holds in the limit h→ 0:

∥∥∆f,hψx
∥∥2
L2(Ω)

= O(h2)
∥∥df,hψx

∥∥2
Λ1L2(Ω)

.

2. Let y ∈ U0 be such that y 6= x. Then, for each of the two possible cases described

in items 4.(i) and 4.(ii) in Section 3.3, it holds in the limit h→ 0:

(i) When j(x) ∩ j(y) = ∅,
〈
df,hψx, df,hψy

〉
Λ1L2(Ω)

= 0.
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(ii) When j(x) ∩ j(y) 6= ∅,
〈
df,hψx, df,hψy

〉
Λ1L2(Ω)

= −hKx,y e−
1
h
(2f(j(x))−f(x)−f(y))(1 +O(h)

)
,

where Kx,y is defined in (112).

Proof. Let x ∈ U0.

Let us first prove item 1 in Proposition 26. From Definition 23 and (90),

df,hψx = Z−1
x he−

f
hdφx is supported in Ω1(x) \ Ω2(x). (113)

Moreover, from (87), (91), and (96), there exists c > 0 such that for h small enough,

h2Z−2
x

∫
O1(x)

|dφx|2e−
2
h
f = O

(
e−

2
h
(f(j(x))−f(x)+c)). Thus, using in addition (113)

and (86), there exists c > 0 such that for h small enough,

∫

Ω
|df,h ψx|2 =

∑

z∈j(x)

∫

V
δ1,δ2
Ω

(z)
|df,h ψx|2 +O

(
e−

2
h
(f(j(x))−f(x)+c)).

The first statement in item 1 in Proposition 26 is then a direct consequence of Propo-

sition 24. Let us now prove the second statement in Proposition 26. To this end,

note first that according to (113),

∆f,hψx = d∗f,hdf,hψx is supported in Ω1(x) \ Ω2(x).

Thus, from (86), (87), (91) together with (96), it holds for some c > 0 and every h

small enough,

∫

Ω
|∆f,h ψx|2 =

∑

z∈j(x)

∫

V
δ1,δ2
Ω

(z)
|∆f,h ψx|2 +O

(
e−

2
h
(f(j(x))−f(x)+c)).

Together with Proposition 24, this proves item 1 in Proposition 26.

Let us now prove item 2 in Proposition 26. Let us consider y ∈ U0 such that y 6= x.

According to (113) and (90),

df,h ψx · df,h ψy =
h2 e−

2
h
fdφx · dφy
ZxZy

is supported in Ω1(x) \Ω2(x)
⋂

Ω1(y) \ Ω2(y).

Thus, using item 3 in Definition 21, it holds:

(i) When j(x) ∩ j(y) = ∅, then, either Ω1(x) ∩ Ω1(y) = ∅ or, up to switching x

and y, Ω1(y) ⊂ Ω2(x). In any case, this implies
∫
Ω df,h ψx · df,h ψy = 0.

(ii) When j(x) ∩ j(y) 6= ∅, one has,

∫

Ω
df,h ψx · df,h ψy =

h2

ZxZy

∑

z∈j(y)∩ j(x)

∫

V
δ1,δ2
Ω

(z)
dφx · dφy e−

2
h
f

+
h2

ZxZy

∫

O2(x,y)
dφx · dφy e−

2
h
f . (114)
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Since O2(x, y) ⊂ O1(x), from (87), (91), and (96), there exists c > 0 such that

for h small enough:

h2

ZxZy

∫

O2(x,y)
dφx · dφy e−

2
h
f = O

(
e−

1
h
(2f(j(x))−f(x)−f(y)+c)), (115)

where we used f(j(y)) = f(j(x)). Moreover, using item 1 in Definition 22, for

all z ∈ j(x) ∩ j(y) (recall that j(x) ∩ j(y) ⊂ Ω), dφx = −dφy on V
δ1,δ2

Ω
(z). Thus,

from (113), for all z ∈ j(x) ∩ j(y), it holds:

h2

ZxZy

∫

V
δ1,δ2
Ω

(z)
dφx · dφy e−

2
h
f = −Zx

Zy

∫

V
δ1,δ2
Ω

(z)
|df,h ψx|2.

Then, item 2.(ii) in Proposition 26 is a consequence of (114) and (115) together

with (96) and item 2 in Proposition 24.

This concludes the proof of Proposition 26.

5.2 Linear independence of the quasi-modes

Let us recall that according to Theorem 1, there exists c0 > 0 such that for every h

small enough:

dim Ranπ[0,c0h]
(
∆D
f,h

)
= m0.

In the following, for ease of notation, one denotes

πh := π[0,c0h]
(
∆D
f,h

)
. (116)

In this section, one proves that for every h small enough,
(
πhψx

)
x∈U0

is linearly inde-

pendent, and hence a basis of Ranπh, and that
(
df,hπhψx

)
x∈U0

is linearly independent

in Λ1L2(Ω). Let us start with the following result.

Proposition 27. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2). Let x ∈ U0 and ψx be as introduced in Definition 23. Then, there exists

C > 0 such that for every h small enough:

∥∥(1− πh)ψx
∥∥
L2(Ω)

≤ C
∥∥df,hψx

∥∥
L2(Ω)

and ∥∥df,h(πhψx)
∥∥
Λ1L2(Ω)

=
∥∥df,hψx

∥∥
Λ1L2(Ω)

(
1 +O(h)

)
.

Proof. Let c0 > 0 be the constant used to define πh in (116). According to Theorem 1,

for every h small enough, ∆D
f,h hasm0 eigenvalues smaller than c0h which are moreover

exponentially small. Let C( c02 h) ⊂ C be the circle centered at 0 of radius c0
2 h. Then,

there exists c > 0 such that for every h small enough, all the points in C( c02 h) are at

a distance larger than ch of the spectrum of ∆D
f,h. Thus, by the spectral theorem, it

holds:

sup
z∈C(

c0
2
h)

∥∥(z −∆D
f,h)

−1
∥∥
L2(Ω)→L2(Ω)

≤ 1

ch
. (117)
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Moreover, since ψx ∈ D(∆D
f,h) for all x ∈ U0 (see (92)), it holds

(1− πh)ψx =
1

2πi

∫

C(
c0
2
h)

(
z−1 − (z −∆D

f,h)
−1

)
ψx dz

= − 1

2πi

∫

C(
c0
2
h)
z−1

(
z −∆D

f,h)
−1∆D

f,hψx dz.

Thus, using (117) and the second estimate in item 1 in Proposition 26, one obtains

that ∥∥(1− πh)ψx
∥∥
L2(Ω)

≤ C‖df,hψx
∥∥
Λ1L2(Ω)

,

for some C > 0 independent of h. Let us now prove the second asymptotic estimate

of Proposition 27. Since the orthogonal projector πh and ∆D
f,h commute on D(∆f,h)

and ψx ∈ D(∆D
f,h), one has

∥∥df,h(πhψx)
∥∥2
Λ1L2(Ω)

= 〈πhψx,∆f,hψx
〉
L2(Ω)

= 〈ψx,∆f,hψx
〉
L2(Ω)

− 〈(1− πh)ψx,∆f,hψx
〉
L2(Ω)

=
∥∥df,hψx

∥∥2
Λ1L2(Ω)

+O
(∥∥(1− πh)ψx

∥∥
L2(Ω)

∥∥∆f,hψx
∥∥
L2(Ω)

)

=
∥∥df,hψx

∥∥2
Λ1L2(Ω)

+O(h)
∥∥df,hψx

∥∥2
Λ1L2(Ω)

,

where one used at the last line the second asymptotic estimate in item 1 in Proposi-

tion 26 and the first asymptotic estimate in Proposition 27. This concludes the proof

of Proposition 27.

Remark 28. Note here that using the estimate (14) to obtain an upper bound on∥∥(1−πh)ψx
∥∥
L2(Ω)

, one would obtain
∥∥(1−πh)ψx

∥∥
L2(Ω)

≤ 1√
c0h

‖df,hψx
∥∥
Λ1L2(Ω)

. This

would finally lead to a remainder term of order O(
√
h) instead of the O(h) appearing

in (134) in Theorem 3 below.

Definition 29. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2). Let x ∈ U0 and ψx be as introduced in Definition 23. Then, one de-

fines the 1-form:

Θx :=
df,hψx

‖df,hψx‖Λ1L2(Ω)
,

which is C∞ on Ω and supported in Ω1(x)\Ω2(x) (see (113)). Notice that from item 1

in Proposition 26, ‖df,hψx‖Λ1L2(Ω) 6= 0 for h small enough. Moreover, for every h

small enough, one defines:

ψπx :=
πh ψx

‖πh ψx‖L2(Ω)
and Θπ

x :=
df,h(πhψx)

‖df,h(πhψx)‖Λ1L2(Ω)
,

which are well defined for every h small enough (see indeed Proposition 27) and where

we recall that the orthogonal projector πh on L2(Ω) is defined by (116).

A consequence of Proposition 27 on the families
(
ψπx

)
x∈U0

and (Θπ
x)x∈U0

introduced

in Definition 29 is the following.
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Proposition 30. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2). Let x, y ∈ U0. Then, there exists c > 0 such that for every h small

enough:

〈ψπx , ψπy
〉
L2(Ω)

= 〈ψx, ψy
〉
L2(Ω)

+O
(
e−

c
h

)
,

and

〈Θπ
x,Θ

π
y

〉
Λ1L2(Ω)

= 〈Θx,Θy

〉
Λ1L2(Ω)

+O(h).

Proof. Let us recall that the orthogonal projector πh and ∆D
f,h commute on D(∆f,h)

and that ψx ∈ D(∆D
f,h). Then, for every x, y ∈ U0, it holds

〈πhψx, πhψy
〉
L2(Ω)

= 〈ψx, ψy
〉
L2(Ω)

− 〈(1− πh)ψx, ψy
〉
L2(Ω)

,

and

〈df,h(πhψx), df,h(πhψy)
〉
Λ1L2(Ω)

= 〈df,hψx, df,hψy
〉
Λ1L2(Ω)

−〈(1−πh)ψx,∆f,hψy
〉
L2(Ω)

.

Proposition 30 is then a direct consequence of these identities together with Proposi-

tions 26 and 27 (see also (44)).

The Gram matrices of the families
(
ψx

)
x∈U0

and (Θx)x∈U0
are not necessarily quasi-

unitary, i.e. of the form Id + o(1) when h→ 0. For the family
(
ψx

)
x∈U0

, this follows

from the fact that a global minimum of f in suppψx can also be a global minimum of

f in suppψy (this can only occur in the situation described in item 4.(i) in Section 3.3

when j(x)∩j(y) = ∅ and, up to interchanging x with y, Cj(y) ⊂ Cj(x)). For the family

(Θx)x∈U0
, this follows from the fact that 〈df,hψx, df,hψy

〉
Λ1L2(Ω)

can be of the same

order as both ‖df,hψx‖2Λ1L2(Ω) and ‖df,hψy‖2Λ1L2(Ω) (see item 2.(ii) in Proposition 26).

However, according to Proposition 33 below, these families are, in the limit h → 0,

uniformly linearly independent in the sense of the following definition (see [19]).

Definition 31. Let H be a Hilbert space, n ≥ 1 be an integer smaller than dim H,

and B′ be a family of n elements of H depending on a parameter h > 0. The family

B′ is said to be uniformly linearly independent in the limit h→ 0 if there exists C > 0

and h0 > 0 such that for all h ∈ (0, h0), the family B′ is linearly independent and for

some (and thus for any) orthonormal family B of Span
(
B′) and for some (and thus

for any) matrix norm ‖ · ‖ on R
n×n, it holds

∥∥∥MatB,B′(Id)
∥∥∥ ≤ C and

∥∥∥MatB′,B(Id)
∥∥∥ ≤ C.

Remark 32. Since the Gram matrix GB′
of B′ writes GB′

= tMatB′,B(Id)MatB′,B(Id),
the family B′ is uniformly linearly independent in the limit h → 0 if and only if

there exists a constant C > 0 independent of h such that, for every h small enough,
1
C
≤ GB′ ≤ C in the sense of quadratic forms.

Proposition 33. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2). Then, the family of functions
(
ψπx

)
x∈U0

(resp. the family of 1-forms
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(Θπ
x)x∈U0

) introduced in Definition 29 is uniformly linearly independent in L2(Ω)

(resp. in Λ1L2(Ω)) in the limit h→ 0 (see Definition 31). In particular,
(
ψπx

)
x∈U0

is

a basis of Ran πh for every h small enough.

The following lemma, which is a direct consequence of Proposition 24, item 1 in

Proposition 26, and Definition 29, will be used in the proof of Proposition 33.

Lemma 34. Let f : Ω → R be a C∞ Morse function which satisfies (H1) and (H2),

and x ∈ U0.

1. When there exists z ∈ j(x) such that |∇f(z)| 6= 0 (in this case z ∈ ∂Ω), one has

in the limit h→ 0, for every z ∈ j(x) such that |∇f(z)| 6= 0,

‖Θx‖2
Λ1L2

(
V
δ1,δ2
Ω

(z)
) =

cx,z∑
p∈j(x),|∇f(p)|6=0 cx,p

(
1 +O(

√
h)
)
,

where the constant cx,z is defined in (93) and V
δ1,δ2

Ω
(z) is defined in (57).

2. When |∇f(z)| = 0 for every z ∈ j(x), one has in the limit h → 0, for every

z ∈ j(x),

‖Θx‖2
Λ1L2(V

δ1,δ2
Ω

(z)))
=

cx,z∑
p∈j(x) cx,p

(
1 +O(

√
h)
)
,

where the constants cx,z are defined in (94) and (95) and V
δ1,δ2

Ω
(z) is defined

in (64) and (71).

Proof of Proposition 33. In view of Proposition 30 and of Remark 32, Proposition 33

is equivalent to the fact that the family
(
ψx

)
x∈U0

(resp. (Θx)x∈U0
) is uniformly

linearly independent in L2(Ω) (resp. in Λ1L2(Ω)), in the limit h → 0. Moreover,

the proof of this property for
(
ψx

)
x∈U0

is exactly the same as the one made in [19,

Section 4.2]. Let us now prove that (Θx)x∈U0
is uniformly linearly independent in

Λ1L2(Ω) in the limit h → 0. The following proof is inspired by the analysis done

in [19, Section 4.2]. Let us recall that according to the construction of Cj made in

Section 3.3, one has:

(Cj(x))x∈U0 =
⋃

k≥1

{
Cj(xk,1), . . . ,Cj(xk,Nk

)
}
,

where the union over k is actually finite. For all k ≥ 1, let us divide{
Cj(xk,1), . . . ,Cj(xk,Nk

)
}
into nk groups (nk ≤ Nk):

{
Cj(xk,1), . . . ,Cj(xk,Nk

)
}
=

nk⋃

ℓ=1

{C1
k,ℓ, . . . ,C

mℓ

k,ℓ}

which are such that for all ℓ ∈ {1, . . . , nk},
{

the set
⋃mℓ

j=1 C
j
k,ℓ is connected, and

∀C ∈
{
Cj(xk,1), . . . ,Cj(xk,Nk

)
}
\ {C1

k,ℓ, . . . ,C
mℓ

k,ℓ}, C ∩⋃mℓ

j=1 C
j
k,ℓ = ∅.

(118)
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Let x, y ∈ U0. Let k, k′, ℓ, and ℓ′ be such that Cj(x) ∈ {C1
k,ℓ, . . . ,C

mℓ

k,ℓ} and Cj(y) ∈
{C1

k′,ℓ′ , . . . ,C
mℓ′

k′,ℓ′}. Let us recall that j(x)∩ j(y) 6= ∅ is equivalent to f(j(x)) = f(j(y))

(which implies k = k′) and Cj(y) ∩ Cj(x) 6= ∅ (which implies ℓ = ℓ′). Therefore,

when Cj(x) and Cj(y) belong to different groups, i.e. when (k′, ℓ′) 6= (k, ℓ), it holds

j(x) ∩ j(y) = ∅. Thus, according to item 2.(i) in Proposition 26 and to Definition 29,

it holds 〈Θx,Θy

〉
Λ1L2(Ω)

= 0. This implies that in Λ1L2(Ω), it holds:

Span
(
(Θx)x∈U0

)
=

⊥⊕

k≥1

[ ⊥⊕

ℓ=1,...,nk

Span
(
Θx, x s.t. Cj(x) ∈ {C1

k,ℓ, . . . ,C
mℓ

k,ℓ}
)]
. (119)

According to Definition 31, in order to prove that (Θx)x∈U0
is uniformly linearly

independent in the limit h → 0, it then suffices to prove that for all k ≥ 1 and

ℓ ∈ {1, . . . , nk}, the family
(
Θx, x s.t. Cj(x) ∈ {C1

k,ℓ, . . . ,C
mℓ

k,ℓ}
)
is uniformly lin-

early independent in the limit h → 0. To this end, let k ≥ 1 and ℓ ∈ {1, . . . , nk}.
For ease of notation, we denote mℓ by m, {C1

k,ℓ, . . . ,C
mℓ

k,ℓ} by {C1, . . . ,Cm}, and(
Θx, x s.t. Cj(x) ∈ {C1

k,ℓ, . . . ,C
mℓ

k,ℓ}
)
by (Θ1, . . . ,Θm). For h small enough, let us

then consider some ϕ = ϕ(h) ∈ Span{Θ1, . . . ,Θm}:

ϕ =

m∑

i=1

ai(h)Θi, where for all i ∈ {1, . . . ,m}, ai(h) ∈ R. (120)

From (118) and using Lemma 20, up to reordering {C1, . . . ,Cm}, there exists z1 ∈
U
ssp
1 (Ω) such that z1 ∈ ∂C1 \

(
∪mi=2 ∂C

i
)
. Let us now choose such a point z1 as follows:

– When {p ∈ ∂C1 ∩U
ssp
1 (Ω) s.t.|∇f(p)| 6= 0} = ∅, one chooses any z1 in U

ssp
1 (Ω)∩

∂C1 \
(
∪mi=2 ∂C

i
)
(and it holds |∇f(z1)| = 0).

– When {p ∈ ∂C1 ∩ U
ssp
1 (Ω) s.t. |∇f(p)| 6= 0} 6= ∅, then C1 is a principal well

of f (see (45)) and thus C1, . . . ,Cm are principal wells of f . In this case, one

chooses z1 ∈ U
ssp
1 (Ω) ∩ {p ∈ ∂C1 s.t.|∇f(p)| 6= 0} ⊂ ∂Ω and from (29), it holds

z1 /∈ ∪mi=2∂C
i.

In both cases, according to Lemma 34, one has when h→ 0,

‖Θ1‖Λ1L2(V
δ1,δ2
Ω

(z1))
= c1(1 + o(1)) ,

where c1 ∈ (0, 1] is independent of h. Since z1 ∈ ∂C1 \
(
∪mi=2 ∂C

i
)
and since all

the cylinders defined by (57), (64), and (71) are two by two disjoint, the cylinder

V
δ1,δ2

Ω
(z1) does not meet any of the cylinders associated with the z ∈ U

ssp
1 (Ω)∩∪mi=2∂C

i.

Therefore, by definition of Θi (see Definition 29) and item 3 in Definition 21, it holds

Θi ≡ 0 on V
δ1,δ2

Ω
(z1) for all i ∈ {2, . . . ,m}. Taking the Λ1L2-norm of (120) in

V
δ1,δ2

Ω
(z1), one has for h small enough, ‖ϕ‖Λ1L2(Ω) ≥ ‖ϕ‖

Λ1L2(V
δ1,δ2
Ω

(z1))
≥ c1

2 |a1(h)|.
Thus, for h small enough, it holds:

|a1(h)| ≤
2

c1
‖ϕ‖Λ1L2(Ω). (121)
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Let us now get a similar upper bound on |a2(h)|. Since ∪mi=1C
i is connected (see (118)),

up to reordering {C2, . . . ,Cm}, it holds C1∩C2 6= ∅, and one chooses z2 ∈ U
ssp
1 (Ω)∩∂C2

as follows:

– When {p ∈ ∂C2∩U
ssp
1 (Ω) s.t.|∇f(p)| 6= 0} = ∅, one chooses any z2 ∈ ∂C2∩∂C1.

– When {p ∈ ∂C2 ∩ U
ssp
1 (Ω) s.t.|∇f(p)| 6= 0} 6= ∅, one chooses z2 ∈ {p ∈ ∂C2 ∩

U
ssp
1 (Ω) s.t.|∇f(p)| 6= 0}.

In both cases, z2 ∈ U
ssp
1 (Ω)∩∂C2 \

(
∪mi=3∂C

i
)
. Therefore, it holds Θi ≡ 0 on V

δ1,δ2

Ω
(z2)

for all i ∈ {3, . . . ,m} while, from Lemma 34, ‖Θ2‖Λ1L2(V
δ1,δ2
Ω

(z2))
= c2(1 + o(1)) in

the limit h → 0 and for some c2 ∈ (0, 1] independent of h. Taking the Λ1L2-norm

of (120) in V
δ1,δ2

Ω
(z2) and using the fact that ‖Θ1‖Λ1L2(V

δ1,δ2
Ω

(z2))
≤ 1 lead to

‖ϕ‖Λ1L2(Ω) ≥ ‖ϕ‖
Λ1L2(V

δ1,δ2
Ω

(z2))
≥ −|a1(h)| +

c2
2
|a2(h)|

for every h small enough. Using in addition (121), one obtains

|a2(h)| ≤
2

c2

(
1 +

2

c1

)
‖ϕ‖Λ1L2(Ω).

Repeating this last procedure m− 2 times leads to the existence of some C > 0 inde-

pendent of h such that for every h small enough, it holds
∑m

i=1 |ai(h)| ≤ C ‖ϕ‖Λ1L2(Ω).

Using (120), it follows that the family (Θ1, . . . ,Θm) is uniformly linearly independent

in the limit h→ 0, which concludes the proof of Proposition 33.

5.3 An accurate interaction matrix

Let f : Ω → R be a C∞ Morse function which satisfies (H1) and (H2). In

the rest of this section, one chooses for ease of notation an arbitrary labeling of

U0 = {x1, . . . , xm0} and one assumes that (ψx)x∈U0
= (ψ1, . . . , ψm0) and (Θx)x∈U0

=

(Θ1, . . . ,Θm0) (see Definitions 23 and 29) are ordered according to this labeling.

Let us recall from Proposition 33 that for every h small enough,
(
ψπj

)
j∈{1,...,m0} and

(Θπ
i )i∈{1,...,m0} are uniformly linearly independent (see Definitions 29 and 31), which

implies in particular, according to Theorem 1, that

Span
(
ψπj

)
j∈{1,...,m0} = Ran πh.

Let us now consider an orthonormal basis B0 of Ran(πh) in L
2(Ω) and an orthonormal

basis B1 of Span (Θ
π
i )i∈{1,...,m0} in Λ1L2(Ω). The eigenvalues of ∆D

f,h which are smaller

than c0h for h small enough are then the eigenvalues of the matrixMB0 of ∆D
f,h in the

basis B0, and hence the squares of the singular values of the matrix SB0,B1 defined by

SB0,B1 := MatB0,B1(df,h), (122)

50



which follows from the relation MB0 = tSB0,B1SB0,B1 . This reduces the analysis of

the asymptotic behaviour of the m0 smallest eigenvalues of ∆D
f,h in the limit h → 0

to the study of the asymptotic behaviour of the singular values of the matrix SB0,B1 .

Note moreover that according to Definition 29, the matrix SB0,B1 defined by (122)

has the form

SB0,B1 = tCπ1 S
π Cπ0 , (123)

where

Cπ1 := MatB1 , (Θπ
i )i∈{1,...,m0}

(Id), Cπ0 := MatB0 ,
(
ψπ
j

)
j∈{1,...,m0}

(Id), (124)

and

for all i, j ∈ {1, . . . ,m0}, Sπi,j =
〈df,hψπj , df,hψπi

〉
Λ1L2(Ω)∥∥df,hψπi

∥∥
Λ1L2(Ω)

=
∥∥df,hψπj

∥∥
Λ1L2(Ω)

〈Θπ
j ,Θ

π
i

〉
Λ1L2(Ω)

.

(125)

In order to give asymptotic estimates on the entries of the matrix Sπ in the limit

h→ 0, let us introduce the square matrix S defined by:

for all i, j ∈ {1, . . . ,m0}, Si,j : =
〈df,hψj , df,hψi

〉
Λ1L2(Ω)∥∥df,hψi

∥∥
Λ1L2(Ω)

=
∥∥df,hψj

∥∥
Λ1L2(Ω)

〈Θj ,Θi

〉
Λ1L2(Ω)

.

(126)

From Propositions 26, 27, and 30, one has the following asymptotic result on the

entries of the matrices S and Sπ.

Proposition 35. Let f : Ω → R be a C∞ Morse function which satisfies (H1)

and (H2), and i, j ∈ {1, . . . ,m0}. We then have the following estimates when h→ 0:

1. When j(xi) ∩ j(xj) = ∅, Si,j = 0.

2. When j(xi) ∩ j(xj) 6= ∅ and i = j,

Sj,j = h
1
4

(
K1,xj (1 +O

(
h
)
) + h

1
2 K2,xj(1 +O(

√
h))

) 1
2
e−

1
h
(f(j(xj ))−f(xj ))

and, when j(xi) ∩ j(xj) 6= ∅ and i 6= j,

Si,j = − h
3
4Kxi,xj

(
K1,xi(1 +O

(
h
)
) + h

1
2K2,xi(1 +O(

√
h))

) 1
2

e−
1
h
(f(j(xj))−f(xj )),

where the constants K1,xj , K2,xj , and Kxi,xj are defined in (111) and (112).

3. Finally, it holds in any case

Sπi,j = Si,j +O(h)Sj,j.
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In order to suitably factorize the matrix Sπ, let us first write S = TD, where D and T

are the following m0 ×m0 matrices (defined for every h small enough):

• the matrix D is the diagonal matrix such that for all j ∈ {1, . . . ,m0},

Dj,j := hpj e−
1
h
(f(j(xj))−f(xj )), (127)

where

pj :=
1

4
when K1,xj 6= 0 and pj :=

1

2
when K1,xj = 0, (128)

• the matrix T is the matrix SD−1, i.e.

for all i, j ∈ {1, . . . ,m0}, Ti,j :=
Si,j
Dj,j

. (129)

It then follows from (127)–(129) and Proposition 35 that in the limit h→ 0,

Sπ = (T +R)D with R = SπD−1 − T = (Sπ − S)D−1 = O(h)

and T = O(1). Moreover, according to Lemma 36 below, T is invertible and its

inverse satisfies T−1 = O(1). Thus, the matrix Sπ factorizes as follows:

Sπ = (T+O(h))D = (Im0+O(h)T−1)TD = (Im0+O(h))TD = (Im0+O(h))S. (130)

We conclude this section by stating and proving Lemma 36 which led to (130).

Lemma 36. Let f : Ω → R be a C∞ Morse function which satisfies (H1) and (H2).

Let ‖ · ‖ be a matrix norm on R
m0×m0 . Then, for every h small enough, the matrix T

defined by (129) is invertible and there exists C > 0 independent of h such that

‖T‖ ≤ C and ‖T−1‖ ≤ C.

Proof. We already noticed the relation ‖T‖ = O(1) in the limit h → 0. To prove

the relation ‖T−1‖ = O(1), let us first notice that from (126), (127), (129), and

Definition 29, it holds

T = SD−1 = GΘUD−1,

where

U = Diag
(∥∥df,hψ1

∥∥
Λ1L2(Ω)

, . . . ,
∥∥df,hψm0

∥∥
Λ1L2(Ω)

)
= Diag

(
S1,1, . . . , Sm0,m0

)

and GΘ is the Gram matrix of the family (Θ1, . . . ,Θm0) in Λ1L2(Ω). Moreover, ac-

cording to (127), (128), and Proposition 35, there exist positive constants c1, . . . , cm0

such that limh→0 UD
−1 = Diag (c1, . . . , cm0) and thus DU−1 = O(1). Lastly, let us

recall from Proposition 33 that the family (Θ1, . . . ,Θm0) is uniformly linearly inde-

pendent in the limit h → 0 and then, according to Remark 32, (GΘ)−1 = O(1). It

follows that T−1 = DU−1(GΘ)−1 = O(1), which concludes the proof of Lemma 36.
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5.4 Asymptotic behaviour of the small eigenvalues of ∆D
f,h

In this section, one states and proves the main results of this work, Theorems 2 and 3

below, on the precise asymptotic behaviour of the small eigenvalues of ∆D
f,h in the

limit h→ 0.

The proofs of these results make both use of a weak form of the Fan inequalities

stated in the following lemma (see for instance [36, Theorem 1.6]).

Lemma 37. Let A, B, and C be three m0 ×m0 matrices. It then holds:

∀j ∈ {1, . . . ,m0}, ηj(AB C) ≤
∥∥A

∥∥ ∥∥C
∥∥ ηj(B),

where, for any matrix U ∈ R
m0×m0 , η1(U) ≥ · · · ≥ ηm0(U) denote the singular values

of U and ‖U‖ :=
√

max σ( tUU) = η1(U) is the spectral norm of U .

Notice that the singular values are labeled in decreasing order whereas the eigenvalues

are labeled in increasing order. In Theorem 2, one gives a precise lower and upper

bound on every small eigenvalue of ∆D
f,h in the limit h→ 0 under the sole assumptions

(H1) and (H2).

Theorem 2. Let f : Ω → R be a C∞ Morse function which satisfies (H1) and (H2),

and thus such that U0 6= ∅. Let us order the set U0 = {x1, . . . , xm0} such that

– the sequence
(
f(j(xj))− f(xj)

)
j∈{1,...,m0} is decreasing,

– and, on any J ⊂ {1, . . . ,m0} such that
(
f(j(xj)) − f(xj)

)
j∈J is constant, the

sequence (pj)j∈J is decreasing (see (128)).

Finally, for j ∈ N
∗, let us denote by λj,h the j-th eigenvalue of ∆D

f,h counted with

multiplicity. Then, there exist C > 0 and h0 > 0 such that for every j ∈
{
1, . . . ,m0

}

and every h ∈ (0, h0), it holds

1

C
h2pj e−

2
h
(f(j(xj ))−f(xj )) ≤ λj,h ≤ C h2pj e−

2
h
(f(j(xj ))−f(xj )) .

Proof. For any matrix U ∈ R
m0×m0 , we will denote by ‖U‖ the spectral norm of

U and by ‖U‖ = η1(U) ≥ · · · ≥ ηm0(U) the singular values of U . Let us recall

from Section 5.3 that the m0 smallest eigenvalues of ∆D
f,h are squares of the singular

values of the matrix SB0,B1 = tCπ1 S
πCπ0 ∈ R

m0×m0 , where Cπ0 , C
π
1 , and S

π are defined

in (124) and in (125). Moreover, using Proposition 33, there exists c > 0 such that

for every h small enough, it holds

max
(∥∥Cπ0

∥∥,
∥∥(Cπ0 )−1

∥∥,
∥∥Cπ1

∥∥,
∥∥(Cπ1 )−1

∥∥
)
≤ c. (131)

Thus, using Lemma 37, there exists c > 0 such that for every h small enough, it holds

∀j ∈ {1, . . . ,m0},
1

c
ηj(S

π) ≤ ηj(S
B0,B1) ≤ c ηj(S

π). (132)
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Moreover, let us recall that Sπ = (Im0 +O(h))TD according to (130) and then, using

Lemmata 36 and 37, there exists c > 0 such that for every h small enough,

∀j ∈ {1, . . . ,m0},
1

c
ηj(D) ≤ ηj(S

π) ≤ c ηj(D). (133)

Finally, according to the ordering of the elements of U0 considered in the statement

of Theorem 2, the singular values of D satisfy (see indeed (127)),

∀j ∈ {1, . . . ,m0}, ηm0+1−j(D) = Dj,j = hpje−
1
h
(f(j(xj ))−f(xj)).

Together with (132) and (133), this implies the statement of Theorem 2.

Lastly, in the main result of this work stated below, one gives asymptotic equiva-

lents of the smallest eigenvalues of ∆D
f,h under additional assumptions on the maps j

and Cj built in Section 3.3 which ensure that the wells Cj(x), x ∈ U0, are adequately

separated.

Theorem 3. Let f : Ω → R be a C∞ Morse function which satisfies (H1) and (H2),

and thus such that U0 6= ∅. Let us assume that there exists m∗ ∈ {1, . . . ,m0} and a

labeling of U0 = {x1, . . . , xm0} such that (see Section 3.3 for the constructions of the

maps j and Cj):

1. It holds

f(j(x1))− f(x1) ≥ . . . ≥ f(j(xm∗))− f(xm∗) > max
i=m∗+1,...,m0

f(j(xi))− f(xi),

with the convention max
i=m0+1,m0

f(j(xi))− f(xi) = 0.

2. For all j ∈ {1, . . . ,m∗}, j(xj) ∩
⋃

i∈{1,...,m0},i 6=j
j(xi) = ∅ (i.e. ∂Cj(xj) does not

contain any separating saddle point which belongs to another ∂Cj(xi), i 6= j).

3. For all k, ℓ ∈ {1, . . . ,m∗} such that k 6= ℓ and Cj(xℓ) ⊂ Cj(xk) (notice that this

implies f(xℓ) ≥ f(xk) by construction of Cj), it holds f(xℓ) > f(xk).

For j ∈ N
∗, let us denote by λj,h the j-th eigenvalue of ∆D

f,h counted with multiplicity.

Then, there exists c > 0 such that in the limit h→ 0, it holds

λm∗+1,h = O(e−
c
h )λm∗,h.

Moreover, there exists h0 > 0 such that for every h ∈ (0, h0), there exists a bijection

Λh : {x1, . . . , xm∗} −→ σ(∆D
f,h) ∩ [0, λm∗,h],

where the spectrum is counted with multiplicity, such that, for every j ∈ {1, . . . ,m∗},
it holds when h→ 0:

Λh(xj) =
(√

hK1,xj

(
1 +O(h)

)
+ hK2,xj

(
1 +O(

√
h)
))
e−

2
h
(f(j(xj))−f(xj )) (134)

=
(Aj,1 +

√
hAj,2

Bj
+O(h)

)√
h

π
e−

2
h
(f(j(xj ))−f(xj)),
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where K1,xj and K2,xj are defined in (111), Bj :=
∑

q∈argminCj(xj)
f

(detHess f(q))−
1
2 ,

Aj,1 =
∑

z∈j(xj)

|∇f(z)|6=0

2∂nΩf(z)

(detHess f |∂Ω(z))
1
2

and Aj,2 =
1√
π

∑

z∈j(xj)

|∇f(z)|=0

(1 + 1∂Ω(z)) |µd|
|detHess f(z)| 12

,

where 1∂Ω(z) = 1 if z ∈ ∂Ω and 1∂Ω(z) = 0 if not, and µd denotes the negative

eigenvalue of Hess f(z) when z ∈ j(x) and |∇f(z)| = 0.

Finally, when j(xj)∩∂Ω does not contain any critical point of f , the above error term

O(
√
h) is actually of order O(h) in (134).

Remark 38. The first statement of Theorem 3 is a simple consequence of its first

item together with Theorem 2 (or even of Theorem 1 when m∗ = m0). Moreover,

when in addition f(j(x1)) − f(x1) > . . . > f(j(xm∗)) − f(xm∗), the eigenvalues

λ1,h, . . . , λm∗,h are respectively Λh(x1), . . . ,Λh(xm∗). They are then simple and, for

every ℓ ∈ {1, . . . ,m∗ − 1}, there exists c > 0 such that it holds λℓ+1,h = O(e−
c
h )λℓ,h

in the limit h → 0. In general, the situation is slightly more involved and, when for

example Theorem 3 applies with m∗ = 2 and f(j(x1))−f(x1) = f(j(x2))−f(x2), The-
orem 3 permits to discriminate which eigenvalue among Λh(x1) and Λh(x2) is λ1,h
if and only if (A1,1/B1, A1,2/B1) 6= (A2,1/B2, A2,2/B2), even though λ1,h is simple

(see [26] in this connection when f is a double-well potential).

Remark 39. The term O(
√
h) in (134) is in general optimal, see Remark 25 and item 1

in Proposition 26.

Remark 40. Note that under the hypotheses made in Corollary 3, the set of prin-

cipal wells of f consists in the unique element C(x1) = Cj(x1) = {f < min∂Ω f},
where x1 ∈ argminΩ f (see Definition 7 and Section 3.3). It holds moreover j(x1) =

{z1, . . . , zN} and the hypotheses of Theorem 3 are satisfied for m∗ = 1. The statement

of Corollary 3 follows easily.

Proof. Let us work with the labeling of U0 = {x1, . . . , xm0} considered in the state-

ment of Theorem 3. Note in passing that the labeling of {xm∗+1, . . . , xm0} is ac-

tually arbitrary. Let us moreover order (ψx)x∈U0
= (ψ1, . . . , ψm0) and (Θx)x∈U0

=

(Θ1, . . . ,Θm0) according to this labeling of U0. The proof of Theorem 3 is divided

into several steps and is partly inspired by the analysis led in [19, Section 7.4] which

generalizes the procedure made in [16,17] (see also [31, Section C.3.1.2]).

Step 1. Let us first choose an orthonormal basis B0 of Ran(πh) in L2(Ω) and an

adapted orthonormal basis B1 of Span (Θπ
i )i∈{1,...,m0} in Λ1L2(Ω).

Step 1.a) Choice of the basis B0.

Let us first prove that items 2 and 3 in Theorem 3 imply the existence of c > 0 such

that for every h small enough,

∀i, j ∈ {1, . . . ,m∗}, 〈ψi, ψj〉L2(Ω) = δi,j +O
(
e−

c
h

)
. (135)
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To this end, let us recall that from (89) and Definition 23, one has

∀i ∈ {1, . . . ,m0} , supp ψi ⊂ Ω1(xi) (136)

and let us consider i, j ∈ {1, . . . ,m∗}. According to item 2 in Theorem 3, it thus holds

j(xi) ∩ j(xj) = ∅ and, according to item 4.(i) in Section 3.3, there are two possible

cases which finally lead to (135):

– either Cj(xj)∩Cj(xi) = ∅, in which case, according to item 3.(i) in Definition 21

and to (136), the supports of ψi and ψj are disjoint and thus 〈ψi, ψj〉L2(Ω) = 0,

– or, up to switching i and j, Cj(xj) ⊂ Cj(xi), in which case, according to item 3.(i)

in Definition 21, Ω1(xj) ⊂ Ω2(xi) ⊂ Ω1(xi). In this case, it then follows from

Definition 23, (89), and (96), that

〈ψi, ψj〉L2(Ω) =

∫
Ω1(xj)

φiφj e
− 2

h
f

ZxjZxi
≤ Ch−

d
2 e−

1
h
(2f(xj )−f(xi)−f(xj)),

where we also used the relation min
Ω1(xj)

f = min
Cj(xj)

f = f(xj) arising from

the construction of the map Cj and item 1 in Definition 21. Moreover, using

item 3 in Theorem 3, it holds f(xj) > f(xi), and thus, there exists c > 0 such

that when h→ 0:

〈ψi, ψj〉L2(Ω) = O
(
e−

c
h

)
.

Then, according to (135) and to Proposition 30, there exists c > 0 such that for all

i, j ∈ {1, . . . ,m∗}, it holds in the limit h→ 0:

〈ψπi , ψπj 〉Λ1L2(Ω) = δi,j +O
(
e−

c
h

)
. (137)

Let us now consider the Gram-Schmidt orthonormalization B0 := (e1, . . . , em0) of

the family (ψπ1 , . . . , ψ
π
m0

) in L2(Ω). According to (137), it thus holds, for all k ∈
{1, . . . ,m∗},

ek =
(
1 +O

(
e−

c
h

))
ψπk +

k−1∑

q=1

O
(
e−

c
h

)
ψπq .

Thus, the matrix Cπ0 defined by (124) has the block structure

Cπ0 =

[
Im∗ +O

(
e−

c
h

)
[Cπ0 ]2

0 [Cπ0 ]4

]
, (138)

where Im∗ is the identity matrix of R
m∗×m∗

, [Cπ0 ]4 ∈ R
(m0−m∗)×(m0−m∗) is an in-

vertible matrix (since, according to Proposition 33, Cπ0 is invertible), and [Cπ0 ]2 ∈
R
m∗×(m0−m∗). One then defines the m0 ×m0 matrix C0 by

C0 :=

[
Im∗ [Cπ0 ]2
0 [Cπ0 ]4

]
, (139)
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so that, according to Proposition 33, C0 is invertible and

C0 = O(1), C−1
0 =

[
Im∗ −[Cπ0 ]2[C

π
0 ]

−1
4

0 [Cπ0 ]
−1
4

]
= O(1), and C−1

0 Cπ0 = Im0+O
(
e−

c
h

)
. (140)

Step 1.b) Choice of the basis B1.

According to Definition 29, item 2 in Theorem 3, and to item 2.(i) in Proposition 26,

it holds, for every h small enough:

∀j ∈ {1, . . . ,m∗} , ∀i ∈ {1, . . . ,m0} , 〈Θi,Θj〉Λ1L2(Ω) = δi,j . (141)

Thus, using in addition Proposition 30, it holds, for every h small enough:

∀j ∈ {1, . . . ,m∗} , ∀i ∈ {1, . . . ,m0} , 〈Θπ
i ,Θ

π
j 〉Λ1L2(Ω) = δi,j +O(h). (142)

Let us now consider the Gram-Schmidt orthonormalization B1 := (Υ1, . . . ,Υm0) of

the family (Θπ
1 , . . . ,Θ

π
m0

} in Λ1L2(Ω). It thus holds in the limit h→ 0,

∀k ∈ {1, . . . ,m∗} , Υk =
(
1 +O(h)

)
Θπ
k +

k−1∑

q=1

O(h)Θπ
q

and, for some real numbers ak,q(h), where k ∈ {m∗ + 1, . . . ,m0} and q ∈ {m∗ +

1, . . . , k},

∀k ∈ {m∗ + 1, . . . ,m0} , Υk =

m∗∑

q=1

O(h)Θπ
q +

k∑

q=m∗+1

ak,q(h)Θ
π
q .

Hence, with this choice of B1, the matrix Cπ1 defined by (124) has the block structure

Cπ1 =

[
Im∗ +O(h) O(h)

0 [Cπ1 ]4

]
, (143)

where [Cπ1 ]4 ∈ R
(m0−m∗)×(m0−m∗) is an invertible matrix (since Cπ1 is invertible, see

indeed Proposition 33) and, according to (131), [Cπ1 ]4 = O(1) and [Cπ1 ]
−1
4 = O(1) in

the limit h→ 0. Finally, let us define the m0 ×m0 matrix C1 by

C1 :=

[
Im∗ 0

0 [Cπ1 ]4

]
, (144)

so that, in the limit h→ 0, it holds

C1 = O(1) and C−1
1 = O(1) (145)

and

‖C−1
1 (Im0+O(h))Cπ1 ‖ = 1+O(h) and ‖(Cπ1 )−1(Im0+O(h))C1‖ = 1+O(h). (146)

Step 2. Let us recall that in the limit h → 0, the m0 smallest eigenvalues of ∆D
f,h

are the squares of the singular values of the matrix SB0,B1 = tCπ1 S
π Cπ0 ∈ R

m0×m0 ,

57



where Cπ0 , C
π
1 , and S

π are defined in (124) and in (125). Moreover, the relation (130)

leads to the factorization (see (126) for the definition of the matrix S)

SB0,B1 = t
(
C−1
1 (Im0 +O(h))Cπ1

)
tC1 S C0

(
C−1
0 Cπ0 ).

Using (140), (146), and Lemma 37, it follows that

∀j ∈ {1, . . . ,m0}, ηj(S
B0,B1) = ηj(

tC1 S C0)
(
1 +O(h)

)
. (147)

Hence, the m0 smallest eigenvalues of ∆D
f,h are, up to a multiplicative term of order(

1 +O(h)
)
, the squares of the singular values of the matrix tC1 S C0.

In order to prepare the precise computation of these singular values made in the

following step, let us first suitably decompose the matrices taking part into tC1 S C0.

To this end, let us introduce

k
∗ ∈ {1, . . . ,m∗}

and write the diagonal matrix D defined by (127) and (128) as follows:

D =

[
D1 0

0 D2

]
, (148)

where D1 is the square diagonal matrix of size k∗ defined by

D1 := Diag
(
hp1 e−

1
h
(f(j(x1))−f(x1)), . . . , hpk∗ e−

1
h
(f(j(xk∗ ))−f(xk∗ ))

)
(149)

and D2 is the square diagonal matrix of size m0 − k∗ defined by

D2 := Diag
(
hpk∗+1 e−

1
h
(f(j(xk∗+1))−f(xk∗+1)), . . . , hpm0 e−

1
h
(f(j(xm0 ))−f(xm0 ))

)
. (150)

Moreover, according to (141), the matrices S =
(
‖df,hψj‖Λ1L2(Ω) 〈Θi,Θj〉Λ1L2(Ω)

)
i,j

and T = SD−1 defined in (126) and in (129) have the block structure

S =

[
S1 0

0 S2

]
and T =

[
T1 0

0 T2

]
, (151)

where:

– T1 and S1 are square diagonal matrices of size k∗ defined by

S1 := Diag(S1,1, . . . , Sk∗,k∗) and T1 := S1D
−1
1 , (152)

– T2, S2 ∈ R
(m0−k∗)×(m0−k∗) and, according to Lemma 36,

T2 = S2D
−1
2 is invertible and T−1

2 = O(1). (153)

Using in addition (139) and (144), the matrices C0, C1 and thus tC1SC0 have the

block structures

C0 =

[
Ik∗ U

0 V

]
, C1 =

[
Ik∗ 0

0 W

]
, and thus tC1 S C0 =

[
S1 S1U

0 tWS2V

]
, (154)
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where, according to (140) and (145), it holds in the limit h→ 0:

U, V = O(1) , V −1 = O(1) and W,W−1 = O(1). (155)

Note lastly that when k∗ = m∗, one has U = [Cπ0 ]2, V = [Cπ0 ]4, and W = [Cπ1 ]4.

Step 3. We are now in position to prove Theorem 3. To this end, we will compute

the smallest singular values of the matrix tC1 S C0 that we have seen to be, up to a

multiplicative error term of order 1+O(h), the square roots of the smallest eigenvalues

of ∆D
f,h (see indeed (147)).

In the following, one uses the block decompositions exhibited in (148)–(154) and, for

ℓ ∈ N, one denotes by ‖ · ‖2 the Euclidean norm on R
ℓ. Moreover, for every h small

enough, one chooses the ordering of the set {x1, . . . , xm∗}, depending on h, such that

the sequence
(
Sj,j

)
j∈{1,...,m∗} is increasing.

According to (147), (152), and to Proposition 35, it then suffices to show that there

exists c > 0 such that it holds in the limit h→ 0,

∀ℓ ∈ {1, . . . ,m∗} , ηm0−ℓ+1(
tC1 S C0) = Sℓ,ℓ

(
1 +O(e−

c
h )
)
. (156)

To this end, we recall that by the Max-Min principle, one has for every ℓ ∈ {1, . . . ,m0},

ηm0−ℓ+1(
tC1 S C0) = max

E⊂Rm0 , dim E=ℓ−1
min

y∈E⊥ ; ‖y‖2=1

∥∥ tC1 S C0y
∥∥
2

(157)

= min
E⊂Rm0 , dim E=ℓ

max
y∈E ; ‖y‖2=1

∥∥ tC1 S C0y
∥∥
2
. (158)

To obtain the upper bound in (156) for some arbitrary ℓ ∈ {1, . . . ,m∗}, we apply (158)

which gives, according to (154) applied with k∗ = ℓ and to (152):

ηm0−ℓ+1(
tC1 S C0) ≤ max

y∈Rℓ ; ‖y‖2=1

∥∥ tC1 S C0 (y, 0, . . . , 0)
∥∥
2

= max
y∈Rℓ ; ‖y‖2=1

∥∥S1y
∥∥
2

= Sℓ,ℓ. (159)

Let us now prove the lower bound in (156) for some arbitrary ℓ ∈ {1, . . . ,m∗}. For that
purpose, let us introduce y∗ ∈ R

m0 such that ‖y∗‖2 = 1, y∗ ∈ (Rℓ−1 × {0, . . . , 0})⊥,
and ∥∥ tC1 S C0 y

∗∥∥
2
= min

y∈(Rℓ−1×{0,...,0})⊥ ; ‖y‖2=1

∥∥ tC1 S C0 y
∥∥
2
.

Note that according to (157), it holds in particular

ηm0−ℓ+1(
tC1 S C0) ≥

∥∥ tC1 S C0 y
∗∥∥

2
. (160)

Let us also introduce k∗ ∈ {ℓ, . . . ,m∗} such that

f(j(xℓ))− f(xℓ) = f(j(xk∗))− f(xk∗) > max
j∈{k∗+1,...,m0}

f(j(xj))− f(xj). (161)

Note that this is indeed possible by the first item of Theorem 3. Let us then write

y∗ = (y∗a, y
∗
b ), where y

∗
a ∈ R

k∗ and y∗b ∈ R
m0−k∗ , and let us prove that there exists

c > 0 such that when h→ 0,

‖y∗b‖2 = O
(
e−

c
h

)
. (162)
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According to (160), (154) applied with k∗, and to the triangular inequality, one has

ηm0−ℓ+1(
tC1 S C0) ≥

∥∥ tC1 S C0 (y
∗
a, y

∗
β)
∥∥
2
≥

∥∥ tC1 S C0 (0, y
∗
b )
∥∥
2
−

∥∥ tC1 S C0 (y
∗
a, 0)

∥∥
2

=
∥∥ tC1 S C0 (0, y

∗
b )
∥∥
2
−

∥∥S1y∗a
∥∥
2
.

Using in addition (159) and (152) with k∗, it follows that in the limit h→ 0:

∥∥ tC1 S C0 (0, y
∗
b )
∥∥
2

≤ Sℓ,ℓ + ‖S1‖ ‖y∗a‖2 ≤ 2Sk∗,k∗ . (163)

Moreover, according to (154), one has

∥∥ tC1 S C0 (0, y
∗
b )
∥∥
2
=

(∥∥S1U y∗b
∥∥2
2
+

∥∥ tWS2V y∗b
∥∥2
2

) 1
2 ≥

∥∥ tWS2V y
∗
b

∥∥
2
,

where, using (153) and (155), it holds for some C > 0 in the limit h→ 0,

∥∥ tWS2V y
∗
b

∥∥
2
=

∥∥ tWT2D2V y
∗
b

∥∥
2
≥ 1

C
‖D−1

2 ‖−1‖y∗b‖2.

It then follows from (163) that in the limit h→ 0, it holds

‖y∗b‖2 ≤ 2C ‖D−1
2 ‖Sk∗,k∗ ,

which leads to (162) according to item 2 in Proposition 35, (150), and to (161).

Then, using (160), (154) with k∗, and (162) together with the fact that U = O(1)

(see (155)), we obtain the existence of c > 0 such that it holds in the limit h→ 0,

ηm0−ℓ+1(
tC1 S C0) ≥

∥∥ tC1 S C0 y
∗∥∥

2
≥

∥∥S1y∗a
∥∥
2
−

∥∥S1Uy∗b
∥∥
2

=
∥∥S1y∗a

∥∥
2
− ‖S1‖O

(
e−

c
h

)
.

Hence, using in addition ‖y∗a‖2 = 1+O
(
e−

c
h

)
(which follows from (162) and ‖y∗‖2 =

1), y∗a,1 = · · · = y∗a,ℓ−1 = 0 (since y∗ ∈ (Rℓ−1 × {0, . . . , 0})⊥), (152), item 2 in

Proposition 35, and (161), it holds in the limit h→ 0,

ηm0−ℓ+1(
tC1 S C0) ≥ Sℓ,ℓ

(
1 +O(e−

c
h )
)
− Sk∗,k∗ O

(
e−

c
h

)
≥ Sℓ,ℓ

(
1 +O(e−

c
2h )

)
,

which concludes the proof of (156). The proof of Theorem 3 is thus complete.
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