Compatibility fans realizing graphical nested complexes - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Compatibility fans realizing graphical nested complexes

Résumé

Graph associahedra are polytopes realizing the nested complex N(G) on connected subgraphs of a graph G. While all known explicit constructions produce polytopes with the same normal fan, the great variety of fan realizations of classical associahedra and the analogy between finite type cluster complexes and nested complexes incited us to transpose S. Fomin and A. Zelevinsky's construction of compatibility fans for generalized associahedra (2003) to graph associahedra. Using a compatibility degree, we construct one fan realization of N(G) for each of its facets. Specifying G to paths and cycles, we recover a construction by F. Santos for classical associahedra (2011) and extend F. Chapoton, S. Fomin and A. Zelevinsky's construction (2002) for type B and C generalized associahedra.

Mots clés

Fichier principal
Vignette du fichier
final_32.pdf (454.66 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02166355 , version 1 (26-06-2019)

Identifiants

Citer

Thibault Manneville, Vincent Pilaud. Compatibility fans realizing graphical nested complexes. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6400⟩. ⟨hal-02166355⟩
46 Consultations
499 Téléchargements

Altmetric

Partager

More