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Abstract

This paper focuses on Monte Carlo integration
with determinantal point processes (DPPs) which
enforce negative dependence between quadrature
nodes. We survey the properties of two unbiased
Monte Carlo estimators of the integral of inter-
est: a direct one proposed by Bardenet & Hardy
(2016) and a less obvious 60-year-old estimator by
Ermakov & Zolotukhin (1960) that actually also
relies on DPPs. We provide an efficient implemen-
tation to sample exactly a particular multidimen-
sional DPP called multivariate Jacobi ensemble.
This let us investigate the behavior of both estima-
tors on toy problems in yet unexplored regimes.

1. Introduction
Numerical integration is a core task of many machine learn-
ing applications, including most Bayesian methods (Robert,
2007). Both deterministic and random algorithms have been
proposed (Evans & Swartz, 2000). All methods require com-
bining evaluations of the integrand at so-called quadrature
nodes to minimize the approximation error.

We are motivated by a stream of work which makes use of
prior knowledge on the smoothness of the integrand using
kernels and RKHSs. Oates et al. (2017) and Liu & Lee
(2017) made use of kernel-based control variates, splitting
the computational budget into regressing the integrand and
integrating the residual. Bach (2017) looked for the best way
to sample i.i.d. nodes and combine the resulting evaluations.
Bayesian quadrature (O’Hagan, 1991; Huszár & Duvenaud,
2012; Briol et al., 2015), herding (Chen et al., 2010; Bach
et al., 2012), or the biased importance sampling estimate
of Delyon & Portier (2016) all favor dissimilar quadrature
nodes, where dissimilarity is measured by a kernel. Our
work falls within this last cluster.
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We build on the particular approach of Bardenet & Hardy
(2016) for Monte Carlo integration based on projection
determinantal point processes (DPPs, Hough et al., 2006;
Kulesza & Taskar, 2012). DPPs are a repulsive distribu-
tion over configurations of points; repulsiveness is again
parametrized by a kernel. In a sense, DPPs are the kernel
machines of point processes.

Our contributions. First, we point out a mostly forgotten
Monte Carlo estimator derived by Ermakov & Zolotukhin
(1960) (EZ, 1960) that implicitly but crucially requires sam-
pling from a DPP, more than a decade before Macchi (1975)
even formalized DPPs! Second, we provide a simple proof
of their result and survey the properties of the estimator
with modern arguments. In particular, when the integrand is
a linear combination of the eigenfunctions of the underly-
ing DPP kernel, the corresponding Fourier-like coefficients
can be estimated with zero variance. From one sample of
the corresponding DPP, perfect reconstruction of the signal
is granted by solving a linear system. Third, we propose
an efficient Python implementation for sampling exactly a
particular DPP called multivariate Jacobi ensemble. This
implementation allows to numerically investigate the behav-
ior of the two Monte Carlo estimators derived by Bardenet
& Hardy (2016) and Ermakov & Zolotukhin (1960), in
regimes yet unexplored for any of the two. Our point is
not to compare DPP-based Monte Carlo estimators to the
wide choice of numerical integration algorithms, but to get
a fine understanding of their properties so as to fine-tune
their design and guide theoretical developments.

2. Quadrature, DPPs, and the multivariate
Jacobi ensembles

2.1. Standard quadrature

Let µ(dx) = ω(x) dx be a positive Borel measure on
X ⊂ Rd with finite mass and density w w.r.t. the Lebesgue
measure. This paper aims to compute integrals of the form∫
f(x)µ(dx) for some test function f : X→ R. A quadra-

ture rule approximates such integrals as a weighted sum of
evaluations of f at some points {x1, . . . , xN} ⊂ X,∫

f(x)µ(dx) ≈
N∑
n=1

wnf(xn), (1)

with wn , wn(x1, . . . , xN ) ∈ R do not need to sum to one.
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Among the many quadrature designs mentioned in the intro-
duction, we pay special attention to the textbook example
of the (deterministic) Gauss-Jacobi rule. This scheme ap-
plies to X , [−1, 1] with ω(x) , (1− x)a(1 + x)b where
a, b > −1. In this case, the nodes {x1, . . . , xN} are taken
to be the zeros of pN , the orthonormal Jacobi polynomial
of degree N , and the weights wn , 1/K(xn, xn) with
K(x, x) ,

∑N−1
k=0 pk(x)2. In particular, it allows to per-

fectly integrate polynomials up to degree 2N − 1 (Davis
& Rabinowitz, 1984, Section 2.7). In a sense, the DPPs
of Bardenet & Hardy (2016) are a random, multivariate
generalization of Gauss-Jacobi quadrature, cf. Section 3.1.

Monte Carlo integration can be defined as random choices
of nodes in (1). Importance sampling, corresponds to
i.i.d. nodes, while Markov chain Monte Carlo corresponds to
nodes drawn from Markov chain (Robert & Casella, 2004).
Finally, quasi-Monte Carlo (Dick & Pillichshammer, 2010)
apply to µ uniform over a compact subset of Rd, and con-
sists in constructing deterministic nodes that spread very
uniformly, as measured by the so-called discrepancy.

2.2. Projection DPPs

DPPs can be understood as a parametric class of point
processes, specified by a base measure µ and a kernel
K : X × X → R. In this work, we take X = [−1, 1]d

and assume K to be continuous, positive semi-definite. For
the resulting process to be well defined, it is necessary and
sufficient that the kernel K has eigenvalues in [0, 1] (Sosh-
nikov, 2000, Theorem 3). When the eigenvalues further
belong to {0, 1}, we speak of (orthogonal) projection kernel
and projection DPP. Projection DPPs have the practical fea-
ture of producing samples with fixed cardinality, µ almost
surely, equal to the rank N of the kernel. More generally,
they are the building blocks of DPPs. Indeed, under some
general assumptions, all DPPs are mixtures of projection
DPPs, (Hough et al., 2006). Hereafter, unless specifically
stated, we consider projection DPPs.

One way to define a projection DPP with N points is to first
take N orthonormal functions φ0, . . . , φN−1 in L2(µ), i.e.,
〈φk, φ`〉L2(µ) ,

∫
φk(x)φ`(x)µ(dx) = δk`. Then, con-

sider the kernel KN associated to the orthogonal projector
ontoHN , span{φk, 0 ≤ k ≤ N − 1}, i.e.,

KN (x, y) ,
N−1∑
k=0

φk(x)φk(y). (2)

The subset of {x1, . . . ,xN} ⊂ X is said to be is drawn
from the projection DPP with base measure µ and ker-
nel KN , denoted by {x1, . . . ,xN} ∼ DPP(µ,KN ), when
(x1, . . . ,xN ) has joint distribution

1

N !
det[KN (xp, xq)]

N
p,q=1 µ

⊗N (dx). (3)

DPP(µ,KN ) defines a probability measure over sets since
(3) is invariant by permutation, the orthonormality of the
φks yields the normalization, see Appendix A.1 for details.

The repulsiveness of projection DPPs may be understood
geometrically by rewriting (3) as

N∏
n=1

1

N − (n− 1)

∥∥∥ΠK
T

n−1
KN (xn, ·)

∥∥∥2
L2(µ)

µ(dxn), (4)

where ΠK
T

n−1
is the orthogonal projector onto the orthocom-

plement of span{KN (x`, ·)}n−1`=1 in HN . Seeing (4) as a
base×height formula, the joint distribution (3) is propor-
tional to the squared volume of the parallelotope spanned
by K(x1, ·), . . . ,K(xN , ·) in the feature spaceHN . Hence,
the larger the volume, the more likely x1, . . . , xN co-occur.

Moreover, using the same normal equations as in standard
linear regression, the norms in (4) read∥∥∥ΠH

T

n−1
KN (xn, ·)

∥∥∥2
L2(µ)

(5)

=

{
KN (x1, x1), if n = 1,

KN (xn, xn)−Kn−1(xn)TK−1n−1Kn−1(xn), else,

where Kn−1(·) = (KN (x1, ·), . . . ,KN (xn−1, ·))T, and
Kn−1 = [KN (xp, xq)]

n−1
p,q=1.

The unnormalized conditionals densities (5) also shows up
in Gaussian processes (GPs, Rasmussen & Williams, 2006)
as the incremental posterior variances in a GP model with
kernel KN , giving yet another intuition for repulsiveness.

2.3. The multivariate Jacobi ensemble

We follow Bardenet & Hardy (2016) and consider eigenfunc-
tions of the kernel in (2) to be the orthonormal polynomials
w.r.t.µ. In dimension d = 1, the resulting projection DPP
is called an orthogonal polynomial ensemble (OPE, König,
2004). When d > 1, orthonormal polynomials can still
be uniquely defined by applying the Gram-Schmidt proce-
dure to a set of monomials. However, there is no natural
order on multivariate monomials: an ordering b : Nd → N
must be picked before we apply Gram-Schmidt to the mono-
mials in L2(µ). Bardenet & Hardy (2016, Section 2.1.3)
consider multi-indices k , (k1, . . . , kd) ∈ Nd ordered by
their maximum degree maxi k

i, and for constant maximum
degree, by the usual lexicographic order. We still denote the
multivariate orthonormal polynomials by (φk)k∈Nd .

By multivariate OPE we mean the projection DPP with
base measure µ(dx) , ω(x) dx and orthogonal projection
kernel KN (x, y) ,

∑N−1
b(k)=0 φk(x)φk(y). When the base

measure is separable, i.e., ω(x) = ω1(x1)× · · · × ωd(xd),
multivariate orthonormal polynomials are products of uni-



On two ways to use DPPs for MC integration

variate ones. and the kernel (2) reads

KN (x, y) =

N−1∑
b(k)=0

d∏
i=1

φiki(x
i)φiki(y

i), (6)

with (φi`)`≥0 the orthonormal polynomials w.r.t.ωi(xi) dxi.
For X = [−1, 1]d and ωi(xi) = (1− xi)ai(1 + xi)bi , with
ai, bi > −1, the resulting DPP is called a multivariate
Jacobi ensemble.

3. Monte Carlo with projection DPPs
3.1. A natural estimator

Bardenet & Hardy (2016) used

Î BH
N (f) ,

N∑
n=1

f(xn)

KN (xn,xn)
, f ∈ L1(µ), (7)

as an unbiased estimator of
∫
f(x)µ(dx), with variance

1

2

∫ (
f(x)

KN (x, x)
− f(y)

KN (y, y)

)2

|KN (x, y)|2µ(dx)µ(dy).

This variance clearly captures a notion of smoothness of f
w.r.t. the kernel but its interpretation is not obvious.

For X = [−1, 1]d, the interest in multivariate Jacobi en-
semble among DPPs comes from the fact that (7) can be
understood as a (randomized) multivariate counterpart of
the Gauss-Jacobi quadrature in Section 2.1. Besides, for f
essentially C1, Bardenet & Hardy (2016, Theorem 2.7) also
proved a CLT with faster-than-classical-Monte-Carlo decay,√
N1+1/d

(
Î BH
N (f)−

∫
f(x)µ(dx)

)
law−−−−→

N→∞
N
(
0,Ω2

f,ω

)
,

(8)
with Ω2

f,ω , 1
2

∑
k∈Nd(k1 + · · · + kd)F fω

ωeq
(k)2, where

Fg denotes the Fourier transform of g, and ωeq(x) ,

1/
∏d
i=1 π

√
1− (xi)2. In the fast CLT (8), the asymptotic

variance is governed by the smoothness of f since Ωf,ω is a
measure of the decay of its Fourier coefficients.

3.2. The Ermakov-Zolotukhin estimator

We first state the main result of Ermakov & Zolotukhin
(1960), see also Evans & Swartz (2000, Section 6.4.3) and
references therein. Using modern arguments and notation,
we can provide a short and simple proof this results, cf.
Appendix A.2. It is based on a generalization of the Cauchy-
Binet formula established by Johansson (2006), see also Ap-
pendix A.1. We apply the result of Ermakov & Zolotukhin
(1960) to build an unbiased estimator of

∫
f(x)µ(dx) which

comes with a practical variance.

Theorem 1. Let {x1, . . . ,xN} ∼ DPP(µ,KN ) as in (3).
Then, the solution ofφ0(x1) . . . φN−1(x1)

...
...

φ0(xN ) . . . φN−1(xN )


 y1

...
yN

 =

 f(x1)
...

f(xN )


(9)

is unique, µ-almost surely, with coordinates satisfying

E
[
yk
]

= 〈f, φk−1〉L2(µ) (10)

Var
[
yk
]

= ‖f‖L2(µ) −
N−1∑
k=0

〈f, φk−1〉L2(µ) (11)

where Φ denotes the feature matrix in (9) and Φφk−1,f is
defined as the matrix obtained by replacing the k-th column
of Φ by (f(x1), . . . , f(xN ))

T.

Several remarks are in order. The latter theorem shows that
solving the (random) linear system (9), provides unbiased es-
timates of the N Fourier-like coefficients (〈f, φk〉)N−1k=0 . Re-
markably, these estimates have the exact same variance (11)
equal to the residual

∑∞
k=N 〈f, φk〉

2. The faster the decay
of the coefficients, the smaller the variance. When f ∈ HN ,
these estimators have zero variance: f can be reconstructed
perfectly from only one sample of DPP(µ,KN ).

In the setting of multivariate Jacobi ensemble described in
Section 2.3, the first orthonormal polynomial φ0 is constant.
Hence, a direct application of Theorem 1 yields

Î EZ
N (f) , µ

(
[−1, 1]

d) 1
2

det Φφ0,f (x1:N )

det Φ(x1:N )
(12)

as an unbiased estimator of
∫
f(x)µ(dx), which can be

viewed as a quadrature rule, cf. Appendix A.3. Unlike the
variance of Î BH

N (f) in (3.1), the variance of Î EZ
N (f) clearly

reflects the accuracy of the approximation of f by its pro-
jection onto HN In particular, it allows to integrate and
interpolate polynomials up to “degree” b−1(N − 1), per-
fectly. Nonetheless, its limiting theoretical properties, like a
CLT, look hard to establish. In particular, the dependence of
each quadrature weight on all quadrature nodes makes the
estimator a peculiar object that does not fit the assumptions
of traditional CLTs for DPPs (Soshnikov, 2000).

3.3. Sampling

To perform Monte Carlo integration with DPPs, it is crucial
to sample the points and evaluate the weights efficiently.
Except for some specific instances, exact sampling from
continuous projection DPPs requires the spectral decompo-
sition of the kernel (2) before applying the chain rule (4)
(Hough et al., 2006). The main challenge is to find good
proposal distributions to efficiently sample the successive
conditionals (Lavancier et al., 2012).
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We focus on sampling the multivariate Jacobi ensemble,
with parameters ai, bi ∈ [− 1

2 ,
1
2 ]. In dimension d = 1, it can

be sampled at cost O(N2) by computing the eigenvalues
of a random tridiagonal matrix (Killip & Nenciu, 2004,
Theorem 2, β = 2). For d ≥ 2, we follow Bardenet & Hardy
(2016) and use the same proposal distribution ωeq(x) dx and
rejection bound to sample each conditional. The rejection
constant is derived from a result of (Chow et al., 1994) on
Jacobi polynomials. See Appendix A.4 for more details.

We remodeled the original implementation1 of Bardenet &
Hardy (2016) in a more Pythonic way. Notably, when eval-
uating the kernel (6), we paid special attention to avoiding
unnecessary evaluations of the univariate orthogonal Jacobi
polynomials by propagation of three-term recurrence rela-
tions they satisfy. Comparatively, sampling N = 100 points
in dimension d = 1, 2 was counted in minutes, now it takes
milliseconds. In Appendix A.4, we display a 2D sample of
size N = 1000, obtained in approximately 7 min compared
to hours previously, on a modern laptop.

4. Empirical investigation
Appendix B collects the results of the following experiments
as well as further experiments on non smooth functions.

4.1. The bump experiment

Bardenet & Hardy (2016, Section 3) illustrate the behavior
of Î BH

N and its CLT (8) on a unimodal, smooth bump func-
tion (ε = 0.05). The expected variance decay is of order
1/N1+1/d. We successfully reproduce their experiment in
Figure 1 for larger N , and compare with the behavior of
Î EZ
N . In short, Î EZ

N dramatically outperforms Î BH
N in d ≤ 2,

with surprisingly fast empirical convergence rates. When
d ≥ 3, performance decreases, and Î BH

N shows both faster
and more regular variance decay.

As to whether a CLT for Î EZ
N could hold, we performed

Kolmogorov-Smirnov tests for N = 300, see Appendix B.1.
This yielded small p-values across dimensions, from 0.03
to 0.24. This is compared to the same p-values for Î BH

N ,
which range from 0.60 to 0.99. The lack of normality of the
EZ estimator is partly due to a few outliers. Where these
outliers come from is left for future work; ill-conditioning
of the linear system (9) is an obvious candidate.

4.2. Integrating sums of eigenfunctions

To test the variance decay of Î EZ
N (f) prescribed by Theo-

rem 1, we consider functions of the form

f(x) =

Nmodes−1∑
b(k)=0

1

b(k) + 1
φk(x). (13)

1https://github.com/rbardenet/dppmc

That is to say, the function f can be either fully (Nmodes ≤
N ) or partially (Nmodes > N ) decomposed in the eigenbasis
of the kernel. In both cases, we let N vary from 10 to 100
and the dimension d from 1 to 4.

In the first setting, we set Nmodes = 70. Thus, N eventually
reaches the number of functions used to build f in (13),
after what Î EZ

N is an exact estimator in any dimension, see
Figure 1. The second setting has Nmodes = N + 1, so that
the number of points N is never enough for the variance
(11) to be zero. The corresponding 1/N2 variance decay
prescribed by Theorem 1 can be observed in Appendix B.2.

5. Conclusion
Ermakov & Zolotukhin (EZ, 1960) proposed a non-obvious
unbiased Monte Carlo estimator using projection DPPs. It
requires solving a linear system, which in turn involves
evaluating both the N eigenfunctions of the correspond-
ing kernel and the integrand at the N points of the DPP
sample. This is yet another connection between DPPs and
linear algebra. In fact, solving this linear system provides
unbiased estimates of the Fourier-like coefficients of the
integrand f with each of the N eigenfunctions of the DPP
kernel. Remarkably, these estimators have identical variance
measuring the accuracy of the approximation of f by its pro-
jection onto these eigenfunctions. With modern arguments,
we have provided a much shorter proof of these properties
than in the original work of (Ermakov & Zolotukhin, 1960).
Beyond this, little is known on the EZ estimator. While
coming with a less interpretable variance, the more direct
estimator proposed by Bardenet & Hardy (BH, 2016) has an
intrinsic connection with the classical Gauss quadrature and
further enjoys stronger theoretical properties when using
multivariate Jacobi ensemble.

Our experiments highlight the key features of both esti-
mators when the underlying DPP is a multivariate Jacobi
ensemble, and further demonstrate the known properties
of the BH estimator in yet unexplored regimes. Although
EZ shows a surprisingly fast empirical convergence rate
for d ≤ 2, its behavior is more erratic for d ≥ 3. Ill-
conditioning of the linear system is a potential source of
outliers in the distribution of the estimator. Regulariza-
tion may help but would introduce a stability/bias trade-off.
More generally, EZ seems worth investigating for integra-
tion or even interpolation tasks where the function is known
to be decomposable in the eigenbasis of the kernel, i.e., in a
setting similar to the one of Bach (2017). Finally, the new
implementation of an exact sampler for multivariate Jacobi
ensemble unlocks more large-scale empirical investigations
and asks for more theoretical work. The associated code is
available in the DPPy� toolbox of Gautier et al. (2018).

�https://github.com/guilgautier/DPPy/notebooks

https://github.com/rbardenet/dppmc
https://github.com/guilgautier/DPPy/notebooks
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Figure 1. (a)-(d) cf. Section 4.1 the numbers in the legend are the slope and R2 (e)-(h) cf. Section 4.2.
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A. Methodology
A.1. The generalized Cauchy-Binet formula: the modern argument

Johansson (2006, Section 2.2) developed a natural way to build DPPs associated to projection (potentially non hermitian)
kernels. In this part, we focus on the generalization of the Cauchy-Binet formula (Johansson, 2006, Proposition 2.10). Its
usefulness is twofold for our purpose. First, it serves to justify the fact that the normalization constant of the joint distribution
(3) is one, i.e., it is indeed a probability distribution. Second, we use it as a modern and simple argument to prove the result
of Ermakov & Zolotukhin (1960), cf. Theorem 1. An extended version of the proof is given in Appendix A.2.

Lemma A. (Johansson, 2006, Proposition 2.10) Let (X,B, µ) be a measurable space and consider measurable functions
φ0, . . . , φN−1 and ψ0, . . . , ψN−1, such that φkψ` ∈ L1(µ). Then,

det
(
〈φk, ψ`〉L2(µ)

)N
k,`=1

=
1

N !

∫
det Φ(x1:N ) det Ψ(x1:N )µ⊗N (dx), (A.1)

where

Φ(x1:N ) =

φ0(x1) . . . φN−1(x1)
...

...
φ0(xN ) . . . φN−1(xN )

 and Ψ(x1:N ) =

ψ0(x1) . . . ψN−1(x1)
...

...
ψ0(xN ) . . . ψN−1(xN )


A.2. Proof of Theorem 1

First, we recall the result of Ermakov & Zolotukhin (1960), cf. Theorem 1. Then, we provide a modern proof based on the
generalization of the Cauchy-Binet formula, cf. Lemma A, where we exploit the orthonormality of the eigenfunctions of the
kernel.

Theorem B. Consider f ∈ L2(µ) together with N orthonormal functions φ0, . . . , φN−1 ∈ L2(µ):

〈φk, φ`〉L2(µ) ,
∫
φk(x)φ`(x)µ(dx) = δk`, ∀0 ≤ k, ` ≤ N − 1. (A.2)

Let {x1, . . . ,xN} ∼ DPP(µ,KN ) with KN (x, y) =
∑N−1
k=0 φ(x)φ(y). That is to say (x1, . . . ,xN ) has joint distribution

1

N !
det[KN (xp, xq)]

N
p,q=1 µ

⊗N (dx). (A.3)

Then, the solution of φ0(x1) . . . φN−1(x1)
...

...
φ0(xN ) . . . φN−1(xN )


 y1

...
yN

 =

 f(x1)
...

f(xN )

 (A.4)

is unique, µ-almost surely and the coordinates of the solution vector, namely

yk =
det Φφk−1,f (x1:N )

det Φ(x1:N )
, (A.5)

satisfy

E
[
yk
]

= 〈f, φk−1〉L2(µ), and Var
[
yk
]

= ‖f‖2L2(µ) −
N−1∑
`=0

〈f, φ`〉2L2(µ), (A.6)

where Φ(x1:N ) denotes the feature matrix in (A.4) and Φφk−1,f (x1:N ) is defined as the matrix obtained by replacing the
k-th column of Φ(x1:N ) by (f(x1), . . . , f(xN ))

T.

Proof of Theorem B. First, the joint distribution (A.3) of (x1, . . . ,xN ) is proportional to (det Φ(x1:N ))
2
µ⊗N (x). Thus,

det Φ(x1:N ) 6= 0, µ-almost surely. Hence, the matrix Φ(x1:N ) defining the linear system (A.4) is invertible, µ-almost
surely.

The expression of the coordinates (A.5) follows from Cramer’s rule.
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Then, we treat the case k = 1, the others follow the same lines. The proof relies on Lemma A where we exploit the
orthonormality of the φks (A.2). The expectation in (A.6) reads

E
[

det Φφ0,f (x1:N )

det Φ(x1:N )

]
(A.3)
=

1

N !

∫
det Φφ0,f (x1:N ) det Φ(x1:N )µ⊗N (dx)

(A.1)
= det

 〈f, φ0〉2L2(µ)

(
〈f, φ`〉2L2(µ)

)N−1
`=1(

〈f, φ0〉2L2(µ)

)N−1
k=1

(
〈φk, φ`〉2L2(µ)

)N−1
k,`=1


(A.2)
= det

(
〈f, φ0〉2L2(µ)

(
〈f, φ`〉2L2(µ)

)N−1
`=1

0N−1,1 IN−1

)
= 〈f, φ0〉2L2(µ). (A.7)

Similarly, the second moment reads

E

[(
det Φφ0,f (x1:N )

det Φ(x1:N )

)2
]

(A.3)
=

1

N !

∫
det Φφ0,f (x1:N ) det Φφ0,f (x1:N )µ⊗N (dx)

(A.1)
= det

 〈f, f〉2L2(µ)

(
〈f, φ`〉2L2(µ)

)N−1
`=1(

〈f, φk〉2L2(µ)

)N−1
k=1

(
〈φk, φ`〉2L2(µ)

)N−1
k,`=1


(A.2)
= det

 ‖f‖2L2(µ)

(
〈f, φ`〉2L2(µ)

)N−1
`=1(

〈f, φk〉2L2(µ)

)N−1
k=1

IN−1


= ‖f‖2L2(µ) −

N−1∑
k=1

〈f, φk〉2L2(µ). (A.8)

Finally, the variance in (A.6) = (A.8) - (A.7)2.

A.3. EZ estimator as a quadrature rule

In this part, we consider Theorem B in the setting where one of the eigenfunctions of the kernel, say φ0 is constant. In this
case, we show that the EZ estimator defined to estimate

∫
f(x)µ(dx) can be seen as a quadrature rule in the sense of (1),

with weights ωn that sum to µ
(
[−1, 1]

d). This is a non obvious fact, judging from the expression (12) of the estimator.
Proposition 1. Consider φ0 constant in Theorem B. Then, solving the corresponding linear system (A.4) allows to construct

Î EZ
N (f)

(12)
=

√
µ
(

[−1, 1]
d
) det Φφ0,f (x1:N )

det Φ(x1:N )
(A.9)

as an unbiased estimator of
∫
f(x)µ(dx), with variance equal to the variance in (A.6)×µ

(
[−1, 1]

d
)

. In particular it can
be seen as a random quadrature rule (1),

Î EZ
N (f) =

N∑
n=1

ωn(x1:N )f(xn) ≈
∫
f(x)µ(dx) (A.10)

such that
∑N
n=1 ωn(x1:N ) = µ

(
[−1, 1]

d
)

.

Proof. Take φ0 constant. Since φ0 has unit norm, cf. (A.2), it is straightforward to see that

φ0 =
1√

µ
(

[−1, 1]
d
)
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so that (A.9) can be written

Î EZ
N (f) = µ

(
[−1, 1]

d
) det Φφ0,f (x1:N )

det Φφ0,1(x1:N )
.

Expanding the numerator w.r.t. the first column yields

Î EZ
N (f) =

N∑
n=1

f(xn) (−1)1+n det(φk(xp))
N−1,N
k=1,p=16=n

µ
(

[−1, 1]
d
)

det Φφ0,1(x1:N )︸ ︷︷ ︸
,ωn(x1:N )

·

In particular, there is a priori no reason for the weights to be nonnegative. Finally,

N∑
n=1

ωn(x1:N ) =
µ
(

[−1, 1]
d
)

(((((((
det Φφ0,1(x1:N )

N∑
n=1

(−1)1+n det(φk(xp))
N−1,N
k=1,p=1 6=n︸ ︷︷ ︸

=((((((
detΦφ0,1

(x1:N )

= µ
(

[−1, 1]
d
)
.

This concludes the proof.

A.4. Sampling multivariate Jacobi ensembles

In this part, we review briefly the main techniques for DPP sampling before we develop our method to generate samples
from the multivariate Jacobi ensemble, as defined in Section 2.3. As an illustration, Figure A.1 displays a sample of a two
dimensional Jacobi ensemble with N = 1000 points where the parameters a1, b1, a2, b2 were drawn i.i.d. uniformly on
[−1/2, 1/2].

In both finite and continuous cases, except for some specific instances, exact sampling from DPPs (with symmetric kernel)
usually requires the spectral decomposition of the kernel before applying the chain rule (4), see, e.g., Hough et al. (2006);
Kulesza & Taskar (2012). In the finite case, i.e., X = {1, . . . ,M}, sampling projection DPPs does not require the
eigendecomposition of the kernel, and the chain rule costs O(MN2), where N denotes the rank of kernel. Otherwise, there
is a preprocessing cost of order O(M3) which may become impractical for large M , just like other kernel methods. The
same cubic cost applies to Cholesky-based samplers, see, e.g., Launay et al. (2018), or Poulson (2019) who can also treat
non symmetric kernels. Note that, this cubic cost can be reduced when the kernel is given in a factored form (Kulesza &
Taskar, 2012; Derezı́nski, 2019).

Unlike the discrete case, sampling from continuous DPPs, even projection ones remains challenging. The realizations of
projection DPPs are usually generated by applying the chain rule (4), where the conditionals are sampled using rejection
sampling. The main challenge is to find good proposal distributions to efficiently sample the successive conditionals
(Lavancier et al., 2012). In this work, we take X = [−1, 1]d and focus on sampling the multivariate Jacobi ensemble, cf. 2.3,
for a base measure with parameters ai, bi ∈ [− 1

2 ,
1
2 ].

In dimension d = 1, to sample the univariate Jacobi ensemble, with base measure µ(dx) = (1 − x)a(1 + x)b dx where
a, b > −1, we use the random tridiagonal matrix model of Killip & Nenciu (2004, Theorem 2). That is to say, computing
the eigenvalues of a properly randomized tridiagonal matrix allows to get a sample of this continuous projection DPP at cost
O(N2)!

For d ≥ 2, we follow Bardenet & Hardy (2016, Section 3) who proposed to use the chain rule (4) to sample from the
multivariate Jacobi ensemble with base measure µ(dx) = ω(x) dx, where

ω(x) =

d∏
i=1

(1− xi)a
i

(1− xi)b
i

,with
∣∣ai∣∣, ∣∣bi∣∣ ≤ 1

2
· (A.11)

To that end, we use the same proposal distribution and rejection bound to sample from each of the conditionals (4). The
density (w.r.t. Lebesgue) of the proposal distribution writes

ωeq(x) =

d∏
i=1

1

π
√

1− (xi)2
· (A.12)



On two ways to use DPPs for MC integration

The rejection constant is derived after by successive applications of the following result on Jacobi polynomials derived by
Chow et al. (1994).

Proposition 2. (Gautschi, 2009, Equation 1.3) Let (φk)k≥0 be the orthonormal polynomials w.r.t. the measure (1− x)a(1 +
x)b dx with |a| ≤ 1

2 , |b| ≤
1
2 . Then, for any x ∈ [−1, 1] and k ≥ 0,

π(1− x)a+
1
2 (1 + x)b+

1
2φk(x)2 ≤ 2 Γ(k + a+ b+ 1) Γ(k + max(a, b) + 1)

k! (k + a+b+1
2 )2max(a,b) Γ(k + min(a, b) + 1)

· (A.13)

The domination of the acceptance ratio, i.e., the ratio of the n-th conditional density in (4) over the proposal density (A.12)
is computed as follows

KN (x, x)−Kn−1(x)TK−1n−1Kn−1(x)

N − (n− 1)
ω(x)× 1

ωeq(x)

≤ 1

N − (n− 1)

K(x, x)ω(x)

weq(x)

(6)
=

(A.12)

1

N − (n− 1)

N−1∑
b(k)=0

d∏
i=1

π(1− xi)a
i+ 1

2 (1 + xi)b
i+ 1

2φiki(x
i)2. (A.14)

Finally, each of the terms that appear in (A.14) can be bounded using the following recipe:

1. For ki > 0, we use the bound (A.13)

2. For ki = 0, the domination of the left hand side (LHS) of (A.13) is not tight enough (= 2), so we proceed as follows.
In this case, φ0 is constant equal to

(∫
(1− x)a(1 + x)b dx

)−1/2
and since |a|, |b| ∈ [−1/2, 1/2] we upper bound

(1− x)a+1/2(1 + x)b+1/2 by the evaluation at its mode.

Point 2. is crucial to tighten the rejection constant. Indeed, because of the choice of the ordering b (cf. Section 2.3), the
number of times that φi0 appears in (A.14) increases with the dimension. Hence, the tighter the bound on the LHS of (A.13)
for k = 0 the best the rejection constant.

In Figure A.2 we illustrate the following observations. We note that computing the acceptance ratio requires to propagate
these recurrence relations up to order d

√
N . Thus, for a given N , the larger the dimension, the smaller the depth of the

recurrence. This could hint that, evaluating the kernel (6) becomes cheaper as d increases. However, the rejection rate also
increases, so that in practice, it is not cheaper to sample in larger dimensions because the number of rejections dominates. In
the particular case of dimension d = 1, samples are generated using the fast and rejection-free tridiagonal matrix model of
Killip & Nenciu (2004, Theorem 2). This grants huge time savings compared to the acceptance-rejection method. Without
it, sampling N points in dimension d = 1 would take more time than in larger dimension, although the associated rejection
constants are smaller, as it can be seen in Figure 2(a) and Figure 2(b).
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1.0
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1.0

a = b = 1
2

(a) The large-N limit of the marginals, known to be ωeq, is plotted on top of the empirical
histogram on each marginal plot.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

a1 0.343
b1 0.038

a2 0.347
b2 0.279

(b) Same sample as in Figure 1(a) but the disk centered at xn has an area proportional to the
weight 1/KN (xn,xn) as in Î BH

N (7).

Figure A.1. A sample of a 2D Jacobi ensemble withN = 1000 points and parameters a1, b1, a2, b2 drawn i.i.d. uniformly on [−1/2, 1/2].
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(a) 〈time〉 to get one sample
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(b) 〈#rejections〉

Figure A.2. The colors and numbers correspond to the dimension. (a)-(b) all parameters equal −1/2. For d = 1, the tridiagonal model
(tri) of Killip & Nenciu offers tremendous savings, without it is cheaper to get a sample in larger dimension. The number of rejections
grows as N2d.
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(a) Larger Figure ??, d = 1, 2, 3, 4
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(b) d = 1, 5, 10, 15

Figure A.3. Rejection bounds. Given the proposal distribution ωeq(x) dx, it is not surprising to see that the rejection procedure is the more
efficient when the base measure µ(dx) = ωeq(x) dx, i.e., coefficients = − 1

2
, than for larger coefficients. The larger the coefficients the

greater the gap.
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B. Experiments
B.1. Reproducing the bump example

In Section 4.1, we reproduce the experiment of Bardenet & Hardy (2016, Section 3) where they illustrate the behavior of
Î BH
N on a unimodal, smooth bump function:

f(x) =

d∏
i=1

exp

(
− 1

1− ε− (xi)2

)
1[−1+ε,1−ε](x

i). (B.1)

For each value of N , we sample 100 times from the same multivariate Jacobi ensembles with i.i.d. uniform parameters on
[−1/2, 1/2], compute the resulting 100 values of each estimator, and plot the two resulting sample variances. In addition, in
Figure B.2 we test the potential hope for a CLT for Î EZ

N and compare with Î BH
N for which the CLT (8) holds, in the regime

N = 300.

101 102 N

10 19

10 15

10 11

10 7

10 3
ar

BH -2.0, 0.99
EZ -15.4, 0.97

(a) d = 1

102 N

10 6

10 5

10 4

10 3

ar

BH -1.5, 0.98
EZ -3.1, 0.95

(b) d = 2

102 N

10 4

10 3

ar

BH -1.5, 0.99
EZ -1.2, 0.80

(c) d = 3

102 N

10 4

10 3
ar

BH -1.2, 0.96
EZ -1.0, 0.64

(d) d = 4

Figure B.1. Reproducing the bump function (ε = 0.05) experiment of Bardenet & Hardy (2016), cf. Section 4.1. The expected variance
decay of order 1/N1+1/d is observed for BH. For d = 1, EZ has almost no variance for N ≥ 100: the bump function is extremely well
approximated by a polynomials of degree N ≥ 100.
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Figure B.2. Histogram of 100 independent estimates Î BH
N and Î EZ

N of the integral of the bump function (ε = 0.05) with N = 300 and
associated p-value of Kolmogorov-Smirnov test, cf. Section 4.1. The fluctuations of BH confirm to be Gaussian (cf. CLT (8)). (a) the
bump function is extremely well approximated by a polynomial of degree 300 hence Î EZ

N has almost no variance. (b)-(c)-(d) few outliers
seem to break the potential Gaussianity of Î EZ

N (f). (d) Î EZ
N (f) does not preserves the sign of the integrand.
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B.2. Integrating sums of eigenfunctions

In the next series of experiments, we are mainly interested in testing the variance decay of Î EZ
N (f) prescribed by Theorem 1.

To that end, we consider functions of the form given by (13), i.e.,

f(x) =

Nmodes−1∑
b(k)=0

1

b(k) + 1
φk(x), (B.2)

whose integral w.r.t.µ is to be estimated based on realizations of the multivariate Jacobi ensemble with kernel KN (x, y) =∑N−1
b(k)=0 φk(x)φk(y) where N 6= Nmodes a priori. This means that the function f can be either fully (Nmodes ≤ N ) or

partially (Nmodes > N ) decomposed in the eigenbasis of the kernel. In both cases, we let the number of points N used to
build the two estimators vary from 10 to 100 in dimensions d = 1 to 4.

In the first setting, we set Nmodes = 70. Thus, N eventually reaches the number of functions used to build f in (13), after
what Î EZ

N is an exact estimator. For each dimension d, Figure B.3 indeed shows the drop in the variance of Î EZ
N once

the number of points of the DPP hits the threshold N = Nmodes. This is in perfect agreement with Theorem 1: once
f ∈ HNmodes ⊆ HN , the variance (11) is zero.

The second setting has Nmodes = N + 1, so that the number of points N is never enough for the variance (11) to be zero.
As N increases the contribution of the extra mode φb−1(N) in (13) decreases as 1

N . Hence, from Theorem 1 we expect a
variance decay of order 1

N2 , which we observe in practice, cf. Figure B.4.
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Figure B.3. Comparison of Î BH
N and Î EZ

N integrating a finite sum of 70 eigenfunctions of the DPP kernel as in (13), cf. Section 4.2.
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Figure B.4. Comparison of Î BH
N and Î EZ

N for a linear combination of N + 1 eigenfunctions of the DPP kernel as in (13), cf. Section 4.2.
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B.3. Further experiments

In Appendices B.3.1-B.3.4 we test the robustness of both BH and EZ estimators, when applied to functions presenting
discontinuities or which do not belong to the span of the eigenfunctions of the kernel. Although the conditions of the CLT
(8) associated to Î BH are violated, the corresponding variance decay is smooth but not as fast. For Î EZ the performance
deteriorate with the dimension. Indeed, the cross terms arising from the Taylor expansion of the different functions introduce
monomials, associated to large coefficients, that do not belong toHN . Sampling more points would reduce the variance
(11). But more importantly, for EZ to excel, this suggests to adapt the kernel to the basis where the integrand is known to be
sparse or to have fast-decaying coefficients.

B.3.1. INTEGRATING ABSOLUTE VALUE

We consider estimating the integral ∫
[−1,1]d

d∏
i=1

|xi|(1− xi)a
i

(1− xi)b
i

dxi (B.3)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH (7) and EZ (12) estimators.

Results are given in Figure B.5.
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Figure B.5. Comparison of Î BH
N and Î EZ

N for absolute value, cf. Section B.3.
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B.3.2. INTEGRATING HEAVISIDE

Let H(x) =

{
1, if x > 0

−1, otherwise
. We consider estimating the integral

∫
[−1,1]d

d∏
i=1

H(xi)(1− xi)a
i

(1− xi)b
i

dxi (B.4)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH (7) and EZ (12) estimators.

Results are given in Figure B.6.
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Figure B.6. Comparison of Î BH
N and Î EZ

N for Heaviside function, cf. Section ??.
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B.3.3. INTEGRATING COSINE

We consider estimating the integral ∫
[−1,1]d

d∏
i=1

cos(πxi)(1− xi)a
i

(1− xi)b
i

dxi (B.5)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH (7) and EZ (12) estimators.

Results are given in Figure B.7
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Figure B.7. Comparison of Î BH
N and Î EZ

N for cosine, cf. Section ??.
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B.3.4. INTEGRATING A MIXTURE OF SMOOTH AND NON SMOOTH FUNCTIONS

Let f(x) = H(x)(cos(πx) + cos(2πx) + sin(5πx)). We consider estimating the integral∫
[−1,1]d

d∏
i=1

f(xi)(1− xi)a
i

(1− xi)b
i

dxi (B.6)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH (7) and EZ (12) estimators.
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Figure B.8. Comparison of Î BH
N and Î EZ

N , cf. Section ??.


