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Abstract

In this paper we present an efficient unsupervised Bayesian ap-
proach and a prior distribution adapted to piecewise regular images.
This approach is based on a hierarchical prior distribution promoting
sparsity on image gradients. It is fully automatic since hyperparame-
ters are estimated jointly with the image of interest. The estimation
of all unknowns is performed efficiently thanks to a fast variational
Bayesian approximation method. We highlight the good performance
of the proposed approach through comparisons with state of the art
approaches on an application to a diffraction tomographic problem.

1 Introduction

Efficient reconstruction methods for inverse problems is a topic of great in-
terest in image processing society. Lots of such problems are ill-posed and
may not have an unique solution [12]. To circumvent this issue, existing
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estimation approaches are generally based on the introduction of additional
prior information on the unknown object in order to promote solutions with
some specific properties, e.g. regularity or sparsity. However, the quality of
the acquired estimation depends closely on hyperparameters (also known as
regularization parameters) which control the compromise between fidelity to
observed data and fidelity to this prior information. Several deterministic
methods [24, 25] exist in order to tune these parameters in general. Never-
theless, such a way of choosing hyperparameters is generally computationally
demanding. Another possibility is to consider statistical strategies given by
the Bayesian framework where hyperparameters are jointly estimated with
the unknown object by assigning hyperpriors to them [33, 26, 31], which
leads to fully automatic approaches, known also as unsupervised approaches
in the literature.

In this context, estimations of unknown object and hyperparameters are
commonly obtained from a joint posterior distribution by computing a maxi-
mum a posteriori (MAP) estimate or a posterior mean (PM) estimate. Nev-
ertheless, in general, both estimators are hardly tractable as the computation
of the MAP estimate involves usually a non convex optimization problem and
the computation of the PM an intractable integral. Numerical tools such as
Markov Chain Monte Carlo (MCMC) techniques [37] are then usually used.
However, MCMC are known to be computationally expensive in large di-
mensional problems. Some recent techniques based on improved versions of
MCMC have been proposed recently. These Monte Carlo methods have a
better convergence in term of computation time, see [36], but their appli-
cation remains limited in large dimensional cases. Recently, neural network
based methods have drawn great attention in image processing. They are
especially efficient for tasks such as image classification, object detection, etc.
However, for image reconstruction problems, the applications are generally
limited to denoising [50] or debluring [28, 45] due to the difficulty in accu-
mulating enough training data. In this case, even recent Bayesian learning
methods of [42, 16] remain limited in their applications. In this paper, to
have more efficient approaches, we resort to analytical approximation ones
given by the variational Bayesian approximation methods which provide a
tractable approximation, generally separable, to the true posterior distribu-
tion. The optimal approximation is determined by minimizing a measure of
dissimilarity, namely the Kullback-Leibler divergence, between the approxi-
mate distribution and the original one. This problem can be mathematically
formulated as a functional optimization one in the space of separable prob-



ability density functions. There exists an analytical solution underlying the
classical variational Bayesian approximation approach [44]. Nevertheless, as
stated in [15], this method suffers from a slow convergence. However, in
prior works [15, 53], more efficient iterative variational Bayesian approxi-
mation methods have been proposed based on a transposition of classical
optimization methods in Hilbert spaces [34, 9] into the space of probability
density functions. Here in order to get an efficient Bayesian approach, we
apply the improved memory gradient subspace-based variational Bayesian
approximation method of [53].

Concerning the introduction of appropriate prior information, it plays an
important role in the quality of reconstructions. In this work, we are mainly
interested in piecewise smooth/constant images. For such images, the total
variation (TV) prior has been extensively used [38, 47, 41, 3, 35, 39, 53, 32, 49,
7] due to its ability to preserve edges while reducing noise. Some other recent
methods such as [51, 52| are based either on the regularity of the wavelength
spectrum [51] or on tensor and automatic factorizations [52]. However we
are here more interested in a model which promotes a clear reconstruction
of contours. In this context, a sparser representation of the edges can be
preferable. In works such as [30, 40], the spike and slab prior, also known as
Bernoulli-Gaussian prior are used to enhance sparsity in the image domain.
However, our prior developed in this paper allows a sparse representation of
edges and at the mean time, can be used in variational Bayesian framework to
develop unsupervised approaches for general linear inverse problems. This
kind of prior is interesting for instance in non-destructive testing (NDT)
applications where objects being inspected are generally composed of a set
of homogeneous materials. In such applications, it is often needed to detect
and characterize defects such as cracks present in the objects. As a result,
it is very important to know precisely the contours of the objects which are
in general sharper than the contours of natural images. To this end, a prior
distribution which can well describe the piecewise smooth/constant property
of the objects is required.

Another widely used class of model for piecewise smooth /constant images
is the compound Markov random field [27] which models piecewise smooth
images by introducing hidden variables to image boundaries between smooth
regions [18], or modeling images as a composition of restricted number of
different homogeneous material [14, 2, 20] or enforcing sparsity of image
gradients [23, 48]. In [23], Giovannelli proposed a non-Gaussian compound
Markov field with an analytic partition function adapted to deconvolution



problems. This field is based on the principle of the half-quadratic scheme
proposed by Geman and Yang [17] and its Bayesian interpretation of hidden
variables in terms of Gaussian location mixture given in [5]. In this work, we
consider a hierarchical prior model based on an analog construction but al-
lowing more flexibility on the contours. We also show how this model can be
applied to any large dimensional linear inverse problem. In our prior model,
the conditional distribution of the unknown image pixels given hidden vari-
ables is multivariate Gaussian and the hidden variables follow a separable
Laplace distribution which corresponds to sparsity information. Moreover
we introduce an alternate representation of this model which enables an eas-
ier tuning of the hyperparameters. In fact a different parametrization allows
us to identify a shape and a scaling parameter. Hence we can fix the required
sparsity thanks to the shape parameter while the scaling one, which controls
the compromise between information coming from the data and information
coming from the prior, is automatically estimated. Thus in this paper we
present a different model for images that allows more flexibility than state
of the art ones for piecewise smooth/constant images that arise in NDT for
instance. We also determine how this model can be used for unsupervised
inversion in the case of ill-posed linear inverse problems and finally how it can
be implemented in an accelerated version of variational bayesian algorithm.
We also provide implementation results in deconvolution and denoising cases
in order to test the proposed prior.

The rest of this paper is organized as follows: in Section II, we give our
Bayesian modeling. Next, the development of unsupervised Bayesian recon-
struction approach using a fast variational Bayesian approximation method
is given in Section IIT whereas results of numerical experiments are given in
Section IV. Finally, a conclusion is drawn in Section V.

2 Bayesian modeling

2.1 Direct model

We consider here a classical linear observation model:
y = Ax+n, (1)

where y € RM and x € RY denote respectively data and unknown image to
be estimated, arranged in column lexicographic ordering. The observation
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operator A € RM*N i5 assumed to be known and n is an additive white
noise, assumed to be i.i.d. Gaussian, n ~ N(0, v, 'T), with ~, as the precision
parameter i.e. the inverse of the noise variance. The direct model (1) and the
hypothesis of i.i.d. Gaussian noise allow an easy derivation of the likelihood

function: )
Yully — Ax||
— 5 |

M/2

p(YIX, ) < 7, " exp [— (2)

2.2 A hierarchical image prior

In this work, we are interested in a image model, i.e. a prior distribution
of the unknown image x, satisfying the two following properties. Firstly, it
is able to describe the piecewise smoothness property of images of interest.
Secondly, we should have some knowledge about its partition function in
order to develop unsupervised approaches which allow us to sidestep the
difficulty of tuning hyperparameters. In this section, we define a hierarchical
prior model based on Geman and Yang method, [17], which generalizes the
work of Giovannelli [23].

For the conditional distribution of x given an hidden variable b, we con-
sider an extended Gaussian function:

- i
plxlb, 1) =Zgh exp | — 2 ([ Dyx = by

+[IDux — by )] (3)

Here 7, is the precision parameter of the conditional distribution of x given
b, the matrix D = [D},D!]” with D;, and D, as horizontal and vertical
first-order finite difference matrices and the hidden variable b = [b}, b ]"
where by, b, represent mean values of differences between adjacent pixels in
horizontal and vertical directions. Moreover, Zy, is the partition function of
p(x|b,v4). Tt is defined as

Zx|b:/exp {—% (||th—bh||2—|—||Dvx—bv||2)] dx. (4)

In [23] D is a simple operator such that Dx has the same dimension as x.
In this case, the partition function has been shown to be independent of the
auxiliary variable b, and to be a function of the hyperparameter v4. In our
case, we consider more flexibility in the horizontal and vertical components



which can be chosen independently. In this case the size of Dx is twice the
size of x. However we can still compute the partition function by transpos-
ing the integral into the Fourier domain, as done in [23] (see Appendix A for
more details). In this case, the partition function is shown to be a product
of the term c*yd’% which only involves the hyperparameter and another term
depending on both the hyperparameter 74 and hidden variables b, more pre-
cisely the Fourier transform of b. This partition function is of a complicated
form but is upper bounded by:

T < vy 2. (5)

This upper bound depends only on the hyperparameter 4. In the follow-
ing it is used as an approximation of the partition function to reduce the
computation burden.

In order to construct a prior distribution introducing piecewise smooth-
ness information, as in [23], a Laplace prior is introduced for the hidden
variables b. We have therefore

p(bls) < exp |~ (bl ] (6)

where [[b|l; = >, |bi] is the L' norm, and ¢ with 0 < £ < 2N is the
normalization constant. We introduce this constant ¢ instead of 2N (size of
b) considering that in practice we may have some prior knowledge about the
support of b.

As a result, the prior distribution of x can be obtained by integrating out
the hidden variable,

p(X|va, 7b)
[ 20 exp [~ 2 (IDix~ b+ [Dx ~ b )]
x 3¢ exp | =2 bl ] b, (7)

where & means “is approximately proportional to”.

Our Bayesian modeling can thus be summarized by the hierarchical model
of Figure 1.

From (7) we can see that this distribution depends on two hyperparame-
ters 74 and . As those parameters define together the shape and the scale
of the prior distribution, and this in an implicit manner, their automatic de-
termination is hardly tractable. To overcome this difficulty, we propose here
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Figure 1: The proposed hierarchical model: the observation y given x follows
a Gaussian distribution, the image x given the hidden variable b follows a
Gaussian distribution and b follows a Laplace distribution, -, v, and 4 are
hyperparameters.

to carry out a reparameterization which introduces a shape parameter and a
scale one. Then the shape parameter can be fixed in order to impose a prior
behaviour and the scale parameter is automatically estimated.

From (7), we can easily obtain that for all a € Rt

p(x75, 1) =a™ plax|ya, 1) with v,=a’ya, v)=am. (8)

The above equation indicates that when we change the value of parameters
~vq and 7, while keeping the value of the ratio %, the form of the distribution
does not change, i.e. only scale and amplitude change. We can then identify
the ratio of v, to /74 as the shape parameter of p(x|y4, ) and take either 4
or 7, as the scale parameter. In the following, we note this form parameter
by v, that is N
b
v \/%. (9)
We can see in Figure 2 that when v is small, the distribution seems
heavy-tailed, more specially Cauchy-like, and when v increases the shape of
distribution becomes less heavy-tailed (Gaussian-like). In fact, as we can see
in Eq. (7), in the scalar case we can see that when z tends to infinity we

have
TV\/Yd

2)'

p(x]va, 1) ~ exp(—
thus the tail of the distribution depends on v.
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Figure 2: (a) Shape of the prior distribution of x using approximate partition
function, (b) Zoom of the part within the rectangle box in (a)

Here 7, is taken as the scale parameter. Then replacing ~, by v,/74, a
joint distribution involving the auxiliary variables can be given as follows:

p(Y? X, b‘fYny Yd, I/)
= p(y[x, 7n)p(x[b, v4)p(b|7va, V)

Tn
~ Oy exp [~ 2y - Ax?]

x 7372 exp [~ 24 (IDyx = b2 + [Dux — b %) |

X (v/7a)® exp {—V 27d||b||1} ) (10)

The hierarchical model corresponding to the new parametrization is given
by Figure 3 below. This model allows a better control on the sparsity of the
gradients than TV model or the model of [23].

2.3 Hyperpriors

Hyperparameters v, and 74 play an important role in the performance of
algorithms. In practice, choosing correct hyperparameters is far from a trivial
task. Therefore, we prefer to automatically determine their values. This is
done by introducing hyperpriors for the hyperparameters. In order to obtain
numerically implementable approaches, conjugate hyperpriors are employed.



For ~,, we use a Gamma distribution,

a

P() = Gl B) = == exp (b ) (11)

I'(a)

As we do not have any prior information about ~,,, we consider a ~ 0, b~
0, which approximates the non-informative Jeffreys’ prior. Other informative
hyperpriors are also possible. Interested readers can refer to [13] for more
discussions.

However, for 74, a Gamma distribution is no longer a conjugate prior due
to the term /74 present in (10). To overcome this difficulty we firstly carry
out another reparameterization where we define a new hyperparameter IC4
as Kqg = \/7a- Then we define a non common probability distribution which
can be taken as a conjugate prior for 4. In the following, this distribution
is denoted by ¥ and parameterized by «, [ and u. Its probability density
function is given by

(2|, B 1) = Z%,Z exp [—B(z + 1)?]

for z > 0 and o, B, u > 0,

(12)

where the partition function Zy is computed as follows

+oo
Zy = / ¥ exp [—B(z + p)?] dz
0

(%) [m 2 exp(—p")d

a ;1 a—1+1
Y (YemgEer ().

=0

here I'(r, u) = fuoo t"~te~!dt is the upper incomplete Gamma function. There-

fore Zy exists and belongs to (0, +00). In this paper, we adopt the distribu-
tion ¥ as the prior of g4,

p(Ka) = U(Kal&, 53, ). (14)

In practice, in order to get an approximate non informative Jeffreys’ prior,
we choose @ = —1, B~ 0 and 1 = 0.



Replacing 74 by K2 and using the prior distribution defined above, we
can obtain a joint distribution as follows,

p(y,X,b,'}/n,,Cd‘l/>

=p(y|X, 1n)p(x|b, Ka)p(b[Kg, v)p(Vn)p(Ka)
o (M2 g 2

Crt2 exp [~y — Ax|]

IC2
x ICY exp {—f (IDpx — bp||* + |Dyx — b, ||*)
viC
< (o) exp | = 5 bl (15)

The posterior distribution p(x, b, 7, Kq|y, ) is not known explicitly since
its partition function is not calculable. In order to proceed the Bayesian in-
ference which is based on the posterior distribution, we resort to variational
Bayesian methods which aims at getting the best separable analytical ap-
proximation of the true posterior distribution.

)%

Figure 3: The hierarchical model after reparameterization. Hyperparameter
v is fixed, other ones are estimated
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3 Proposed unsupervised approach using vari-
ational Bayesian approximation

In this section we present variational bayesian methods used in this paper,
see [44, 15, 53] for more details. We denote by © ={x,b,v,, s} the vector
enclosing all the parameters to be estimated. Variational Bayesian approx-
imation methods give a separable approximate distribution gg of the true
posterior by minimizing the Kullback-Leibler (X £) divergence between them.
Nevertheless, in practice, the L divergence is generally intractable since it
depends on the unknown true posterior distribution. However, as stated in
8], minimizing KL divergence is equivalent to maximizing the negative free
energy F(qe) which depends on the joint distribution p(y, ©). The negative
free energy is defined as follows:

p(y. ©)
F(qo :/q@@ln de. 16
(1) = [ aoO)m "2 (16)
Since the joint distribution is known, the negative free energy is then used as
an alternative to the L divergence. As a result, the problem of finding the

best separable approximation can be mathematically described as follows:

G = arg max,, F(ge), st. qo(0)= H%‘(@i)' (17)

This optimization problem has the following analytic solution (see [44]
for details on the variational calculus)

4:(©;) o exp ((lnp(y, @)>Hj7£i q]-(ej)> : (18)

Classical variational Bayesian approach (VBA) is based on this analytic
solution. However, in (18), each distribution ¢; depends on the other distri-
butions ¢; with j different from 4. In practice, this dependence implies the
employment of iterative methods such as the Gauss-Seidel one, which are
not very efficient. Therefore, classical VBA is generally not very efficient for
large problems.

In [15], a more efficient gradient-type variational Bayesian method was
proposed and its convergence studied. It is based on a transposition of the
gradient descent algorithm in Hilbert spaces into the space of probability
density functions. Based on this work, we proposed in a recent work [53]

11



an improvement of this algorithm by a transposition of the memory gradient
subspace optimization method in Hilbert spaces into the space of probabil-
ity density functions. This Memory Gradient subspace based Variational
Bayesian Algorithm (MG-VBA) uses the following updating formula:

s1
exp ( (Inp(y, @)>Hj;éi q¥(©;) )

sz<@1‘)

ol X

¢ 7 (6:) =K"(s)q{ (©:)

i

where s = (s1, $2) with s; > 0 and s3 > 0 are the algorithm step sizes and
K*(s) is a normalization constant. In [53], an approximate optimal step size
was proposed thanks to the second order Taylor development of the objective
criterion. This step size is also used in this work.

We present in the following the application of variational Bayesian ap-
proximations for our problem. Considering the approximation set, we con-
sider here a separability given as follows

96(0) = 4x(x)gb(b) gy, (1n)arc, (Ka)
= [T a:(@)an(B)s, (3m)ac, (o) (20)

The optimization of gg can then be performed following the alternate
iterative scheme:

¢t = argmax F (qx, 4, &%, ax,) » (21)
qx

g = argmax F (¢ v, 45, 05, ) (22)
db

¢ = argmax F(gy™, gt ™, 4 4, (23)
Qyn

gt = argmax F(¢5 a5 k) (24)
ax,

As introduced above, conjugate priors have been chosen for x and hy-
perparameters 7,, 4. Therefore either classical VBA or MG-VBA yields
Gaussian distributions for (g;);—1.. ~ with means and variances collected in
vectors my, and o7, a Gamma distribution for ¢,, and a ¥ distribution for

12



gk,- As a result, we have

G (x) = HN(Iz'I(mk)i, (0):). (25)

& (1) = G(mla®, "), (26)
q,kcd(lCd) = WU(KCqla, B*, u). (27)

Therefore, the optimization of distributions (¢;)i=1,..~, ¢, and g, is
performed by updating their parameters.

However, in our problem, the optimization of ¢, is more complicated
since we employ a Laplace distribution, see (6), as prior distribution for b,
which is not conjugate with p(x|b, ;) (see (3)). As a result, the free form
approximation obtained by variational Bayesian approaches does not always
belong to a same family of distributions. Consequently, the optimization of ¢,
cannot be simply performed by optimizing some parameters. To tackle this
issue, we propose here to employ the restricted VBA of [44] where rather
than determine a totally free form distributional approximation for g, by
using either the classical VBA based on (18) or the MG-VBA based on (19)
we choose its distribution form in advance. Here, in order to sidestep the
difficulty posed by the Laplace distribution, we suppose that ¢f is a Dirac
delta function,

dk(b) = 5(b — BF). (28)

Therefore, instead of solving the free form optimization problem given by
(22), we maximize the negative free energy under the condition that g, is a
Dirac delta function. This problem is mathematically described by

qﬁ“ = argmax F (qﬁ“, b, ql,;n, q,kcd) ) (29)
qp is Dirac
As a result, the optimization of the distribution ¢, can also be performed
by optimizing its parameter b. In fact, in the case where the parameter
distribution is restricted to a Dirac delta function (i.e. a point estimate),
this optimization step can be identified as the M-step of an EM algorithm
1, 19, 4].

Since the conditional posterior p(b,v,, K4|X,y,v) is separable, it can be
approximated efficiently thanks to the classical VBA. In fact, the MG-VBA
is only adopted to approximate the posterior distribution of x in order to get
a real gain in convergence rate.

13



3.1 Optimization of ¢y

For the optimization of ¢y, the MG-VBA is adopted. Due to the conjugate
prior, gx is a Gaussian distribution given by (25). Therefore, updating the
distributions ¢y is equivalent to updating its mean and variance vectors my
and o?.

According to (19) and the separability assumption (20), we can obtain

g0 = koo [T (402) (L)

; qf ()

where the auxiliary functions ¢] are given by

q; (z;)
=exp [(11&]9(}’; ®)>Hj;éi q}?q{iq’%q}%d}
o exp [—/ (%Hy — Ax|f*

]C2
5 (D = b4 D, = ) )

<[]t (@) gt (b)dk, (va)ak, (Ka)dadbdry,dKy
i

X ex _<’yn>k 2d- ATA - . T,
pl——5 (= 1ag( )l 2z; (A y)

(31)

+2x; (ATAmk) .~ 2r;diag (ATA) . (mk)l)

2\k
— @ (x?diag(D;‘th)i—Qxi <D£Bz> _

+2x; (D;{Dhmk)i —2x;diag (D;{Dh)i (my);
+22diag(D'D,) —2; (Df Bg) |

i

+2z;(D/D,my) —Qxidiag(DvTDv)i(mk)Z)}

where ()" =Eg (), (K3)* :]Eq)de (K2) and diag(M) is a vector containing

the diagonal elements of matrix M.
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We can see from (31) that for i = 1,..., N, ¢/ corresponds, up to a nor-
malization constant, to the density of a Gaussian distribution with variance
(6%); and mean (m,); expressed explicitly by the two following expressions:

(02 =| () diag (AT A),
+(K2)k <d1ag(DTDh) +diag(D'D,), )}_1 (32)
(m,); =(02);| ()" (ATy— AT Amy -+ ding (AT A) omy)
+(K)"
)

(DFB} ~ DI Dy + diag (D} D) omy.)
(K2 (DTbk D’D,m; +diag(D’D,)om )} O (33)
where o denotes the pointwise product.

Based on the above results for ¢!, using (30), we can derive the expression
of ¢3(x) =[], ¢¢(x;) where each component ¢7(z;) is a Gaussian distribution
with mean (my); and variance (o2); satisfying:

1 1 1 1 1 -1
2
S ——— — 34
o {0,3“1 (oz az)“? (az aﬂ ’ (34
o (Mg m, Iy my myg_q
s =0, [0—2“1 (a—z‘a—z)+32 (a_z - az_l)] | (35)

In above equations, we omit all the indication of vector component (-);
to lighten notations.

For the step-size s, as introduced above, a sub-optimal one defined in [53]
is adopted. Therefore, o7}, =02 pop and My 1 =Migsubopt.

3.2 Optimization of ¢,

As mentioned above, we aim at getting a Dirac delta function for ¢, which
maximizes the negative free energy in order to solve the problem (29). Since
the Dirac delta function is parameterized by b, the optimization of ¢, is

15



performed by optimizing b. The resolution of (29) leads to

bFH = arg max [<1np(y, @)>q£+15(b76)q’;§nq]]%d:|
b
=ar — ’C—?l D,x—b,||*+|D,x—b,|
= arg max 5 (IDax—bp[I*+[D,x—b,|?)
b
vk R
+ 54 bl ) 3(b ~ )
X & () ak, (Ka)dxdbdy,dKq
— ar : <ICc2i>k D _f) 2 _A 2
= argmin |~ (|[Dampn —by[|" + [Dymyn —b, |
b
Kok -
B const] | (36)

which falls to a L' norm regularized linear regression problem [46, 11] whose
solution is known as a soft-thresholding which can be expressed as

kL _ v{Ka)"

b, =sgn (Dpmyy) max ( [Dymypy |~ 572550 |, (37)
2(K3)

~ v k

b =sgn (D,myy; ) max <|Dvmk+1|— QEICg;’“ : 0) : (38)

3.3 Optimization of ¢,,

Due to the use of the conjugate prior distribution, classical VBA induces
that ¢¥™! is a Gamma distribution with parameters a**' and 6**'. Using the
formula (18), we can obtain

_ Yn
A o e | - BB [y - AxI] | o)

The quantity E r+1 [|ly — Ax[|*] can be calculated as

Egn [[ly — Ax[*] = [lly — Amy||°]
+ Z diag (ATA)i (o71)i (40)
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Parameters of the Gamma distribution are then identified as

"t = M/2 = a, (41)
1
O = SE g [y — Ax]. (42)

The mean of the distribution (39), which is used as an estimate of the hy-
perparameter 7,, is then given by

>k+1 _ M

— . 43
E [y — AxF) (43)

(Vn

3.4 Optimization of g,

As above, the optimization of gx, is still performed using the classical VBA.
Therefore, using (18), we can obtain

g (Ka)
kN o | - K [[|Drx—by|[*+||Dyx—Dby|?]
d P 9 q,k:qugH h h v v
l/ICd
— g g [Hle]]
— \P(Kd|ak+1,5k+l,ﬂk+l) (44)

with o+, ¥ and u**! identified as

1
B = SE g (IDwx=bu*+ [Dx=by ). (46)
o VEga(Iblh)
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Here,
]Eq,lﬁ+1q§+l [Hth_bhHQ + ||DUX—bv||2]
= [IDrmy 1 =B + Dy — B2
+Y " diag(DiDy), (07,);
+ Z diag(Dva)i (o71)is (48)
E e [[b]la] = 65 (49)

As shown in (32), (33) and (37), (38), the parameters of the distributions
gx and ¢y, depend on the first and second-order moments of the distribution
V. As a result, we need to update the above moments while we update the
distribution gx,. Nevertheless, as we work with large-dimensional problem,
N is large and the parameter « takes very large value, which makes the
direct computation of these moments numerically intractable. To sidestep
this difficulty, in our approach, we propose to adopt a Markov Chain Monte
Carlo technique — the random walk Metropolis-Hastings algorithm which
provides us a set of samples following the distribution W (K4a®*1, gE+L k+1).
We determine then its first and second-order moments using these samples.
Note that Iy is a one-dimensional variable. In this case the computation
burden of the MCMC step is quite small.

For the random walk Metropolis-Hastings algorithm, its convergence de-
pends on its initialization and step-sizes. Therefore, to get an algorithm
relatively efficient and adaptive to all ¥ distributions, we have taken the fol-
lowing settings. Firstly, a random value between zero and the maximiser of
the ¥ function is used as the initialization point of the random walk. This
maximiser of the ¥ function has an analytical simple form:

©wooa
T 25 (50)

which can be easily computed. Moreover, a fixed step size equal to %Icgm
is adopted. We can show that this choice of initialization gives a good con-
vergence of the MCMC algorithm.

Altogether, our proposed algorithm for linear inverse problem can be
summed up in Algorithm 1.

max __
Ky = —

N =
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Algorithm 1 Proposed unsupervised Bayesian reconstruction algorithm

77777

2. Update means and variances of qf“ fori=1,...,N

a. Compute parameters of intermediary functions ¢ using (32), (33)

b. Determine the suboptimal step-sizes (55?7, s5"0P")

c. Update means and variances of ¢**! using (34), (35)

3. Update parameters of ¢i™" using (37), (38)

4. Determine parameters of q’;:rl then compute its mean using (43)

5. Update parameters of q,]“cjl using (45-47), then determine its first and

second-order moments using MCMC
6. Go back to 2 until convergence

4 Simulation results

In order to demonstrate the performance of the proposed unsupervised recon-
struction approach (see Algorithm 1), we show in this section some simulation
results on image reconstruction. We firstly present some results in diffraction
tomography (DT) applied to Non-Destructive Testing where objects are gen-
erally piecewise smooth. In this case, the relevant prior information is well
fit by our hierarchical sparse gradient prior model. Afterward, the proposed
approach is tested on natural images where our prior model does not fit very
well. The objective is to evaluate the robustness of our approach with re-
spect to the piecewise smoothness hypothesis. Then, since in the involved
DT problems an approximate linear forward model is used (see Section 4.1
for details), we make some discussions on the robustness of the proposed ap-
proach to model errors in Section 4.6. Finally, in order to show the versatility
of the proposed approach to general linear inverse problems, applications to
image denoising are also shown.

4.1 Diffraction tomography

In DT, the object of interest is subjected to an incident wave at a given
frequency. Diffraction occurs when the wave encounters the object and the
diffracted wave is measured by a set of sensors located around the object.
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The objective of DT problem is then to reconstruct an image of the unknown
object from the data collected by the sensors.

In a transverse magnetic (TM) mode, the following pair of equations can
be used to model the interaction between the incident wave and the object:

y = GysDiag(x)E (51)
E = Einc + GcouDiag(X>E (52>

where Diag(x) is a diagonal matrix with the vector x containing the diagonal
elements, G, is the Green’s matrix whereas G, represents the coupling
matrix, E;,. and E denote the incident field and the total field applied to the
object, respectively. The above equations ((51) and (52)) show a nonlinear
relationship between the observed data y and the unknown parameter x rep-
resenting the permittivity of the object in our problem. The inverse problem
associated to this nonlinear model is generally difficult. A classical way to
bypass this issue consists of a Born approximation which is based on the
assumption that the total field E is equal to the incident field E;,.. Under
such assumption, a linear approximate forward model can be obtained:

y= GobsDiag<X)Einc- (53)

This approximation is valid when the object has low contrast with respect
to the background. Considering this linear model, the proposed approach
(Algorithm 1) can be applied for the associated reconstruction problem.

4.2 Simulation configuration

The proposed approach is tested on synthetic data and compared with the
baseline Gaussian prior based MAP estimate [12] (abbreviated as Gauss-
MAP), with a Total Variation (TV) regularized MAP estimate (abbrevi-
ated as TV-MAP) computed using a primal-dual splitting algorithm [10]
and with a TV prior based unsupervised variational Bayesian approach [3]
(abbreviated as TV-VBA) which gives a posterior mean estimate. The pre-
vious TV refers to the more commonly adopted isotropic total variation
41, 3, 35, 39, 53]. To be more comprehensive, we include also comparisons
with an anisotropic total variation [6, 43, 49] based approach. As TV-MAP,
the anisotropic total variation regularized MAP estimate is computed us-
ing a primal-dual splitting algorithm [10]. In the following, the anisotropic
based approach is abbreviated as AnisoTV-MAP. In Gauss-MAP, TV-MAP
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and AnisoTV-MAP, the regularization parameter is manually tuned to give
the best result in the sense of maximizing the Peak Signal to Noise Ratio
(PSNR) value. As a result, we prefer to abbreviate these approaches as Best-
Gauss-MAP, Best-TV-MAP and Best-AnisoTV-MAP in the following. Note
that the manual tuning of regularization parameter requires knowledge of
the ground truth of the image to be reconstructed whereas TV-VBA and the
proposed approach do not require such information.

For our experiments of Section 4.3 and Section 4.4, data are simulated
using the forward model (53) for the experimental configuration where 36
receivers locate around the object and a source emits incident waves of fre-
quency 3 x 10% Hz at 36 positions uniformly distributed around the object
of size 81 x 81.

During the implementation of Best-Gauss-MAP, Best-TV-MAP and Best-
AnisoTV-MAP, my, = ATy is used as the initial value of the unknown image.
Concerning TV-VBA, it is implemented with the same initializations as pre-
sented in [3]. For the proposed approach, initializations are chosen similarly.
Hence, at first the proposed approach uses the following initial values: mg
as the mean and 100 as the variance of unknown image pixels. We consider
also different initializations in order to determine how it bias the results.
The hidden variable by, is initialized by a sparse vector b) constructed as
follows: keeping the five percent largest elements of D,mg and setting all
other elements to zero. The initial value of b, is obtained in the same way
from D,my. Concerning hyperparameters, the initial value 70 is estimated
from mg by using its updating equation (39) and \/7_2 is used as the ini-
tial value of 4. Moreover, in the proposed approach, the shape parameter
of our hierarchical prior distribution v is set to 0.8 to have a heavy-tailed
distribution in all our experiments presented here. Regarding &, it depends
on the number of non-zero entries in by, and b,. And the non-zero entries
correspond to image edges. In all our experiments, we make an assumption
that the proportion of edges in all image pixels is approximately 10%. As a
result, we have set £ = 0.1N. In our experiments, this value leads to good
results even for images with different proportions of edges. We also test how
this parameter influences the reconstruction. Regarding the convergence of
the proposed algorithm, it is inspected through inspecting the convergence of
the mean square error of the reconstructed images. Moreover, experiments
shown in this paper were run using Matlab R2017b on a laptop computer
with Intel Core i7 CPU (3 GHz) and 16 GB RAM.
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Figure 4: (a) Original image, reconstructed images with (b) Best-Gauss-
MAP [12], (¢) Best-TV-MAP [10], (d) Best-AnisoTV-MAP, (e)TV-VBA [3],
(f) proposed approach, (g) profile of middle rows of the above images.

4.3 Validation on a simple example

We test firstly our approach by applying it to synthetic data generated from a
simple image of size 81 x 81 composed of a black background and one square
object in the center, as shown in Figure 4 (a). Moreover, data is directly
generated from the approximate linear model (53). As a result, the pro-
posed approach using the approximate linear forward model does not have
any model error. A Gaussian i.i.d. background noise is added to the data
which leads to Signal to Noise Ratio (SNR) equal to 30 dB. We show in Fig-
ure 4 (b)-(e) reconstructions obtained by Best-Gauss-MAP, Best-TV-MAP,
Best-AnisoTV-MAP, TV-VBA and the proposed approach, respectively. As
expected, Best-Gauss-MAP leads to an image with blur edges (see Figure 4
(b)). By using the TV prior, Best-TV-MAP, Best-AnisoTV-MAP and TV-
VBA give much better reconstructions (see Figure 4 (c), (d) and (e)) where
the noise in the background is reduced and the edges of the square object
are sharper. The comparison of Figure 4 (f) with Figure 4 (b)-(e) shows
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that the proposed approach gives the best reconstruction: the edges of the
square object are very sharp and the background is very clear and similar to
the original image shown in Figure 4 (a). To make a clearer comparison, we
provide in Figure 4 (g) the profile of the middle row of the six images shown
in Figure 4. We can see that the proposed approach gives sharp edges which
are the closest to original edges shown with a solid line. Moreover, the re-
construction of the proposed approach presents less oscillations in flat zones.
Concerning PSNR values of the reconstructions, the proposed approach gives
41.00 dB which is much higher than that of Best-TV-MAP (30.40 dB), Best-
AnisoTV-MAP (34.3 dB), TV-VBA (24.88 dB) and Best-Gauss-MAP (21.79
dB).

4.4 FEvaluation with different spatial frequencies and
noise levels

The above results show that the proposed approach performs very well with
the simple image presented in Figure 4 (a). In the following, we evaluate
the proposed approach using data generated from a more complicated image
which contains components of different spatial frequencies, as shown in Fig-
ure 5 (a): there are six objects of different widths and of different intensities.
As in the previous case, synthetic data are generated from the object using
directly the approximate linear model. Moreover, we add 6 different levels
of Gaussian noise (SNR equal to 15, 20, 25, 30, 35, 40dB) to the data.

We show in Figure 5 (b)-(f) reconstructed images obtained by the five
approaches for comparison in the case where SNR is equal to 30 dB. As in
the previous case, our proposed approach gives better result than the other
approaches: edges are much clearer and the background noise is well reduced.
The profile shown in Figure 5 (g) illustrates furthermore that the proposed
approach leads to a reconstruction with sharper edges. In this case, the Best-
AnisoTV-MAP obtains the closest image with sharp edges to the proposed
approach. However, even with quite sharp edges, the edge positions are much
less correctly estimated for rightmost high spatial frequency bands. More-
over, we can see that the quality of reconstruction is poorer when the width
of the object is smaller, e.g. the leftmost band which is the widest is rela-
tively well reconstructed: the object value is quite close to the true value and
positions of edges are very precise. In the opposite, for the rightmost band
which has the smallest width, the object value is underestimated and the
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Figure 5: (a) Original image, reconstructed images with (b) Best-Gauss-
MAP [12], (c) Best-TV-MAP [10], (d) Best-AnisoTV-MAP, (e) TV-VBA [3],
(f) proposed approach, (g) profile of middle rows of the above images.

edges are quite smoothed. This result can be explained by the fact that nar-
rower bands contain higher spatial frequency components, the reconstruction
of which is much more difficult.

We also compare the reconstruction at different noise level. We sum-
marise PSNR, SSIM (Structural SIMilarity), MAE (Mean Average Error)
values of the reconstructions as well as CPU time used by five approaches
for comparison in Table 1. For Best-Gauss-MAP, Best-TV-MAP and Best-
AnisoTV-MAP, only results at SNR levels of 15 dB and 30 dB are shown
in Table 1. Since Best-Gauss-MAP, Best-TV-MAP and Best-AnisoTV-MAP
are supervised approaches, the regularization parameter needs to be manu-
ally tuned each time. As a result, it is computationally demanding to test
all the datasets.

Moreover, the results for TV-VBA and the proposed approach reported
in Table 1 are average values over 30 simulations with 30 different noise real-
izations at each SNR level. Results of 30 noise realizations are summarized
as boxplots in Figure 6. We can see from Table 1 that for all the tested
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Table 1: PERFORMANCE COMPARISON OF BEST-GAUSS-MAP [12], BEST-
TV-MAP [10], BEsT-ANISOTV-MAP [10], TV-VBA [3] AND OUR PRO-
POSED APPROACH IN TERMS OF PSNR (dB), SSIM, MAE anp CPU
TIME (IN SECONDS). IN TABLE, * REPRESENTS BEST-.

Reconstruction results

Data | Metrics | *Gauss-MAP | *TV-MAP | *AnisoTV-MAP | TV-VBA | Proposed
PSNR 11.82 14.37 13.67 13.98 14.40
15dB SSIM 0.29 0.41 0.34 0.35 0.38
MAE 1.51 0.92 1.19 1.14 1.06
Time (5.) 30 79.6 400 64 7.8
PSNR - - - 14.48 14.97
20dB SSIM - - - 0.38 0.40
MAE - - - 1.06 0.94
Time (s.) - - 5.1 8.0
PSNR - - - 14.74 15.55
25dB SSIM - - - 0.40 0.44
MAE - - - 1.02 0.85
Time (s.) - - - 4.0 5.3
PSNR 13.85 15.59 14.87 14.99 16.23
30dB SSIM 0.41 0.51 0.55 0.42 0.50
MAE 1.18 0.76 0.81 0.96 0.71
Time (s.) 25 93.5 209 5.6 8.5
PSNR - - - 15.22 16.58
35dB SSIM - - - 0.43 0.54
MAE - - - 0.93 0.63
Time (s.) - - - 6.8 9.1
PSNR - - - 15.41 16.81
40dB SSIM - - - 0.45 0.55
MAE - - - 0.89 0.60
Time (s.) - - - 8.6 4.6

data, it is the proposed approach that leads to the highest PSNR value.
Averagely, PSNR values of the proposed approach is 0.95 dB greater than
those obtained by TV-VBA. At the SNR level of 15 dB, the PSNR of the
proposed approach is 2.58 dB higher than that of Best-Gauss-MAP, 0.03 dB
higher, therefore nearly equivalent than that of Best-TV-MAP and 0.73 dB
higher than that of Best-AnisoTV-MAP. At the SNR level of 30 dB, the
proposed approach gains 2.38 dB with respect to Best-Gauss-MAP, 0.64 dB
with respect to Best-TV-MAP and 1.36 dB with respect to Best-AnisoTV-
MAP. Similar comparison result can be obtained with the metrics SSIM and
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MAE except that at SNR level of 30 dB, the Best-AnisoTV-MAP obtains
higher SSIM whereas lower PSNR. It is because Best-AnisoTV-MAP tends
to gives very flat zone, as a result, similar visual pattern to our synthetic
image. However, the approach estimates less accurately the pixel values of
flat zones. In addition to the quality metrics, CPU time is also provided in
Table 1. We can see that both the proposed approach and the TV-VBA takes
less than 10 seconds for all the test cases whereas the other three approaches
takes much longer time. We need to mention that the computation time of
Best-Gauss-MAP, Best-TV-MAP and Best-AnisoTV-MAP shown in Table 1
is the time for the best regularization parameter. Considering the search of
regularization parameter, the computation time will be much more longer in
practice.
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Figure 6: Results of 30 noise realizations of each noise level are summarized
as boxplots.

Since the Best-Gauss-MAP is computationally demanding and has been
shown to have much poorer performance than the proposed approach, we
will not show its results in the following experiments.

Discussion on the hyperparameter ¢ and initializations The pro-
posed approach automatically estimate most hyperparameters but £ is a pa-
rameter introduced to incorporate prior information on the proportion of
edges within the target image. In all of our experiments, ¢ has been set
to 0.1N and this choice has led to good results. In this part, we make
a discussion on the influence of £ on the quality of the reconstruction re-
sults through experiments. We show in Figure 7 the statistics of the results
through boxplots when ¢ takes values between [0,0.2N]. We can see that
when data is not very noisy (SNR= 30, 35,40dB), the results are very stable
with respect to the change of the parameter £&. When data is more noisy
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(SNR= 15,20, 25dB), results have larger variations compared to less noisy
cases.

We made moreover an exploration on the influence of the initialization
of the target image to reconstruction results of the proposed approach. We
show in Figure 8 boxplots obtained with two common choices of initializa-
tions: In the first case, we consider my = ATy which is used as the default
initialization for all experiments shown in this paper and my = 0 is the
second classical possible initialization studied. We can see that these two
initializations lead to very similar results.
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Figure 7: Boxplots of PSNR, SSIM, MAE of the reconstructions while varying
¢ between [0, 0.2N] (equally spaced by 0.01N).
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Figure 8: Boxplots of PSNR, SSIM, MAE of the reconstructions while varying
the initialization of the images for data of SNR= 30d B (30 noise realizations).
nit0: my = ATy, Initl: my = 0.
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4.5 Evaluation on natural images

In above simulations, images composed of only homogeneous objects have
been used. In these cases, our prior promoting piecewise smoothness is well
adapted to the problem. In order to study the robustness of the proposed
approach with respect to variable structures, we show in this section sim-
ulation results on the reconstruction of three natural images composed of
different structures, as shown in Figure 9-11 (a). The first ones are classical
tests images, given by Mire and Lena. We show in Figure 11 (a) an image
of Printed Circuit Board (PCB) since the quality control of PCB is a typical
application of non-destructive testing in industry. To evaluate the capability
of our approach on larger size images such as Figure 9-11 (a) (256 x 256), in
this section, we simulate the data using the Radon transform with parallel-
beam geometry. The data corresponds to projections collected at 270 angles
uniformly distributed on [0, 7]. Each projection is collected by 367 detection
cells. In this case, the associated inverse problem is very high-dimensional
(65536 unknowns and the forward matrix H has more than six billons en-
tries).
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Figure 9: (a) Original image of dimension 256 x 256, reconstructed images
with (b) Best-TV-MAP [10], (¢) TV-VBA [3] (d) proposed approach.

Reconstruction quality evaluation We show in Figure 9 (b)-(d) recon-
structions obtained by Best-TV-MAP, TV-VBA and the proposed approach
from data generated from the image Mire shown in Figure 9 (a) at SNR level
of 30 dB. We can see that in this problem, the proposed approach works still
better than Best-TV-MAP and TV-VBA in reconstructing regular objects
(bar shape objects in Figure 9). For less regular parts like the numbers, the
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Figure 10: (a) Original image of dimension 256 x 256, reconstructed images
with (b) Best-TV-MAP [10], (¢) TV-VBA [3] (d) proposed approach.

Figure 11: (a) Original image of dimension 256 x 256, reconstructed images
with (b) Best-TV-MAP [10], (¢) TV-VBA [3] (d) proposed approach.

proposed approach gives good reconstruction as well. In Figure 10, recon-
structions of image Lena obtained by the compared approaches are given.
Figure 10 (d) shows the reconstruction obtained by the proposed approach.
We can see that this reconstruction has a quite good quality, even though a
little staircasing effect at image edges. This fact suggests that the proposed
approach is robust for natural images where the piecewise smoothness hy-
pothesis is not totally satisfied. As shown in Figure 10 (b), Best-TV-MAP
gives a reconstruction of little noise but with visible staircasing effect which
do not appear in the reconstruction of TV-VBA (see Figure 10 (c)). These
results are consistent with the analysis given in [29] which shows that the
TV based posterior mean estimate does not suffer much from the staircas-
ing whereas the Best-TV-MAP estimate generally encounters this problem.
Compared to Best-TV-MAP and TV-VBA, our approach gives a compro-
mise between the noise reduction and the staircasing effect. Similarly for
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PCB image, the proposed approach gives clearer edges for the transmission
lines than the TV-VBA. The Best-TV-MAP obtains an image with much
less noise since in this case, the regularization parameter has been manually
set to large value but the proposed approach has automatically estimated
the hyperparameters.

Table 2: PERFORMANCE COMPARISON OF BEST-TV-MAP [10], BEsT-
ANISOTV-MAP [10], TV-VBA [3] AND OUR PROPOSED APPROACH IN
TERMS OF PSNR (dB), SSIM, MAE AND CPU TIME (IN SECONDS) FOR
MIRE. IN TABLE, * REPRESENTS BEST-.

Reconstruction results
Data | Metrics | *TV-MAP | *AnisoTV-MAP | TV-VBA | Proposed | Best-Proposed
PSNR - - 11.09 12.22 -
15dB SSIM - - 0.57 0.58 -
MAE - - 0.18 0.15 -
Time (s.) - - 52 39 -
PSNR 11.97 12.34 11.28 13.06 18.5
20dB SSIM 0.36 0.34 0.57 0.61 0.59
MAE 0.15 0.14 0.17 0.12 0.13
Time (s.) 540 1100 40 37 22
PSNR - - 16.47 17.83 -
25dB SSIM - - 0.53 0.62 -
MAE - - 0.09 0.07 -
Time (s.) - - 50 46 -
PSNR 19.33 19.41 19.24 20.68 28.46
30dB SSIM 0.71 0.71 0.70 0.71 0.73
MAE 0.06 0.06 0.07 0.05 0.03
Time (s.) 480 1200 30 36 18
PSNR - - 21.55 22.96 -
35dB SSIM - - 0.71 0.72 -
MAE - - 0.05 0.04 -
Time (s.) - - 45 37 -
PSNR - - 24.21 25.77 -
40dB SSIM - - 0.73 0.75 -
MAE - - 0.04 0.03 -
Time (s.) - - 24 33 -

In order to have a numerical comparison of the proposed approach with
Best-TV-MAP, Best-AnisoTV-MAP and TV-VBA, we summarise the PSNR,
SSIM, MAE of reconstructed images in Table 2-4. Again, since the manual
tuning of regularization parameter for Best-TV-MAP and Best-AnisoTV-
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Table 3: PERFORMANCE COMPARISON OF BEST-TV-MAP [10], BEsT-
ANISOTV-MAP [10], TV-VBA [3] AND OUR PROPOSED APPROACH IN
TERMS OF PSNR (dB), SSIM, MAE AND CPU TIME (IN SECONDS) FOR
LENA. IN TABLE, * REPRESENTS BEST-.

Reconstruction results
Data | Metrics | *TV-MAP | *AnisoTV-MAP | TV-VBA | Proposed | Best-Proposed
PSNR - - 15.25 18.32 -
15dB SSIM - - 0.43 0.48 -
MAE - - 0.14 0.09 -
Time (s.) - - 29 32 -
PSNR 22.69 22.41 20.45 21.04 22.70
20dB SSIM 0.60 0.58 0.54 0.57 0.57
MAE 0.051 0.053 0.07 0.06 0.05
Time (s.) 350 460 32 36 13
PSNR - - 23.59 23.98 -
25dB SSIM - - 0.64 0.67 -
MAE - - 0.044 0.042 -
Time (s.) - - 28 34 -
PSNR 25.90 25.58 25.49 25.78 27.28
30dB SSIM 0.72 0.72 0.67 0.70 0.77
MAE 0.033 0.034 0.037 0.035 0.028
Time (s.) 320 360 26 31 15
PSNR - - 27.01 27.11 -
35dB SSIM - - 0.71 0.74 -
MAE - - 0.032 0.031 -
Time (s.) - - 29 37 -
PSNR - - 28.77 28.77 -
40dB SSIM - - 0.79 0.80 -
MAE - - 0.026 0.026 -
Time (s.) - - 34 25 -

MAP is time-consuming, we report here only the results for two noise levels.
In most cases, for Mire image which is still quite regular, the proposed ap-
proach gives the best results in terms of PSNR, SSIM and MAE. For image
Lena, the reconstructions of the proposed approach are comparable with
TV-VBA. However, in the case where SNR = 20 dB, Best-TV-MAP and
Best-AnisoTV-MAP lead to higher PSNR. This is due to the regulariza-
tion parameter of these two approaches which is manually tuned to give the
largest PSNR values. In very noisy cases, oversmoothed solution has gener-
ally higher PSNR. This point is further supported by the results shown in
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Table 4: PERFORMANCE COMPARISON OF BEST-TV-MAP [10], BEST-
ANISOTV-MAP [10], TV-VBA [3] AND OUR PROPOSED APPROACH IN
TERMS OF PSNR (dB), SSIM, MAE AND CPU TIME (IN SECONDS) FOR
PCB. IN TABLE, * REPRESENTS BEST-.

Reconstruction results

Data | Metrics | *TV-MAP | *AnisoTV-MAP | TV-VBA | Proposed | Best-Proposed
PSNR - - 17.12 18.53 -
15dB SSIM - - 0.21 0.25 -
MAE - - 0.11 0.09 -
Time (s.) - - 31 38 -
PSNR 19.94 19.43 18.84 19.60 21.29
20dB SSIM 0.41 0.37 0.33 0.36 0.44
MAE 0.08 0.08 0.08 0.07 0.06
Time (s.) 550 534 30 33 20
PSNR - - 22.91 23.91 -
25dB SSIM - - 0.59 0.61 -
MAE - - 0.05 0.04 -
Time (s.) - - 35 39 -
PSNR 25.76 25.47 25.02 25.60 26.6/
30dB SSIM 0.74 0.74 0.68 0.69 0.77
MAE 0.04 0.04 0.04 0.04 0.03
Time (s.) 355 379 28 32 17
PSNR - - 27.32 27.44 -
35dB SSIM - - 0.77 0.77 -
MAE - - 0.03 0.03 -
Time (s.) - - 25 33 -
PSNR - - 29.83 29.67 -
40dB SSIM - - 0.84 0.84 -
MAE - - 0.03 0.03 -
Time (s.) - - 26 33 -

the row of Best-Proposed where instead of estimating the hyperparameters,
we manually tune them to get the highest PSNR. We can see that in two
noise level cases shown here, the Best-Proposed leads to the highest PSNR.

Similar conclusion can be drawn from the results of PCB images.

Moreover, computation time can also be found in Table 2-4. Our proposed
method is based on a fast variational Bayesian method which outperforms
Best-TV-MAP and Best-AnisoTV-MAP in term of computation time and is
quite competitive with TV-VBA even while estimating more parameters (d).
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Figure 12: (a) Original image, reconstructed images with (b) TV-VBA [3]
(c) proposed approach, (d) profile of middle rows of the above images.

4.6 Robustness to model errors

As stated above, the proposed approach uses a linear approximation of the
non-linear forward model for NDT, which causes consequently model errors.
Here, we evaluate the robustness of the proposed approach with respect to
the model errors by using data generated from the non-linear forward model
(see (51) and (52)). We simulate data with the simple image, Figure 12 (a)
as the object and add a same level of Gaussian noise as the first experiment,
i.e. SNR is equal to 30 dB. We show in Figure 12 (b) and (c) reconstructions
obtained by TV-VBA and the proposed approach. Comparing to Figure 4
(d) and (e), we can see that the extra model errors lead to a decrease in
reconstruction quality. However, the proposed approach manages to give a
reconstruction with still a clear edge (Figure 12 (c¢)) which is not the case for
TV-VBA (Figure 12 (b)). Profiles of the reconstructions are shown in Fig-
ure 12 (d). It shows again that the proposed approach gives a sharper edge
than TV-VBA. But in this case, the value of the object is underestimated.
Actually, the proposed approach uses a prior promoting sparsity information
on the image gradients, as a result, sharp edges are correctly restored. Nev-
ertheless, no prior information on the raw pixel values has been introduced.
As a result, in such a badly ill-posed inverse problem with additional model
errors, the proposed approach failed to estimate pixel values accurately.
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4.7 Evaluation on image denoising problems

The proposed method is developed for general linear inverse problem based
on observation model (1). By setting different observation operator A, our
proposed approach can be applied to solve different inverse problems. In
the previous section, we have shown that our approach can be successfully
applied to tomography problem. To show the versatility of the proposed
approach, we show in this section some simulation results on the classical
image denoising problem. In such a case, the observation operator is simply
an identity matrix.

Synthetic noisy data are generated by adding Gaussian additive noise
at five different SNR levels: 15dB, 20dB, 25dB, 30dB, 35dB to three im-
ages: Mire, Lena and PCB images (as shown in Figure 9 (a), Figure 10(a),
Figure 11(a)). Several reconstruction results are included for comparison:
TV-VBA ! a nonlocal means (NL-means) based denoising method [21, 22]
and one deep learning based denoising method (DL-denoising) [50]. For NL-
means method, its performance depends on the estimation of the noise vari-
ance. However, in practice, the noise variance is unknown. To make a quite
fair comparison, in this simulation, we randomly take values within +50%
of the true noise variance as estimations of the noise variance and report
the mean reconstruction results of 30 trials. Regarding the DL-denoising, a
pretrained DnCNN network is used.

The results are summarized in Table 5 - Table 7. In general, the pro-
posed approach compare favorably with TV-VBA for the images Mire and
PCB since these two images are more piecewise smooth. For the image Lena,
the proposed approach gives comparable results to TV-VBA. Moreover, nu-
merical results in Table 5 - Table 7 show that the proposed approach performs
better than the tested NL-means approach. As regards DL-denoising, it gives
amazing results in high noisy cases: SNR = 15, 20dB. This is not surprising
since convolutional neural network has been shown to perform very well in
various image processing tasks and the pretrained DnCNN network has been
specifically trained for Gaussian denoising with hundreds to thousands of
training images. However, we can remark that in less noisy cases (e.g. SNR
= 35,40 dB), the pretrained network performs dramatically bad. We have
shown also the computation time in Table 5 - Table 7. We can see that the

1Since we have made a lot of comparison with three different TV approaches, in this
section, we will choose to compare only with TV-VBA which is an unsupervised approach
as our proposed method.
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proposed approach is very fast, comparable to TV-VBA, and about 10 times
faster than NL-means and about 30 times faster than DL-denoising.

Table 5: PERFORMANCE COMPARISON OF NL-MEANS, DL-DENOISING,
TV-VBA [3] AND OUR PROPOSED APPROACH IN TERMS OF PSNR (dB),
SSIM, MAE aAND CPU TIME (IN SECONDS) ON MIRE.

Reconstruction results
Data | Metrics | NL-means | DL-denoising | TV-VBA | Proposed
PSNR 18.33 26.13 19.47 20.15
15dB SSIM 0.66 0.86 0.40 0.41
MAE 0.09 0.03 0.08 0.07
Time (s.) 11.9 35.1 1.1 1.1
PSNR 22.81 29.34 23.88 24.82
20dB SSIM 0.78 0.92 0.54 0.55
MAE 0.05 0.02 0.05 0.04
Time (s.) 11.9 33.5 1.2 1.3
PSNR 28.04 32.28 28.37 29.50
25dB SSIM 0.87 0.95 0.70 0.72
MAE 0.023 0.014 0.028 0.026
Time (s.) 11.5 32.8 1.3 1.4
PSNR 31.49 34.93 32.99 34.11
30dB SSIM 0.93 0.96 0.84 0.86
MAE 0.014 0.011 0.017 0.015
Time (s.) 10.9 32.9 1.5 1.5
PSNR 36.15 36.65 37.46 38.64
35dB SSIM 0.95 0.95 0.93 0.94
MAE 0.01 0.01 0.01 0.009
Time (s.) 10.2 32.8 1.6 1.7
PSNR 41.5 38.4 42.57 43.13
40dB SSIM 0.98 0.96 0.97 0.98
MAE 0.005 0.008 0.006 0.005
Time (s.) 9.8 32.9 1.7 1.8

4.8 Discussion

This section presents the results of our approach for multiple configurations.
We have shown through simulations that our approach is consistently su-
perior to the other unsupervised TV-VBA approach. In order to have a
comparison with more approaches, we also considered supervised algorithms,
where hyperparameters are manually tuned as optimal ones in the sense of
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Table 6: PERFORMANCE COMPARISON OF NL-MEANS, DL-DENOISING,
TV-VBA [3] AND OUR PROPOSED APPROACH IN TERMS OF PSNR (dB),
SSIM, MAE aAND CPU TIME (IN SECONDS) ON LENA.

Reconstruction results
Data | Metrics | NL-means | DL-denoising | TV-VBA | Proposed
PSNR 22.87 28.74 24.84 24.90
15dB SSIM 0.57 0.80 0.55 0.56
MAE 0.060 0.026 0.045 0.045
Time (s.) 10.7 37.7 0.9 1.1
PSNR 27.37 31.24 28.95 29.06
20dB SSIM 0.74 0.86 0.74 0.75
MAE 0.034 0.020 0.028 0.027
Time (s.) 10.6 36.1 1.4 1.4
PSNR 30.82 33.54 32.86 33.00
25dB SSIM 0.84 0.90 0.87 0.88
MAE 0.023 0.015 0.018 0.017
Time (s.) 10.5 37.8 1.6 1.6
PSNR 35.40 35.55 36.85 36.94
30dB SSIM 0.91 0.93 0.94 0.94
MAE 0.013 0.012 0.011 0.011
Time (s.) 10.2 36.9 1.8 1.8
PSNR 39.42 37.44 41.07 41.11
35dB SSIM 0.96 0.95 0.97 0.98
MAE 0.008 0.009 0.007 0.007
Time (s.) 9.7 36.4 2.1 2.1
PSNR 42.74 38.63 45.58 45.59
40dB SSIM 0.98 0.96 0.99 0.99
MAE 0.006 0.007 0.004 0.004
Time (s.) 9.5 36.1 2.4 2.3

PSNR. For this, the real image needs to be known. The simulation results
show that in the case of NDT-type images, our model prior is very relevant,
and our approach gives the best reconstructions. Moreover, our approach is
extremely robust. This is partly explained by the choice of the estimator of
the posterior mean which minimizes the quadratic risk, and by the estima-
tion of the hyperparameters. This robustness has been shown in different
configurations: when the prior model is less relevant as in the case of Lena
(see Figure 10, Table 3) or when an important model error has been intro-
duced by simulating the problem with a nonlinear model and reconstructing
with a linear model (see Figure 12). Compared to a learning-based denoising
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Table 7: PERFORMANCE COMPARISON OF TV-VBA [3], NL-MEANS, DL-
DENOISING AND OUR PROPOSED APPROACH IN TERMS OF PSNR (dB),
SSIM, MAE anDp CPU TIME (IN SECONDS) ON PCB.

Reconstruction results
Data | Metrics | NL-means | DL-denoising | TV-VBA | Proposed
PSNR 22.91 27.82 23.96 24.87
15dB SSIM 0.61 0.84 0.68 0.72
MAE 0.06 0.03 0.05 0.045
Time (s.) 8.8 26.1 1.1 1.3
PSNR 25.36 30.88 27.77 28.9
20dB SSIM 0.69 0.91 0.82 0.86
MAE 0.045 0.022 0.03 0.028
Time (s.) 8.6 26.3 1.5 1.5
PSNR 31.21 33.20 31.60 32.72
25dB SSIM 0.88 0.94 0.90 0.93
MAE 0.022 0.017 0.02 0.018
Time (s.) 8.5 26.2 1.8 1.9
PSNR 34.43 36.51 36.10 36.90
30dB SSIM 0.94 0.97 0.97 0.97
MAE 0.015 0.012 0.012 0.011
Time (s.) 7.9 26.1 2.1 2.3
PSNR 39.41 40.87 40.92 41.2
35dB SSIM 0.98 0.98 0.99 0.99
MAE 0.008 0.007 0.007 0.007
Time (s.) 7.6 26.2 2.2 2.3
PSNR 43.05 45.32 45.53 45.68
40dB SSIM 0.99 0.99 0.99 0.99
MAE 0.005 0.004 0.004 0.004
Time (s.) 7.7 26.3 2.5 24

approach, the proposed solution still gives good results without learning base
(see Table 5-7). Finally, Figure 7 and 8 clearly showed that our approach
was unsupervised and that the parameters of the method such as the initial-
ization of the algorithm or the fixed parameter £ do not significantly change
the quality of the reconstructed images.
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5 Conclusion

In this paper, we proposed a hierarchical sparse gradient prior and its Bayesian
application to linear inverse problems. The main interest of this prior is
that it models well smooth images with sparse edges. Furthermore, non-
informative Jeffreys’ priors are employed for hyperparameters which leads
to unsupervised approaches. In this case the estimation of hyperparame-
ters is very complicated due to the non linearity of the problem and the
strong correlations between these parameters. We have proposed an original
estimation approach based on a different parameterization of the problem.
Furthermore the memory gradient subspace based variational Bayesian ap-
proximation method is employed to allow us to obtain fast and efficient es-
timations of parameters. Simulation results have shown that our approach
gives good performances in general and outperforms the total variation based
approaches in reconstructing piecewise smooth images. We have also show
that this method is very efficient when it is considered in its optimal use
condition but still remains robust to model or image errors.

A The partition function Z,

We compute the partition function Zyp given by (4) by transposing the
integral into the Fourier domain.

Let us denote the convolution kernel corresponding to matrix Dj; and
D, by dj, d,, respectively. Moreover, we use * to denote the convolution
operator. Then we have Dyx = dj, * x and D,x = d, * x. In the following,
a represents the Fourier transform of the vector a. Using the Parseval’s
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theorem, we can obtain
IDix = by |2 + [D,x — by

o ° o o ° o
=[lda ox = by|* + [|d, o x — by [|*

(54)

(d)2+(d,)?

Therefore, the partition function Zy;, can be easily obtained in the Fourier
transform thanks to a change of variable

Zuo :/exp 2 (IDax — bl + Do — b )| ax

=205, ] ] {«i’h)? - <ci2>?} h

7

—cra ™ exp |- 41

where ¢ encloses all factors independent of v, and by, b,. We can easily
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obtain

Zyp < ey N2 (56)

since the rest of the factor is strictly smaller than one.
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