On two ways to use determinantal point processes for Monte Carlo integration
Résumé
This paper focuses on Monte Carlo integration with determinantal point processes (DPPs) which enforce negative dependence between quadrature nodes. We survey the properties of two unbiased Monte Carlo estimators of the integral of interest: a direct one proposed by Bardenet & Hardy (2016) and a less obvious 60-year-old estimator by Ermakov & Zolotukhin (1960) that actually also relies on DPPs. We provide an efficient implementation to sample exactly a particular multidimen-sional DPP called multivariate Jacobi ensemble. This let us investigate the behavior of both estima-tors on toy problems in yet unexplored regimes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...