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A bijection for nonorientable general maps

Jérémie Bettinelli†

CNRS & Laboratoire d’Informatique de l’École polytechnique, Palaiseau, France

Abstract. We give a different presentation of a recent bijection due to Chapuy and Dołęga for nonorientable bipartite
quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di
Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonori-
entable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and we
recover a famous asymptotic enumeration formula found by Gao.

Résumé. On donne une présentation différente d’une bijection récente due à Chapuy et Dołęga pour les quadrangula-
tions biparties non-orientables et on l’étend au cas des cartes générales non-orientables. Cela peut se voir comme une
généralisation à la Bouttier–Di Francesco–Guitter de la bijection de Cori–Vauquelin–Schaeffer dans le contexte des
surfaces non-orientables générales. Dans le cas particulier des triangulations, les objets codant prennent une forme
particulièrement simple et on retrouve la fameuse formule d’énumération asymptotique de Gao.

Keywords. map, graph, bijection, nonorientable surface, Brownian surface

1 Introduction
1.1 Motivation
The study of maps has seen tremendous developments in the past few decades. One of the reasons is that
they provide natural discrete versions of a given surface. In particular, when taken according to a well-
chosen natural probability distribution, it has been shown for several models that a random map converges
(after scaling, in a certain sense) toward a limiting object. This limiting object is a random metric space
and has (almost surely) the same topology as the surface on which the considered maps are drawn. It
is called the Brownian map when the surface is the sphere, and the Brownian S for a general orientable
surface S .

In the most-studied case of the sphere, it has been shown [LG13, Mie13] for example that a uniform
quadrangulation (map with only faces of degree 4) with n faces converges to the Brownian map as n→∞.
The case of a more general compact orientable surface (with a boundary allowed) has been studied, mostly
in the context of uniform quadrangulations: partial convergence has been established in a series of papers
ending with [Bet14] and a full convergence is under investigation [BM15b]. The full convergence in
the particular case of the disk has recently been shown in [BM15a], where many more models are also
considered.
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All the previously mentioned results strongly rely on powerful bijective encodings of the considered
maps. It turns out that quadrangulations are particularly well behaved with respect to these bijective
encodings and this is the main reason why they are usually the first to be studied. However, if one wishes
to study other models and, in particular, surfaces with a boundary, one needs more general bijective
encodings. In the case of compact orientable surfaces, the so-called Schaeffer-like bijections [CV81,
Sch98, BDG04, CMS09, AB13] allow one to conduct most studies.

Until very recently, no such bijections were known in the case of a nonorientable surface. In [CD15],
Chapuy and Dołęga took the first step by exhibiting a bijection allowing to encode nonorientable bipartite
quadrangulations. In this work, we give an alternate description of their bijection, which provides an ex-
plicit construction for pointed quadrangulations(i) and we show how to generalize it to nonorientable gen-
eral maps. These works lay the bases for the future study of nonorientable Brownian surfaces [BCD15].

Another cause of interest for maps is their remarkable enumerative properties. In fact, although maps
are intricate objects by nature, many classes of them possess a quite simple enumerative structure. Thanks
to different involved enumeration techniques (generating functions, matrix integrals, algebraic combina-
torics), many classes of maps have been enumerated and map enumeration has become over the years a
full-fledged research domain.

In the case of the sphere, Tutte [Tut63] gave a very simple closed formula for the number of rooted maps
with a given number of edges. A bijective proof of this formula was given by Cori and Vauquelin [CV81]
and later popularized by Schaeffer [Sch98]. It relies on their so-called Cori–Vauquelin–Schaeffer bijec-
tion encoding quadrangulations of the sphere with trees whose vertices carry integer labels satisfying
local constraints. For more general surfaces, Bender and Canfield [BC86] showed that the number of
rooted maps with n edges on a given surface (orientable or not) is asymptotically equal to a constant
times n5(h−1)/212n, where h is the type of the considered surface and the constant depends on the sur-
face. Extending the Cori–Vauquelin–Schaeffer bijection, a combinatorial interpretation of this fact in the
orientable case was given by Chapuy, Marcus and Schaeffer [CMS09]. Their approach rely on a bijec-
tion between bipartite quadrangulations (it is a classical simple fact that bipartite quadrangulations are in
bijection with general maps) and one-face maps of the same surface, whose vertices carry integer labels
satisfying some local constraints.

In parallel, Bouttier, Di Francesco and Guitter [BDG04] extended the original Cori–Vauquelin–Schaeffer
bijection to encode maps of the sphere with an arbitrary face degree distribution. Unifying both afore-
mentioned extensions, Chapuy [Cha09] proved similar asymptotic enumeration results for more families
of maps on an orientable surface.

Nonorientability does not causes too much difficulties for generating function approaches. In addition
to Bender and Canfield’s results, we may cite the work of Gao, who showed [Gao91] that the number
of rooted triangulations with n edges on a given surface (orientable or not) is asymptotically equal to
a constant (depending on the surface) times n5(h−1)/2(12

√
3)n. He also studied the algebraicity of the

generating function of rooted maps on a given surface with face degree constraints [Gao93].
In their recent work [CD15], Chapuy and Dołęga extended the construction of [CMS09] to bipartite

nonorientable quadrangulations. In this paper, we give a different construction of their bijection, and
extend it by an approach reminiscent of [BDG04]. In order to achieve this goal, we somehow fix a local
orientation of the surface via a global process, in the sense that the process uses the information of the

(i) A pointed map is a map given with a distinguished vertex. From a combinatorial point of view, it might not seem to make much
difference, but the bijections for pointed maps turn out to be better behaved for probabilistic applications.
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whole map. As a result, the constraints satisfied by the labels of the encoding objects are also global
and this provides us from giving a simple characterization of these objects. In the very particular case of
quadrangulations, the global constraints can be expressed as local constraints and the encoding objects
(so called well-labeled unicellular maps) take a simple form and this allowed Chapuy and Dołęga [CD15]
to give a combinatorial interpretation of Bender and Canfield’s asymptotic formula. In the particular case
of triangulations, the same miracle occurs and we are able to give a combinatorial interpretation of the
results of [Gao91].

1.2 First definitions
From now on and until the end of the paper, we fix a compact surface without boundary S, ori-
entable or not. A map is a cellular embedding of a finite graph (possibly with multiple edges and loops)
into S, considered up to homeomorphisms. Cellular means that the faces of the map (the connected com-
ponents of the complement of edges) are homeomorphic to 2-dimensional open disks. A corner is an
angular sector determined by two consecutive half-edges incident to the same vertex and to the same face.
The degree of a face is its number of corners. All the maps we consider are rooted, that is, given with a
distinguished oriented corner called the root. The (unoriented) corner corresponding to the root will be
called the root corner, the vertex incident to the root will be called the root vertex, the face containing the
root will be called the root face and the edge incident to the root face that follows the root will be called
the root edge. See Figure 1.
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Fig. 1: The (green) root ρ, the (purple)
root corner c, the (blue) root vertex v, the
(light pink) root face f and the (red) root
edge e. The root of the root flipped map
is σ (in orange).

We will use the following involution we call a root flip: from a
map m, we define the root flipped map m̄ by rerooting m at the only
oriented corner incident to the other extremity of the root edge and
defining the same root edge. We use the classical notation V (m)
to denote the vertex set of a map m and we denote by dm the
graph metric on V (m). A map is bipartite if its vertex set can
be partitioned into two subsets such that every edge links a vertex
from one subset to a vertex from the other subset.

1.3 Aim of the paper
In this work, we present a bijection between the set of pointed
bipartite maps on S and pairs consisting of what we call a well-
labeled unicellular mobile and a parameter ε ∈ {+,−}. A well-
labeled unicellular mobile is a one-face map with green or white
vertices whose white vertices carry positive integer labels satisfy-
ing some compatibility relations, which need more background to
be properly stated (see Definition 2 for a rigorous definition).

If the surface S is orientable, we recover the famous Bouttier–Di Francesco–Guitter bijection [BDG04]
and the following basic properties continue to hold in the nonorientable case:

Proposition 1. If (m, v•) is a pointed bipartite map and ((u, l), ε) denotes the corresponding pair, then
(i) V (m) \ {v•} corresponds to the white vertices of u and the label of a white vertex is given by its

distance to v• in m;
(ii) the faces of m correspond to the green vertices of u : moreover, the degree of a face of m is twice

the degree of the corresponding green vertex;
(iii) the maps m and u have the same number of edges.
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Property (i) is absolutely crucial from a metric point of view, as the labeled unicellular map somehow
captures part of the metric information of the map, namely all the distances to the distinguished vertex v•.

Our construction is based on a rule that gives an orientation to every corner of the map. We introduce
what we call level loops; these can be thought of as contour lines in topography, where the height of a
given vertex is its distance to the distinguished vertex v•. The orientation of the root gives a canonical
orientation to all these level loops. Using these local orientations, we then apply similar rules as in the
orientable case in order to complete the construction.

We will then see how to extend our bijection to general maps, which are not necessarily bipartite. In
the case of triangulations, that is, maps with only faces of degree 3, the encoding mobiles happen to
have a particularly simple structure. This allows us to recover the following enumeration result ([Gao91,
Theorem 1]).

Proposition 2. The number of (rooted) triangulations of S with 2n faces (and thus 3n edges and n+2−2h
vertices, by the Euler characteristic formula) is asymptotically equivalent to

cS n
5(h−1)/2(12

√
3
)n
,

where h is the type of S and cS is a constant that depends on S.

The values for h ≤ 1 of cS are given in the full version [Bet15] of this paper. For small values of h, the
generating function of triangulations can also be computed: we recover [Gao91, Theorem 3] and we add
the case of the Klein bottle.

Proposition 3. The generating function of triangulations counted with weight x per vertex is given by

1

2
(1− 2σ)(1− σ + σ2)− 1

2

√
1− 6σ + 6σ2 if S is the projective plane and

3σ(1− σ)
(
1− 6σ + 6σ2

)−2(
7− 30σ + 30σ2 − 6(1− 2σ)

√
1− 6σ + 6σ2

)
if S is the Klein bottle, where σ is an algebraic function of x given by

x =
1

2
σ(1− σ)(1− 2σ) σ(0) = 0.

The analog of Proposition 2 was obtained by the same method for quadrangulations on an orientable
surface in [CMS09], as well as on a nonorientable surface in [CD15]. Unfortunately, the constraints on
the labels of a well-labeled unicellular mobile in general are too intricate to derive similar enumeration
results. In fact, the labels satisfy global constraints instead of just local constraints as soon as the maps
we consider are neither triangulations nor quadrangulations.

2 From pointed bipartite maps to well-labeled unicellular mobiles
Let (m, v•) be a pointed bipartite map. For every v ∈ V (m), we define its label by l(v) := dm(v•, v).

The fact that m is bipartite implies that the labels of two neighboring vertices differ by exactly 1. If the
root vertex has a smaller label than the other extremity of the root edge, we set ε := + ; otherwise, we
replace m by its root flipped version m̄ and set ε := −. We construct the level loops as follows. At first,
we only construct unoriented level loops: we will orient all the loops at the end. We consider the border
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of a face along some edge and we denote by i− 1 and i the labels of the vertices incident to this edge. We
travel on the border of the face along the edge, from the vertex labeled i − 1 toward the vertex labeled i.
When we reach the vertex labeled i, we turn around the vertex until we see an edge linking it to a vertex
with label i − 1; in the process, we cross a nonnegative number of edges linking the vertex to vertices
labeled i + 1. We then travel along the edge toward the vertex labeled i − 1. We keep traveling along
the border of the face we are visiting until we either close the loop or reach a vertex labeled i+ 1. In the
later case, the vertex visited just before the vertex labeled i+1 necessarily has label i; we turn around this
vertex until we see an edge linking it to a vertex with label i − 1. We iterate the process until we close
the loop. We say that such a loop is at level i. We iterate the process until each side of every edge of type
i− 1 - i is visited by a loop at level i. We finally add around v• a single loop at level 0.

We orient, give an origin and order the level loops as follows. We consider all the loops visiting the root
corner: note that there exists at least one such loop. We orient all these loops according to the orientation
given by the root, we set their origin at the root corner and we declare them to be the first loops, ordered by
increasing level. We then start from the origin of the first loop and travel on it. Every time we encounter
new loops, we declare them to be the next ones, ordered in increasing level. We set their origin at the
location we are and we orient them by the orientation induced by the loop on which we are traveling.
When we arrive back at the origin of our loop, we move to the next one and iterate the process until every
loop has been oriented. See Figure 3. Note that this operation terminates as every loop at level i ≥ 1
touches a loop at level i− 1.

+l

Fig. 2: Rooting u from the root of m. The
root of m is represented in green and the
root of u is in purple. The existence of
the green edge (of u) is ensured by the
rules of the construction.

We consider a loop and denote by i its level. The loop visits
one by one several corners of the map. Among these corners, we
say that the loop selects those with label i that are immediately
preceded by a corner labeled i − 1. We add an extra vertex in the
middle of every face: these vertices will be called green vertices
in the following, in contrast with the original vertices, which we
will call white vertices. Inside each face, we link in a noncrossing
fashion by green edges all the corners that are selected by some
loop to the green vertex of the face.

Finally, we consider the embedded graph u whose vertex set
consists of the union of V◦(u) := V (m) \ {v•} with the set V•(u)
of green vertices and whose edge set is composed of the green
edges. We root it with the convention depicted on Figure 2. The
white vertices of u inherit the labels from the function l: we set Φ(m, v•) := ((u, l), ε). See Figure 4.

3 Definition of the encoding object and inverse construction
3.1 Preliminaries
We now describe in more details the encoding object we obtained in Section 2. First, we say that a
pair (u, l) is a labeled unicellular mobile if it satisfies the following conditions:

� u is a rooted one-face map of S whose vertex set is partitioned into V•(u) t V◦(u) in such a way
that every edge links a vertex from V•(u) to a vertex from V◦(u);
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Fig. 3: The level
loops. Inside each
face, the single loop
at maximal level is
not represented and
not taken into account
in the ordering of the
loops. The letters
indicate the ranks of
the loops in the order,
the half-arrowheads
their orientation and
the dots their origin.

4

1

0

v

1
1

1

1

2
3

3

2

2

3

32

2

2

2

3

2

3

4

4 Fig. 4: The bijec-
tion, from a pointed
bipartite map to a
well-labeled unicellu-
lar mobile. The edges
of the original map
have been grayed out.

� l : V◦(u)→ N is a function with minimum 1;
� the root vertex belongs to V◦(u).

As the face of u is homeomorphic to a disk by definition, and as the root of u gives a canonical orien-
tation to this disk, the corners of u are naturally ordered in a cyclic way around its face. In what follows,
we only consider the corners of u that are incident to vertices of V◦(u).

Definition 1. We call arc any contiguous interval of two or more subsequent corners such that the first
and last corners have strictly smaller labels than the other corners. The first and last corners of the arc
are called its extremities and the other corners are called its internal corners.
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An arc whose extremities have labels i and j is called an {i, j}-arc and its level is defined as the number
i ∨ j. An arc is said to be trivial if it contains only two corners.

The following lemma is quite straightforward so that, for space reasons, we give it without proof and
refer the interested reader to the full version of the paper.

Lemma 4. We have the following properties.

(i) Let A and B be two distinct nontrivial arcs whose intersection contains internal corners of A or B.
Then A ⊆ B or B ⊆ A and the level of the larger arc is strictly lower than that of the smaller arc.

(ii) The following properties are equivalent:
(a) For all i ≥ 1, every nontrivial arc at level i contains a corner with label i+ 1.

(b) For all i ≥ 1, every nontrivial arc at level i has a range of internal corner labels of the form
{i+ 1, i+ 2, . . . ,m} for some m.

(c) For all i ≥ 2 and for every corner with label i, either the first subsequent corner with label
strictly smaller than i has label i − 1 or the last preceding corner with label strictly smaller
than i has label i− 1.

(iii) The properties of (ii) imply that, for all i ≥ 2, every arc at level i ≥ 2 and every corner labeled
i ≥ 2 is included in a unique arc at level i− 1, which is nontrivial.

3.2 Construction
In order to give the explicit conditions satisfied by a well-labeled unicellular mobile, we need to start

performing the inverse construction. We suppose that (u, l) is a labeled unicellular mobile satisfying the
properties of Lemma 4.(ii). We add inside the unique face of u a new vertex v• with label l(v•) := 0.
We connect all the corners with label 1 to v• in a noncrossing fashion and, for each nontrivial arc at level
i ≥ 2, we add a temporary vertex to which we link all its corners that are labeled i + 1. Lemma 4.(i)
ensures that this can be done in a noncrossing fashion.

We now construct the unoriented level loops. Notice that, by Lemma 4.(iii), every corner of u is linked
either to v• or to a temporary vertex. We call black edges these links. We select a corner of u and one
incident edge of u. We denote by i the label of the selected corner. Starting from the selected corner, we
explore the boundary of the face of u, in the orientation given by the selected edge. We search the first
subsequent corner with label smaller than or equal to i. We then begin to draw a loop from the selected
corner to the second one, without crossing black edges; this can be done as two corners of u are linked
to the same temporary vertex if and only if they have the same label and all the corners in one of the two
intervals they delimit have labels larger than or equal to this common label. We then cross the edge of u at
the second corner and iterate the process (always with the same i) until we close the loop. We thus create
a loop and define its level to be i. We iterate the process until every side of every black edge starting from
a corner labeled i is visited by a loop at level i. We add a single loop at level 0 around v•. See Figure 5.

By construction, every portion of loop included in the face of u delimits an arc of (u, l). More precisely,
every arc delimited by a portion of loop at level i is either trivial at level less than or equal to i or nontrivial
at level i. Moreover, every nontrivial arc is delimited by exactly one loop and every trivial arc is delimited
by at least one loop. We say that a level loop at level i is well oriented if every nontrivial arc it delimits is
such that the extremity first visited by the portion of loop inside the face of u has label i.
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Let A be an arc at level i ≥ 2 and let B be the arc at level i − 1 defined by Lemma 4.(iii). As B
is nontrivial, there is a unique loop that delimits it. We say that this loop overflies the portions of loops
delimiting A (there may be more than one portion if A is trivial). We also say that the portions of loops
delimiting the arcs at level 1 are overflown by the single loop at level 0. We similarly define the loop
overflying a corner.

l

Fig. 6: The future root of m (in green)
from the root of u (in purple).

We define a future root as shown on Figure 6. We will orient,
give an origin and order a few level loops. Every time we orient a
loop, we do the following. If the loop is not well oriented, we stop
the process. If the loop is well oriented, for each nontrivial arc it
delimits, we identify the corresponding temporary vertex with the
extremity of the arc that is first visited by the portion of loop inside
the face of u. By Lemma 4.(i), this operation can be done in such
a way that the black edges do not cross each other. See Figure 7.

The first loop in our order is the loop overflying the root corner
of u. We orient it by the orientation prescribed by the future root and do the aforementioned identifications
(provided that it is well oriented). After these identifications, the first loop passes through the future root
corner. We set its origin at this location. We then travel on the first loop, starting at its origin. Every time
we see an unoriented loop, we orient it in the same orientation as the orientation of the loop on which we
are traveling. We declare this loop to be the next one and we set its origin at the location we are. If we
see several new loops at the same time, we order them by increasing level. When we arrive back at the
origin of our loop, we move to the next one and iterate the process until either we create a loop that is not
well oriented or every loop has been oriented. Observe that, as every portion of loop sees the loop that
overflies it, this process terminates.

Definition 2. A well-labeled unicellular mobile is a labeled unicellular mobile that satisfies the properties
of Lemma 4.(ii) and such that the previous process only creates well oriented level loops.
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Fig. 7: Identification of a temporary vertex. The red loop delimits the {i, j}-arc (i ≥ j) and the temporary vertex
corresponding to this arc is identified with the first extremity visited by the portion of loop. When traveling on the red
loop, we “see” the other loops in the order brown, purple, green, yellow, orange, blue, then the overflying loop (not
represented) and finally light green and light purple.

We now suppose that (u, l) is a well-labeled unicellular mobile and we perform the previous construc-
tion. We denote by m the map whose vertex set is V◦(u)∪{v•}, whose edges are the black edges and whose
root is the future root. We also denote by m̄ the root flipped version of m and set Ψ((u, l),+) := (m, v•)
and Ψ((u, l),−) := (m̄, v•). See Figure 8.

4 The previous mappings are inverse one from another
We denote by B• the set of pointed bipartite maps of the surface S we consider and by U the set of

well-labeled unicellular mobiles (defined in Section 3). The proof of the following theorem takes a few
pages and can be found in the full version.

Theorem 5. The mappings Φ : B• → U × {+,−} and Ψ : U × {+,−} → B• are inverse bijections.

Remark. If m is a quadrangulation, by Proposition 1.(ii), all the vertices in V•(u) have degree 2. We can
remove them and merge the two incident edges into a single edge. Through this operation, (u, l) becomes
a so-called well-labeled unicellular map and one recovers (a slight modification of) the Chapuy–Dołęga
bijection [CD15].

5 General maps
We now relax the hypothesis that the map is bipartite. We will slightly modify it in order to be able to
apply our bijection from Section 2. We consider a general pointed map (m, v•) and define the labeling
function l : V (m)→ Z+ as before. There are now two kinds of edges: an edge will be called equilabeled
if its extremities both have the same label. We then enlarge the map m by adding in the middle of each
equilabeled edge an extra vertex splitting the edge into two new edges. We denote by m̃ this enlarged
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Fig. 8: The bijection,
from a well-labeled
unicellular mobile to a
pointed bipartite map.

map and we assign to each added vertex the common label of its two neighbors plus 1. This extends the
definition of l to V (m̃) and, clearly, for v ∈ V (m̃), one has l(v) = dm̃(v•, v).

The map m̃ is bipartite, so we may apply the construction of Section 2: we set ((ũ, l), ε) := Φ(m̃, v•).
We slightly modify the encoding map as follows. Every vertex of V (m̃) \ V (m) is by design of degree 2
and both corners incident to it are selected by the level loops, as they correspond to local maximums along
the boundaries of the incident faces. As a result, it also has degree 2 in ũ; we suppress it and merge the
two incident edges into a single edge. We call such a resulting edge a flagged edge and we assign to it
the label of the suppressed vertex. We denote by (u, l) the resulting map, the function l being defined on
a subset of the vertices and edges of u. Finally, if the root edge of m is equilabeled, then the root vertex
of ũ is one of the added vertices of m̃. In this case, we transgress our usual definition of root and declare
the root of u to be the edge resulting of the suppression of the root vertex of ũ, together with the side
and local orientation induced by the root of ũ. Such a map will be called edge-rooted in what follows.
See Figure 9. We extend the definition of Φ by setting Φ(m, v•) := ((u, l), ε). The extended mapping Φ
realizes a bijection between the set of pointed maps of S and its image. See the full version for the details.

Application to triangulations
In the case of triangulations, we can give a simpler characterization of the encoding objects and derive

enumeration results. In fact, the green vertices of an encoding object can only be of the three types
depicted on Figure 10.

Moreover, the label variations along two consecutive corners of a unicellular mobile whose green ver-
tices are of such a type belong to {−1, 0, 1}. This entails that such a mobile satisfies the properties of
Lemma 4.(ii), that every of its nontrivial arcs has the same label at both extremities, and finally that every
orientation of any of its level loops is a good orientation. Moreover, the conditions on the labels entail that
both extremities of every nontrivial arc are original white vertices (in the sense that they do not come from
vertices added on the flagged edges) so that no temporary vertices will be identified with vertices added on
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Fig. 9: The bijec-
tion for a general map.
The flagged edges of
the mobile have been
highlighted and their
labels are represented
by the red squares. On
this example, the root
edge is equilabeled;
the root of the mobile
is thus a flagged edge
given with a side and
local orientation.
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Fig. 10: The three possible types of face and the corresponding green vertices.

the flagged edges. As a result, the image by Φ of the set of pointed triangulations is exactly the set of these
objects. They are simple enough to describe and can be enumerated by generating function techniques.
We refer the reader to the full version [Bet15] for this application and the proof of Propositions 2 and 3.
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