Brick polytopes, lattices and Hopf algebras - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Brick polytopes, lattices and Hopf algebras

Résumé

Generalizing the connection between the classes of the sylvester congruence and the binary trees, we show that the classes of the congruence of the weak order on Sn defined as the transitive closure of the rewriting rule UacV1b1 ···VkbkW ≡k UcaV1b1 ···VkbkW, for letters a < b1,...,bk < c and words U,V1,...,Vk,W on [n], are in bijection with acyclic k-triangulations of the (n + 2k)-gon, or equivalently with acyclic pipe dreams for the permutation (1,...,k,n + k,...,k + 1,n + k + 1,...,n + 2k). It enables us to transport the known lattice and Hopf algebra structures from the congruence classes of ≡k to these acyclic pipe dreams, and to describe the product and coproduct of this algebra in terms of pipe dreams. Moreover, it shows that the fan obtained by coarsening the Coxeter fan according to the classes of ≡k is the normal fan of the corresponding brick polytope

Mots clés

Fichier principal
Vignette du fichier
final_6.pdf (611.89 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02166338 , version 1 (26-06-2019)

Identifiants

Citer

Vincent Pilaud. Brick polytopes, lattices and Hopf algebras. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6401⟩. ⟨hal-02166338⟩
38 Consultations
526 Téléchargements

Altmetric

Partager

More