Efficient unsupervised variational Bayesian image reconstruction using a sparse gradient prior - Archive ouverte HAL
Article Dans Une Revue Neurocomputing Année : 2019

Efficient unsupervised variational Bayesian image reconstruction using a sparse gradient prior

Résumé

In this paper, we present an efficient unsupervised Bayesian approach and a prior distribution adapted to piecewise regular images. This approach is based on a hierarchical prior distribution promoting sparsity on image gradients. It is fully automatic since hyperparameters are estimated jointly with the image of interest. The estimation of all unknowns is performed efficiently thanks to a fast variational Bayesian approximation method. We highlight the good performance of the proposed approach through comparisons with state of the art approaches on an application to a diffraction tomographic problem.
Fichier principal
Vignette du fichier
S0925231219308033.pdf (915.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02161080 , version 1 (20-07-2022)

Licence

Identifiants

Citer

Yuling Zheng, Aurélia Fraysse, Thomas Rodet. Efficient unsupervised variational Bayesian image reconstruction using a sparse gradient prior. Neurocomputing, 2019, ⟨10.1016/j.neucom.2019.05.079⟩. ⟨hal-02161080⟩
129 Consultations
37 Téléchargements

Altmetric

Partager

More