A bijection for nonorientable general maps - Archive ouverte HAL Access content directly
Conference Papers Discrete Mathematics and Theoretical Computer Science Year : 2020

A bijection for nonorientable general maps

Abstract

We give a different presentation of a recent bijection due to Chapuy and Dołe ̨ga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonori- entable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and we recover a famous asymptotic enumeration formula found by Gao.
Fichier principal
Vignette du fichier
final_39.pdf (331.97 Ko) Télécharger le fichier
Loading...

Dates and versions

hal-02173739 , version 1 (04-07-2019)
hal-02173739 , version 2 (17-10-2019)

Identifiers

Cite

Jérémie Bettinelli. A bijection for nonorientable general maps. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6398⟩. ⟨hal-02173739v1⟩
68 View
410 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More