Schrödinger operators with Leray-Hardy potential singular on the boundary - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Schrödinger operators with Leray-Hardy potential singular on the boundary

Huyuan Chen
  • Fonction : Auteur
  • PersonId : 1024888

Résumé

We study the kernel function of the operator u → L µ u = −∆u + µ |x| 2 u in a bounded smooth domain Ω ⊂ R N + such that 0 ∈ ∂Ω, where µ ≥ − N 2 4 is a constant. We show the existence of a Poisson kernel vanishing at 0 and a singular kernel with a singularity at 0. We prove the existence and uniqueness of weak solutions of L µ u = 0 in Ω with boundary data ν + kδ 0 , where ν is a Radon measure on ∂Ω \ {0}, k ∈ R and show that this boundary data corresponds in a unique way to the boundary trace of positive solution of L µ u = 0 in Ω.
Fichier principal
Vignette du fichier
bdry-Hardy-L3.pdf (406.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02157156 , version 1 (15-06-2019)
hal-02157156 , version 2 (19-06-2019)
hal-02157156 , version 3 (25-02-2020)

Identifiants

Citer

Huyuan Chen, Laurent Veron. Schrödinger operators with Leray-Hardy potential singular on the boundary. 2019. ⟨hal-02157156v2⟩
144 Consultations
114 Téléchargements

Altmetric

Partager

More