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Schrödinger operators with Leray-Hardy potential

singular on the boundary
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Abstract

We study the kernel function of the operator u 7→ Lµu = −∆u + µ
|x|2u in a bounded

smooth domain Ω ⊂ RN+ such that 0 ∈ ∂Ω, where µ ≥ −N
2

4 is a constant. We show the
existence of a Poisson kernel vanishing at 0 and a singular kernel with a singularity at 0. We
prove the existence and uniqueness of weak solutions of Lµu = 0 in Ω with boundary data
ν + kδ0, where ν is a Radon measure on ∂Ω \ {0}, k ∈ R and show that this boundary data
corresponds in a unique way to the boundary trace of positive solution of Lµu = 0 in Ω.
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1 Introduction

We denote by Lµ the Schrödinger operator defined in a domain Ω ⊂ RN by

Lµu := −∆u+
µ

|x|2
u,

where µ is a real constant and N ≥ 2. This operator which is associated to the Hardy inequality
has been thoroughly studied in the last thirty years. When the singular point 0 belongs to Ω, it
appears a critical value

µ0 = −
(
N − 2

2

)2

and the range of the µ in which the operator is bounded from below is [µ0,∞). This is linked
to the Hardy inequality∫

Ω
|∇φ|2 + µ0

∫
Ω

φ2

|x|2
dx ≥ 0 for all φ ∈ C∞0 (Ω).

Furthermore this inequality is never achieved if Ω is bounded, in which case a remainder was
shown to exist by Brézis and Vázquez [4]. When λ is a Radon measure in Ω, the associated
Dirichlet problem {

Lµu = λ in Ω,

u = 0 on ∂Ω

is studied in its full generality in [8] and [9] thanks to the introduction of a notion of very
weak solution associated to some specific weight. Thanks to this new formulation an extensive
treatment of the associated semilinear problem{

Lµu+ g(u) = λ in Ω,

u = 0 on ∂Ω,

where g : R 7→ R is a continuous nondecreasing function is developed in [9].

In this article we assume that the singular point of the potential lies on the boundary of the
domain Ω, and we are mainly interested in the two problems:
1- To define a notion of very weak solution for the problem{

Lµu = 0 in Ω,

u = ν on ∂Ω,
(1.1)

where ν is a Radon measure on ∂Ω, and more generaly on ∂Ω \ {0};
2- To prove the existence of a boundary trace for any positive Lµ-harmonic function, i.e. solution
of Lµu = 0 in Ω and to connect it to the problem (1.1).

The model example is Ω = RN+ := {x = (x′, xN ) ∈ RN−1 × R : xN > 0} although it is not a
bounded domain. There exists a critical value

µ ≥ µ1 := −N
2

4
. (1.2)
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This value is fundamental for the operator Lµ to be bounded from below since there holds,∫
RN+
|∇φ|2 + µ1

∫
RN+

φ2

|x|2
dx ≥ 0 for all φ ∈ C∞0 (RN+ ). (1.3)

The analysis of the model case is explicit. Let (r, σ) ∈ R+ × SN−1
+ be the spherical coordinates

in RN+ , then, if (1.2) is satisfied, there exist two different types of positive Lµ-harmonic functions
vanishing on ∂RN+ \ {0}),

γµ(r, σ) = rα+ψ1(σ) and φµ(r, σ) =

{
rα−ψ1(σ) if µ > µ1,

r−
N−2

2 ln(r−1)ψ1(σ) if µ = µ1,
(1.4)

where ψ1(σ) = xN
|x| generates ker(−∆′ + (N − 1)I) in H1

0 (SN−1
+ ), and where

α+ := α+(µ) =
2−N

2
+

√
µ+

N2

4
and α− := α−(µ) =

2−N
2
−
√
µ+

N2

4
. (1.5)

Put dγµ(x) = γµ(x)dx. We define the γµ-dual operator L∗µ of Lµ by

L∗µζ = −∆ζ − 2

γµ
〈∇γµ,∇ζ〉 for all ζ ∈ C2(RN+ ), (1.6)

and we prove that φµ is, in some sense, the fundamental solution of{
Lµu = 0 in RN+ ,
u = δ0 on ∂RN+ ,

since it satisfies ∫
RN+
φµL∗µζdγµ(x) = cµζ(0) for all ζ ∈ Cc(RN+ ) ∩ C1,1(RN+ )

such that ρL∗µζ ∈ L∞(RN+ ), where cµ > 0 is a normalized constant and ρ(x) = dist(x, ∂Ω). Here

ρ(x) = xN when Ω = RN+ .

When RN+ is replaced by a bounded domain Ω satisfying the condition

(C-1) 0 ∈ ∂Ω , Ω ⊂ RN+ and 〈x,n〉 = O(|x|2) for all x ∈ ∂Ω,

where n = nx is the outward normal vector at x, inequality (1.3) holds but it is never achieved
in the Hilbert space H1

0 (Ω). Note that the last condition in (C-1) holds if Ω is a C2 domain. It
is proved in [5] that there exists a remainder under the following form:∫

Ω
|∇φ|2 + µ1

∫
Ω

φ2

|x|2
dx ≥ 1

4

∫
Ω

φ2

|x|2 ln2(|x|R−1
Ω )

dx for all φ ∈ C∞c (Ω), (1.7)

where RΩ = max
z∈Ω
|z|. Under the assumption (C-1), there holds

`Ωµ := inf

{∫
Ω

(
|∇v|2 +

µ

|x|2
v2

)
dx : v ∈ C1

c (Ω),

∫
Ω
v2dx = 1

}
> 0.
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This first eigenvalue is achieved in H1
0 (Ω) if µ > µ1, or in the space H(Ω) which is the closure

of C1
c (Ω) for the norm

v 7→ ‖v‖H(Ω) :=

√∫
Ω

(
|∇v|2 +

µ1

|x|2
v2

)
dx,

when µ = µ1. In the sequel we set

Hµ(Ω) =

{
H1

0 (Ω) if µ > µ1

H(Ω) if µ = µ1.

Moreover, under the assumption (C-1) the imbedding of Hµ(Ω) in L2(Ω) is compact (see e.g.
[6]). We denote by γΩ

µ the positive eigenfunction, its satisfies{
LµγΩ

µ = `Ωµγ
Ω
µ in Ω,

γΩ
µ = 0 on ∂Ω \ {0}.

(1.8)

We prove that there exist cj = cj(Ω, µ) > 0, j=1, 2, such that

(i) γΩ
µ (x) = c1ρ(x)|x|α+−1(1 + o(1)) as x→ 0,

(ii) |∇γΩ
µ (x)| ≤ c2

γΩ
µ (x)

ρ(x)
for all x ∈ Ω.

(1.9)

This function will play the role of a weight function for replacing γµ. Next we construct the
Poisson kernel KΩ

µ of Lµ in Ω× ∂Ω. When µ ≥ 0 this construction can be made by truncation
as in [18], considering for ε > 0 and λ ∈M+(∂Ω) the solution uε of

−∆u+
µ

max{ε2, |x|2}
u = 0 in Ω,

u = λ on ∂Ω.

By a more elaborate method, we also construct the Poisson kernel when µ1 ≤ µ < 0. It is
important to notice that when µ > 0 the kernel has the property that

KΩ
µ (x, 0) = 0 for all x ∈ Ω \ {0} (1.10)

by [18, Theorem A.1]. Because of (1.10) it is clear that the Poisson kernel cannot be the tool for
describing all the positive Lµ-harmonic functions. Our first concern in this article is to clarify
the Poisson kernel of Lµ.

We first characterize the positive Lµ-harmonic functions which are singular at 0.

Theorem A Let Ω be a C2 bounded domain such that 0 ∈ ∂Ω and µ ≥ µ1. If u is a nonnegative
Lµ-harmonic function vanishing on Br0(0)∩ (∂Ω \ {0}) for some r0 > 0, there exists k ≥ 0 such
that

lim
x→0

u(x)

ρ(x)|x|α−−1
= k,
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if µ > µ1 and

lim
x→0

|x|
N
2 u(x)

ρ(x) ln |x|
= −k,

if µ = µ1.

Actually the above convergences hold in a stronger way. In order to prove that such solutions
truly exist we construct the kernel function φΩ

µ (see [13] for the denomination) which is the

analogue in a bounded domain of the explicit singular solution φµ defined in RN+ .

Theorem B Let Ω be a C2 bounded domain such that 0 ∈ ∂Ω satisfying (C-1) and µ ≥ µ1. Then
there exists a positive Lµ-harmonic function in Ω, which vanishes on ∂Ω \ {0} which satisfies,

φΩ
µ (x) = ρ(x)|x|α−−1(1 + o(1)) as x→ 0, (1.11)

if µ > µ1, and

φΩ
µ1

(x) = ρ(x)|x|−
N
2 (| ln |x||+ 1)(1 + o(1)) as x→ 0, (1.12)

if µ = µ1.

As in the model case, we define the γΩ
µ -dual operator of Lµ by

L∗µζ = −∆ζ − 2

γΩ
µ

〈∇γΩ
µ ,∇ζ〉+ `Ωµ ζ for all ζ ∈ C1,1(Ω).

The following commutation formula holds

Lµ(γΩ
µ ζ) = γΩ

µL∗µζ. (1.13)

Corollary C Let Ω be a C2 bounded domain such that 0 ∈ ∂Ω satisfying (C-1) and µ ≥ µ1.
Then φΩ

µ is the unique function belonging to L1(Ω, ρ−1dγΩ
µ ) which satisfies∫

Ω
uL∗µζdγΩ

µ = kcµζ(0) for all ζ ∈ Xµ(Ω), (1.14)

where and in the sequel the test function space

Xµ(Ω) =
{
ζ ∈ C(Ω) : γΩ

µ ζ ∈ Hµ(Ω) and ρL∗µζ ∈ L∞(Ω)
}
.

Furthermore, if u is a nonnegative Lµ-harmonic function vanishing on ∂Ω \ {0}, there exists
k ≥ 0 such that u = kφΩ

µ .

We let σΩ
µ ∈ Hµ(Ω) be the unique variational solution of

Lµu =
γΩ
µ

ρ∗
in Ω and u = 0 on ∂Ω, (1.15)

where ρ∗(x) = min{ 1
lΩµ
, ρ}. We prove that there is c2 > 1 such that

γΩ
µ ≤ σΩ

µ ≤ c2γ
Ω
µ in Ω. (1.16)
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Note that σΩ
µ ∈ C2(Ω\{0}) is a positive classical solution of (1.15) with zero Dirichlet boundary

condition on ∂Ω \ {0}, i.e. σΩ
µ = 0 on ∂Ω \ {0}. Moreover,

∂σΩ
µ

∂n
< 0 on ∂Ω \ {0}. We set

η =
σΩ
µ

γΩ
µ

in Ω,

which satisfies

L∗µη =
1

ρ
in Ω, (1.17)

play a key role in the sequel. Clearly, η ∈ C2(Ω \ {0}) and 1 ≤ η ≤ c2 in Ω \ {0} by (1.16). We
denote by M(Ω;σΩ

µ ) the set of Radon measures ν in Ω such that

sup

{∫
Ω
ζd|λ| : ζ ∈ Cc(Ω), 0 ≤ ζ ≤ σΩ

µ

}
:=

∫
Ω
σΩ
µ d|ν| < +∞.

If ν ∈M+(Ω;σΩ
µ ) the measure σΩ

µ ν is a nonnegative bounded measure in Ω. Put

βΩ
µ (x) = −

∂γΩ
µ (x)

∂nx
= lim

t→0+

γΩ
µ (x− tnx)

t
= lim

t→0+

γΩ
µ (x− tnx)

ρ∗(x− tnx))
, ∀x ∈ ∂Ω \ {0} (1.18)

and from (1.16) and (1.9), we have that

c1|x|α+−1 ≤ βΩ
µ (x) ≤ c1c2|x|α+−1 for x ∈ ∂Ω \ {0}. (1.19)

As a consequence, the following potential function plays an important role in defining our bound-
ary data. Denote

βµ(x) = |x|α+−1 for x ∈ RN \ {0}. (1.20)

The set Radon measures λ in ∂Ω \ {0} such that

sup

{∫
∂Ω\{0}

ζd|λ| : ζ ∈ Cc(∂Ω \ {0}), 0 ≤ ζ ≤ βµ

}
:=

∫
∂Ω\{0}

βµd|λ| < +∞

is denoted by M(∂Ω \ {0};βµ). The extension of λ ∈M+(∂Ω \ {0};βµ) as a measure βµλ in ∂Ω
is given by∫

∂Ω
ζd(βµλ) = sup

{∫
∂Ω
υβµ dλ : υ ∈ Cc(∂Ω \ {0}), 0 ≤ υ ≤ ζ

}
for all ζ ∈ Cc(∂Ω) , ζ ≥ 0

and βµλ = βµλ+ − βµλ− if λ is a signed measure in M(∂Ω \ {0};βµ), and this defines the set
M(∂Ω;βµ) of all such extensions. The Dirac mass at 0 does not belong to M(∂Ω;βµ), but it is
the limit of sequences of measures in this space in the same way as it is a limit of measures in
M+(∂Ω \ {0};βµ). In the next result we prove the existence and uniqueness of a solution to{

Lµu = ν in Ω,

u = λ+ kδ0 on ∂Ω.
(1.21)
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Thanks to (1.7) the Green kernel GΩ
µ is easily constructible. If ν ∈ M+(Ω;σΩ

µ ) and λ ∈
M(∂Ω;βµ) the following expressions are well defined

KΩ
µ [λ](x) =

∫
∂Ω
KΩ
µ (x, y)dλ(y) and GΩ

µ [ν](x) =

∫
Ω
GΩ
µ (x, y)dν(y).

Our main existence result is the following.

Theorem D Let Ω be a C2 bounded domain such that 0 ∈ ∂Ω satisfying (C-1) and µ ≥ µ1. If
ν ∈M+(Ω;σΩ

µ ), λ ∈M(∂Ω;βµ) and k ∈ R, the function

u = GΩ
µ [ν] + KΩ

µ [λ] + kφΩ
µ := HΩ

µ [(ν, λ, k)] (1.22)

is the unique solution of (1.21) in the very weak sense that u ∈ L1(Ω, ρ−1dγΩ
µ ) and∫

Ω
uL∗µζdγΩ

µ =

∫
Ω
ζd(γΩ

µ ν) +

∫
∂Ω
ζd(βΩ

µ λ) + kcµζ(0) (1.23)

for all ζ ∈ Xµ(Ω).

In the next result we prove that all the positive Lµ-harmonic functions in Ω are described
by formula (1.22) (with ν = 0).

Theorem E Let Ω be a C2 bounded domain such that 0 ∈ ∂Ω satisfying (C-1), µ ≥ µ1 and u
be a nonnegative Lµ-harmonic functions in Ω. Then there exist λ ∈M(∂Ω;βµ) and k ≥ 0, such
that

u = KΩ
µ [λ] + kφΩ

µ = HΩ
µ [(0, λ, k)].

The couple (λ, kδ0) is called the boundary trace of u.

The rest of this paper is organized as follows. In section 2, we introduce the distributional
identity of Lµ harmonic function φµ in RN+ . Section 3 is devoted to build the Kato’s type
inequalities, to construct Poisson kernel and related properties. Section 4 is addressed to classify
the boundary isolated singular Lµ harmonic functions in a bounded domain, i.e. Theorem
A and to show the existence and related distributional identity in a (C-1) domain: proofs
of Theorem B and Corollary C. We classify the boundary trace for general Lµ harmonic
functions and give the existence of Lµ harmonic functions with the boundary trace (λ, kδ0):
Theorem D and Theorem E respectively in Section 5. Finally, we show Estimates (1.9) and
(1.16) in Appendix.

In a forthcomming article [10] we study the semilinear problem{
Lµu+ g(u) = 0 in Ω,

u = λ on ∂Ω.

2 The half-space setting

Let RN+ := {x = (x′, xN ) ∈ RN−1×R : xN > 0}, (r, σ) ∈ R+×SN−1
+ be the spherical coordinates

in RN+ and ∆′ is the Laplace Beltrami operator on SN−1. Then

Lµu = −∂rru−
N − 1

r
∂ru−

1

r2
∆′u+

µ

r2
u.
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If u(r, σ) = rαφ(σ) is a (separable) solution of Lµu = 0 vanishing on ∂RN+ \ {0}, then φ satisfies{
−∆′φ = λkφ in SN−1

+ := SN−1 ∩ RN+ ,
φ = 0 in ∂SN−1

+ ≈ SN−2,

where λk a constant which necessarily belongs to the spectrum

σSN−1
+

(−∆′) = {λk = k(N + k − 2) : k ∈ N∗},

and α = αk+, αk− is a root of

α2 + (N − 2)α− λk − µ = 0. (2.1)

The fundamental state corresponds to k = 1, in which case since λ1 = N − 1, existence of real
roots of (2.1) necessitates µ ≥ µ1 = −N2

4 = µ1 and we denote α1 + = α+ and α1− = α−. Note
that this value is connected to the boundary Hardy∫

RN+
|∇φ|2 + µ1

∫
RN+

φ2

|x|2
dx ≥ 0 for all φ ∈ C∞0 (SN−1

+ ).

If this condition is fulfilled, the two roots α+ and α− corresponding to k = 1 and λ1 are

α+ =
2−N

2
+
√
µ− µ1 and α− =

2−N
2
−
√
µ− µ1. (2.2)

The corresponding positive separable solutions γµ and φµ of Lµu = 0 vanishing on ∂RN+ \ {0}
are defined by (1.4). We set dγµ(x) = γµ(x)dx and define the operator L∗µ by (1.6).

Proposition 2.1 The function φµ belongs to L1
loc(RN+ , ρ−1dγµ). It satisfies∫

RN+
φµL∗µζdγµ(x) = cµζ(0) for all ζ ∈ Xµ(RN+ ), (2.3)

where

cµ =


2
√
µ− µ1

∫
SN−1

+

ψ2
1dS if µ > µ1,∫

SN−1
+

ψ2
1dS if µ = µ1

(2.4)

and Xµ(RN+ ) =
{
ζ ∈ Cc(RN+ ) : ρL∗µζ ∈ L∞(RN+ )

}
.

Proof. Let ζ ∈ Xµ(RN+ ), ε > 0 and set B+
ε = Bε(0) ∩ RN+ , (B+

ε )
c

= Bc
ε (0) ∩ RN+ and Γ+

ε =

∂Bε(0) ∩ RN+

0 =

∫
(B+

ε )
c
ζγµLµφµdx

=

∫
(B+

ε )
c
φµL∗µζdγµ(x) +

∫
Γ+
ε

(
−∂φµ
∂n

ζγµ +

(
γµ
∂ζ

∂n
+ ζ

∂γµ
∂n

)
φµ

)
dS

=

∫
(B+

ε )
c
φµL∗µζdγµ(x) + ζ(0)A(ε)
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and n = −ε−1x on Γ+
ε , and

A(ε) =


−2
√
µ− µ1

∫
SN−1

+

φ2
1dS +O(ε) if µ > µ1,

−
∫
SN−1

+

φ2
1dS +O(ε) if µ = µ1,

(2.5)

which implies (2.3)-(2.4). �

3 The Poisson kernel

In this section we assume that Ω is a bounded C2 domain included in B1 (which can always be
assumed by scaling) and 0 ∈ ∂Ω. We start with the following identity of commutation valid for
all λ ∈M(∂Ω;βΩ

µ ) and ζ ∈ C1,1(Ω)

−
∫
∂Ω

∂(ζγΩ
µ )

∂n
dλ =

∫
∂Ω
ζd(βΩ

µ λ) for all ζ ∈ C1,1(Ω), (3.1)

where βΩ
µ is defined in (1.18).

The following inequality extends the classical Kato inequality to our framework.

Lemma 3.1 Assume N ≥ 3 and µ ≥ µ1 or N = 2 and µ > µ1. Then for any f ∈ L1(Ω, σΩ
µ dx),

h ∈ L1(∂Ω, βΩ
µ dx) there exists a unique weak solution u to{

Lµu = f in Ω,

u = h on ∂Ω
(3.2)

in the sense that ∫
Ω
uL∗µζdγΩ

µ =

∫
Ω
fζdγΩ

µ +

∫
∂Ω
hζdβΩ

µ for all ζ ∈ Xµ(Ω). (3.3)

Furthermore, for any ζ ∈ Xµ(Ω), ζ ≥ 0, there holds∫
Ω
|u|L∗µζdγΩ

µ ≤
∫

Ω
sgn(u)fζdγΩ

µ +

∫
∂Ω
|h|ζdβΩ

µ (3.4)

and ∫
Ω
u+L∗µζdγΩ

µ ≤
∫

Ω
sgn+(u)fζdγΩ

µ +

∫
∂Ω
h+ζdβΩ

µ . (3.5)

Proof. Uniqueness. Assume that u is a weak solution of (3.2) with f = h = 0. Then for any
ζ ∈ Xµ(Ω) there holds ∫

Ω
uL∗µζdγΩ

µ = 0.

Let φ ∈ C∞c (Ω), and υ ∈ Hµ(Ω) be the variational solution of

Lµυ =
γΩ
µ

ρ
φ and u ∈ Hµ(Ω).
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Then υ ∈ C∞(Ω), |υ| ≤ ‖φ‖L∞σΩ
µ ; the equation is satisfied everywhere and in the sense of

distributions in Ω. Clearly w = (γΩ
µ )−1υ belongs to C∞(Ω) and satisfies

L∗µw =
1

ρ
φ.

Thus, ∫
Ω

u

ρ
φdγΩ

µ = 0.

Since φ is arbitrary, we have that u = 0.

Existence and estimates. We proceed by approximation as in [8, Prop. 2.1]. We assume that
{(fn, hn)} ⊂ C1

0 (Ω) × C1
0 (∂Ω \ {0}) is a sequence which converges to (f, h) in L1(Ω, γΩ

µ dx) ×
L1(∂Ω, βΩ

µ dx). We set V (x) = |x|−2, denote by KΩ the Poisson potential of −∆ in Ω and
consider the approximate problem{

Lµwn = fn − µVK[hn] in Ω,

wn = 0 on ∂Ω.
(3.6)

Near 0, we have VK[hn](x) = O(ρ(x)
|x2| ), hence, if N ≥ 3, VK[hn] ∈ L2(Ω). If N = 2, the function

x 7→ ρ(x)
|x|2 belongs to the Lorentz space L2,∞(Ω) which is the dual of L2,1(Ω). Since H(Ω) ⊂

L2,1(Ω) by (1.7), it follows that H ′(Ω) ⊂ L2,∞(Ω). Hence, by Lax-Milgram theorem there exists
a unique wn ∈ H(Ω) such that (3.6) holds in the variational sense. Then un = wn + K[hn],
which has the same regularity as wn, satisfies{

Lµun = fn in Ω,

un = hn on ∂Ω.
(3.7)

For σ > 0, we set

mσ(t) =

{
|t| − σ

2 if |t| ≥ σ,
t2

2σ if |t| < σ.

The mσ is convex, |m′σ(t)| ≤ 1 and m′σ(t)→ sign0(t) as σ ↓ 0. Let ζ ∈ C1,1(Ω), ζ ≥ 0. We have
that ∫

Ω

(
〈∇wn,∇(ζm′σ(un)γΩ

µ )〉+ µV wnζm
′
σ(un)γΩ

µ

)
dx

=

∫
Ω
ζm′σ(un)γΩ

µ fndx− µ
∫

Ω
VK[hn]ζm′σ(un)γΩ

µ dx =: R(σ).
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By the fact un = wn + K[hn], we have that

R(σ) =

∫
Ω
〈∇un,∇(ζm′σ(un)γΩ

µ )〉dx−
∫

Ω
〈∇K[hn],∇(ζm′σ(un)γΩ

µ )〉dx

+ µ

∫
Ω
V unζm

′
σ(un)γΩ

µ dx− µ
∫

Ω
VK[hn]ζm′σ(un)γΩ

µ dx

=

∫
Ω
|∇un|2m′′σ(un)ζγΩ

µ dx+

∫
Ω
〈∇mσ(un),∇(ζγΩ

µ )〉dx+ µ

∫
Ω
V unζm

′
σ(un)γΩ

µ dx

− µ
∫

Ω
VK[hn]ζm′σ(un)γΩ

µ dx

≥ −
∫

Ω
mσ(un)∆(ζγΩ

µ )dx+

∫
∂Ω
mσ(hn)ζ

∂γΩ
µ

∂n
dS + µ

∫
Ω
V unζm

′
σ(un)γΩ

µ dx

− µ
∫

Ω
VK[hn]ζm′σ(un)γΩ

µ dx

≥
∫

Ω
mσ(un)L∗µζdγΩ

µ −
∫
∂Ω
mσ(hn)dβΩ

µ + µ

∫
Ω
V (unm

′
σ(un)−mσ(un)) γΩ

µ ζdx

− µ
∫

Ω
VK[hn]ζm′σ(un)γΩ

µ dx,

thus, we obtain that∫
Ω
mσ(un)L∗µζdγΩ

µ + µ

∫
Ω
V (unm

′
σ(un)−mσ(un)) ζdγΩ

µ

≤
∫

Ω
ζm′σ(un)fndγ

Ω
µ +

∫
∂Ω
mσ(hn)ζdβΩ

µ .

(3.8)

Since mσ is convex, unm
′
σ(un) −mσ(un) ≥ 0. Hence for µ ≥ 0, we can let σ → 0 in (3.8) and

obtain (3.4).
For µ ∈ [µ1, 0), we note that

0 ≤ unm′σ(un)−mσ(un) ≤ |un|
2

2σ2
χ{|un|≤σ}

and

0 ≤
∫

Ω
V
(
unm

′
σ(un)−mσ(un)

)
ζdγΩ

µ ≤
‖ζ‖L∞

2

∫
{|un|≤σ}

|x|−1−N
2

+
√
µ−µ1dx. (3.9)

Hence if N ≥ 3, or N = 2 and µ > µ1 = −1, the right-hand side of (3.9) tends to 0 as σ → 0
and then we obtain (3.4). The proof of (3.5) is similar.

Applying estimate (3.4) to un − um, we obtain for all ζ ∈ Xµ(Ω), ζ ≥ 0,∫
Ω
|un − um|L∗µζdγΩ

µ ≤
∫

Ω
|fn − fm|ζdγΩ

µ +

∫
∂Ω
|hn − hm|ζdβΩ

µ ,

For test function, we take η, the solution of (1.17), then∫
Ω

|un − um|
ρ

dγΩ
µ ≤

∫
Ω
|fn − fm|dσΩ

µ +

∫
∂Ω
|hn − hm|d(ηβΩ

µ ),
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Therefore {un} is a cauchy sequence in L1(Ω, ρ−1dγΩ
µ ) with limit u. Since un satisfies (3.7), we

let n go to infty in ∫
Ω
unL∗µζ dγΩ

µ =

∫
Ω
ζσΩ

µ fndx+

∫
∂Ω
ζβΩ

µ hndS

and obtain (3.3). �

Lemma 3.2 Assume λ ∈M(∂Ω;βµ) and ζ ∈ Xµ(Ω), then there holds∫
Ω

(
L∗µζ −

µ

|x|2
ζ

)
KΩ[λ]dγΩ

µ =

∫
∂Ω
ζd(βΩ

µ λ).

Proof. Note that d(βΩ
µ λ) is equivalent to d(βΩ

µ λ) by (1.19). By (1.13) we have almost everywhere
in Ω, (

L∗µζ −
µ

|x|2
ζ

)
KΩ[λ]γΩ

µ =

(
Lµ(γΩ

µ ζ)− µ

|x|2
γΩ
µ ζ

)
KΩ[λ] = −∆(γΩ

µ ζ)KΩ[λ].

If we assume that λ vanishes in a neighborood of 0 we derive from (3.1)

−
∫

Ω
∆(γΩ

µ ζ)KΩ[λ]dx = −
∫
∂Ω

∂(ζγΩ
µ )

∂n
dλ =

∫
∂Ω
ζd(βΩ

µ λ).

Since γΩ
µ

(
L∗µζ −

µ

|x|2
ζ

)
is bounded, we obtain the result first if λ is nonnegative by considering

the sequence {χ
Bcε
λ} and letting ε→ 0, and then for any λ = λ+ − λ−. �

We observe also that the existence of the Green kernel follows from Lax-Milgram theorem
which gives the existence of a unique variational solution in H(Ω) to

−∆u+
µ

|x|2
u = f in Ω,

u = 0 on ∂Ω.

We denote by GΩ
µ the Green kernel and by GΩ

µ the corresponding Green operator.

3.1 Construction of the Poisson kernel when µ > 0

For the sake of completeness, we recall the construction in [18]. For ε > 0 we set Vε(x) =
max{ε−2, |x|−2} and V0(x) = V (x) = |x|−2, and if λ ∈M(∂Ω) let uε be the solution of{

−∆u+ µVεu = 0 in Ω,

u = λ on ∂Ω.

Then

uε(x) =

∫
∂Ω
KΩ
µ,ε(x, y)dλ(y) = KΩ

µ,ε[λ].

We obtain by the maximum principle,

KΩ
µ,ε ≤ KΩ

µ′,ε′ ≤ KΩ for all µ ≥ µ′ ≥ 0 and ε′ ≥ ε > 0,
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where KΩ is the usual Poisson kernel in Ω and there exists

KΩ
µ (x, y) = lim

ε→0
KΩ
µ,ε(x, y) for all (x, y) ∈ Ω× ∂Ω.

Therefore we infer, firstly by monotone convergence if λ ≥ 0, and then for any λ ∈M(∂Ω), that

lim
ε→0

uε(x) = u(x) =

∫
∂Ω
KΩ
µ (x, y)dλ(y) for all x ∈ Ω. (3.10)

Since V is finite in Bc
ε ∩Ω, for any x ∈ Ω, KΩ

µ (x, y) > 0 for all y ∈ ∂Ω \ {0}. If GΩ is the Green
kernel in Ω, there holds

uε(x) + µ

∫
Ω
GΩ(x, y)Vε(y)uε(y)dy =

∫
∂Ω
KΩ(x, y)dλ(y)

If λ ≥ 0, we have by Fatou’s lemma,∫
Ω
GΩ(x, y)V (y)u(y)dy ≤ lim inf

ε→0

∫
Ω
GΩ(x, y)Vε(y)uε(y)dy. (3.11)

Combined with (3.10) it yields

u(x) + µ

∫
Ω
GΩ(x, y)V (y)u(y)dy ≤

∫
∂Ω
KΩ(x, y)dλ(y) for all x ∈ Ω.

Since the function u + µG[V u] is nonnegative and harmonic in Ω, it admits a boundary trace
which is a nonnegative Radon measure λ∗ and there holds

u(x) + µ

∫
Ω
GΩ(x, y)V (y)u(y)dy =

∫
∂Ω
KΩ(x, y)dλ∗(y) for all x ∈ Ω. (3.12)

Because of (3.11) 0 ≤ λ∗ ≤ λ. The measure λ∗ is the reduced measure associated to λ. Since
(3.12) is equivalent to

u(x) =

∫
∂Ω
KΩ
µ (x, y)dλ∗(y),

there holds ∫
∂Ω
KΩ
µ (x, y)d(λ− λ∗)(y) = 0.

This implies that λ = λ∗ in ∂Ω \ {0}. With the notations of [18], we recall that

SingV (Ω) :=
{
y ∈ ∂Ω : ∃x0 ∈ Ω s.t. KΩ

µ (x0, y) = 0
}

⊂ ZV :=

{
y ∈ ∂Ω :

∫
Ω
KΩ

0 (x, y)V (x)ρ(x)dx =∞
}
.

Actually, if y ∈ SingV (Ω), KΩ
µ (x0, y) = 0 for any x0 ∈ Ω by Harnack inequality. Clearly 0 ∈ ZV

and if y 6= 0 the integral term in the definition of ZV is finite. Hence SingV (Ω) ⊂ ZV = {0}.
Since for any truncated cone C0,δ b Ω with vertex 0, there holds∫

C0,δ

V (x)
dx

|x− y|N−2
=∞,

it follows by Ancona’s result [18, Theorem A1] that 0 ∈ SingV (Ω). Finally

KΩ
µ (x, 0) = 0 for all x ∈ Ω.
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3.2 Construction of the Poisson kernel when µ1 ≤ µ < 0

For ε > 0 and λ ∈ C(∂Ω), λ ≥ 0 we denote by w = wε,λ the variational solution in H(Ω) of{
−∆w + µVεw = −µVεK[λ] in Ω,

w = 0 on ∂Ω.

Then wε,λ ≥ 0 and u = uε,λ := wε + K[λ] satisfies{
−∆u+ µVεu = 0 in Ω,

u = λ on ∂Ω.
(3.13)

Since −∆uε,λ + µV uε,λ ≤ 0, there holds from Lemma 3.1∫
Ω
uε,λL∗µζdγΩ

µ ≤
∫
∂Ω
λζdβΩ

µ for ζ ∈ Xµ(Ω), ζ ≥ 0

and in particular ∫
Ω

uε,λ
ρ
dγΩ

µ ≤
∫
∂Ω
λd(ηβΩ

µ ). (3.14)

If ε > ε′ > 0 and λ′ > λ > 0 we have

−
∆uε,λ
uε,λ

+
∆uε′,λ′

uε′,λ′
= µ (Vε′ − Vε) ≤ 0.

Since ∫
Ω

(
−

∆uε,λ
uε,λ

+
∆uε′,λ′

uε′,λ′

)
(u2
ε,λ − u2

ε′,λ′)+dx

=

∫
{uε,λ≥uε′,λ′}

(∣∣∣∣∇uε,λ − uε,λ
uε′,λ′

∇uε′,λ′
∣∣∣∣2 +

∣∣∣∣∇uε′,λ′ − uε′,λ′

uε,λ
∇uε,λ

∣∣∣∣2
)
dx,

we deduce that the function x 7→ uε′,λ′
uε,λ

(x) is constant on the set {x : uε,λ(x) > uε′,λ′(x)}. If this

set is non-empty we get a contradiction since it is strictly included in Ω. Therefore the mapping

(ε, λ) 7→ uε,λ

is decreasing in ε and increasing in λ.

Next we can assume that λ ∈ M+(∂Ω) vanishes in Bδ ∩ ∂Ω and that {λn} ⊂ C(∂Ω) is a
sequence of functions which converge to λ in the weak sense of measures. We denote by uε,λn
the solution of (3.13) with λ replaced by λn. Since µ < 0, α+ < 1, ρ−1γΩ

µ ∼ |x|α+−1 ≥ R
α+−1
ω ,

where Rω = max{|z| : z ∈ Ω}. Hence∫
Ω
uε,λndx ≤ c8

∫
∂Ω
λnd(ηβΩ

µ ) ≤ c9‖λ‖M(∂Ω).

Hence uε,λn and Vεuε,λn are uniformly bounded in L1(Ω). From standard regularity estimates

the sequence {uε,λn}n∈N is bounded in the Lorentz spaces L
N
N−1

,∞(Ω) and weakly relatively
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compact in L1(Ω) (see e.g. [12]). This implies that, up to a subsequence, uε,λn converges in
L1(Ω) and a.e. in Ω to a weak solution uε,λ of{

−∆u+ µVεu = 0 in Ω,

u = λ on ∂Ω,

that is a function which satisfies∫
Ω

(−uε,λ∆ζ + µVεuε,λζ) dx = −
∫
∂Ω

∂ζ

∂n
dλ for all ζ ∈ C1,1

0 (Ω). (3.15)

Furthermore (3.14) holds (with the same notation). For test function ζ in (3.15), we take ζ = θ1

be the solution of {
−∆θ1 = 1 in Ω,

θ1 = 0 on ∂Ω

Then ∫
Ω
uε,λdx = −µ

∫
Ω
Vεuε,λθ1dx−

∫
∂Ω

∂θ1

∂n
dλ.

By the monotone convergence theorem we obtain that Vεuε,λ → V uλ in L1(Ω, θ1dx) by letting
ε→ 0 and ∫

Ω
uλdx = −µ

∫
Ω
V uλθ1dx−

∫
∂Ω

∂θ1

∂n
dλ.

Hence ∫
Ω

(−∆ζ + µV ζ)uλdx = −
∫
∂Ω

∂ζ

∂n
dλ for all ζ ∈ C1,1

0 (Ω).

We also have ∫
Ω
uε,λnL∗µζdγΩ

µ = µ

∫
Ω

(V − Vε)uε,λnζdγΩ
µ +

∫
∂Ω
ζλndβ

Ω
µ

for all ζ ∈ Xµ(Ω). Since uε,λn converges in L1(Ω) we obtain if ζ ≥ 0,∫
Ω
uε,λL∗µζdγΩ

µ = µ

∫
Ω

(V − Vε)uε,λζdγΩ
µ +

∫
∂Ω
ζd(λβΩ

µ ) ≤
∫
∂Ω
ζd(λβΩ

µ ),

since µ(V − Vε) ≤ 0. When ε → 0, uε,λ increases and converges to some uλ in L1(Ω, ρ−1dγΩ
µ )

which satisfies ∫
Ω
uλL∗µζdγΩ

µ ≤
∫
∂Ω
ζd(λβΩ

µ ) for all ζ ∈ Xµ(Ω), ζ ≥ 0.

For δ > 0 denote by ζδ the solution of

L∗µζδ = χΩδ
L∗µζ where Ωδ = {x ∈ Ω : ρ(x) > δ}.

As ζ ∈ Xµ(Ω), |L∗µζ| ≤ c10ρ, hence ζδ ∈ Xµ(Ω), |ζδ| ≤ c10η and ζδ → ζ when δ → 0. Furthermore,
since c11|x| is a supersolution for c11 > 0 large enough, ηδ ≤ c11|x|. Hence∫

Ωδ

uε,λL∗µζdγΩ
µ = µ

∫
{|x|<ε}

1

|x|2
uε,λζδdγ

Ω
µ +

∫
∂Ω
ζδd(λβΩ

µ ).
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Because |x|−2uε,λ|ζδ| ≤ c11ρ
−1uε,λ and uε,λ → uλ in L1(Ω, ρ−1dγΩ

µ ), we derive that

lim
ε→0

∫
{|x|<ε}

1

|x|2
uε,λζδdγ

Ω
µ = 0

which implies ∫
Ωδ

uλL∗µζdγΩ
µ =

∫
∂Ω
ζδd(λβΩ

µ ).

Letting δ → 0 we obtain by monotonicity∫
Ω
uλL∗µζdγΩ

µ =

∫
∂Ω
ζd(λβΩ

µ ). (3.16)

Finally, if λ ∈M+(∂Ω, βµ) we replace it by λδ = χ
Bc
δ
λ and denote by uλδ the weak solution

of {
−∆u+ µV u = 0 in Ω,

u = λδ on ∂Ω.

The mapping δ 7→ uλδ is monotone. Hence, by the monotone convergence theorem uλδ increases
and converges to some uλ in L1(Ω, ρ−1dγΩ

µ ) and clearly uλ satisfies (3.16) for all ζ ∈ Xµ(Ω).

4 The singular kernel

In this section we construct the singular kernel φΩ
µ and prove that it satisfies estimates (1.11)-

(1.12) and it is associated to Dirac mass at 0. Up to a rotation we can assume that the inward
normal direction to ∂Ω at 0 is eN = (0′, 1) ∈ RN−1×R. Hence the tangent hyperplane to ∂Ω at
0 is ∂RN+ = RN−1. For R > 0 set B′R = {x′ ∈ RN−1 : |x′| < R} and DR = B′R × (−R,R). Then
there exist R > 0 and a C2 function θ : B′R 7→ R such that ∂Ω ∩ DR = {x = (x′, xN ) : xN =
θ(x′) for x′ ∈ B′R} and Ω ∩DR = {x = (x′, xN ) : θ(x′) < xN < R}. Furthermore ∇θ(0) = 0.

4.1 Classification of Boundary isolated singularities

We characterize the positive solutions of Lµu = 0 which vanish on ∂Ω \ {0}.

Lemma 4.1 Let µ ≥ µ1 and u ∈ C2(Ω \ {0}) be a positive solution of Lµu = 0 in Ω vanishing
on ∂Ω \ {0}. Then there exist a > 0 and c12 > 0 such that

u(x) ≤ c12|x|−a−1ρ(x) for all x ∈ Ω \ {0}. (4.1)

Proof. This is a direct consequence of Boundary Harnack inequality [3, Th. 2.7].

Proposition 4.2 Assume that µ ≥ µ1 and u ∈ C2(Ω \ {0}) is a positive solution of Lµu = 0,
vanishing on ∂Ω \ {0} satisfying (4.1) with a ≥ −α−. Then the following convergences hold in
C1(SN−1

+ ):

(i) If µ > µ1 and a = −α−, there exists c13 ≥ 0 such that

lim
r→0

u(r, ·)
rα−

= c13φ as r → 0. (4.2)
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(ii) µ ≥ µ1 and a > −α− there exist τ > a+ α− depending on a and µ, and c14 ≥ 0 such that

u(x) ≤ c14|x|−a−1+τρ(x) for all x ∈ Ω \ {0}.

Proof. Step 1. Straightening the boundary. We define the function Θ = (Θ1, ...,ΘN ) on DR by
yj = Θj(x) = xj if 1 ≤ j ≤ N − 1 and yN = ΘN (x) = xN − θ(x′). Since DΘ(0) = Id we can
assume that Θ is a diffeomorphism from DR onto Θ(DR). We set

u(x) = ũ(y) for all x ∈ D+
R = B′R × [0, R). (4.3)

Then
uxjxj = ũyjyj − 2θxj ũyjyN − θxj ,xj ũyN + θ2

xj ũyNyN for 1 ≤ j ≤ N − 1,

uxNxN = ũyNyN
(4.4)

and
∆ũ+ |∇θ|2ũyNyN − 2〈∇θ,∇ũyN 〉 − ũyN∆θ − µ

|Θ−1(y)|2
ũ = 0. (4.5)

We use here the spherical coordinates (r, σ) in the variable y and we recall that ∆′ is the
Laplace-Beltrami operator on SN−1 and ∇′ is the tangential gradient on SN−1 identified with
the covariant derivative via the isometric imbedding SN−1 ⊂> RN which enables the formula

∇ũ(y) =

(
ũrn +

1

r
∇′ũ

)
(r, σ) with n = |y|−1y.

After a lengthy computation the details of which can be found in [12, P 298-300] we obtain

r2ũrr
[
1− 2θr〈n, eN 〉+ |∇θ|2(〈n, eN 〉)2

]
+rũr

[
N − 1− r〈n, eN 〉∆θ + r|∇θ|2 (〈∇′(〈n, eN 〉), eN 〉 − 2〈∇′θ,∇′(〈n, eN 〉)〉)

]
+〈∇′ũ, eN 〉

[
−r∆θ + 2θr − |∇θ|2〈n, eN 〉

]
+ r〈∇′ũr, eN 〉

[
2θr + 2|∇θ|2〈n, eN 〉

]
−2〈∇′ũ,∇′θ〉〈n, eN 〉+

〈
∇′(〈∇′ũ, eN 〉), |∇θ|2eN − 2r−1∇′θ

〉
+ ∆′ũ− µ

|Θ−1(y)|2
= 0.

Next we set
ũ(r, σ) = r−av(t, σ) with t = ln r,

and we assume that

a 6= N − 2

2
. (4.6)

We notice that

r2 =
N∑
j=1

y2
j =

N−1∑
j=1

x2
j + (xN − θ(x′))2 = |x2| − 2xNθ(x

′) = |x|2(1 +O(r)) as r → 0

= |x|2(1 +O(et)) as t→ −∞.
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By a straightforward computation we find that v satisfies the following asymptotically au-
tonomous equation in (−∞, r0]× SN−1

+

(1 + ε1(t, ·))vtt + (N − 2− 2a+ ε2(t, ·)) vt + (a(a+ 2−N)− µ+ ε3(t, ·)) v

+ ∆′v + 〈∇′v, ε4(t, ·)〉+ 〈∇′vt, ε5(t, ·)〉+ 〈∇′(〈∇′v, eN 〉), ε6(t, ·)〉 = 0,
(4.7)

where the εj satisfies
|εj(t, ·)|+ |∂tεj(t, ·)|+ |∇′εj(t, ·)| ≤ c15e

t. (4.8)

This is due to the fact that |θ(x′)| = O(|x′|2) near 0.

Step 2. The convergence process. Since v is bounded in (−∞, r0] × SN−1
+ and vanishes on

(−∞, r0]× ∂SN−1
+ and all the coefficients are continuous functions, we obtain that v is bounded

in W 2,q([T − 1, T + 1]× SN−1
+ ) independently of T ≤ r0− 2, for any q <∞. Hence v is bounded

in any C1,τ ([T − 1, T + 1]× SN−1
+ ) for any τ ∈ [0, 1). Differentiating the equation and using the

standard elliptic equations regularity, we obtain that v is bounded in W 3,q([T −1, T +1]×SN−1
+ )

and in C2,τ ([T −1, T +1]×SN−1
+ ). We consider the negative trajectory of v in C1

0 (SN−1
+ ) defined

by

T−(v) =
⋃

t≤r0−1

{v(t, .)}.

By the previous estimates and the Arzela-Ascoli theorem, it is a relatively compact subset of

C1
0 (SN−1

+ ), hence its limit set at −∞ (or alpha-limit set), denoting A(T−(v)), is a non-empty

connected compact subset of C1
0 (SN−1

+ ). Multiplying (4.7) by vt and integrating on SN−1
+ yields∫

SN−1
+

(
N − 2− 2a+ ε2 −

1

2
∂tε1

)
v2
t dS −

1

2

∫
SN−1

+

∂tε3v
2dS

=
d

dt

[∫
SN−1

+

(
1

2
|∇v|2 − 1

2
[a(a+ 2−N)− µ+ ε3] v2 − 1

2
(1 + ε1)v2

t

)
dS

]
−
∫
SN−1

+

(〈∇′v, ε4〉+ 〈∇′vt, ε5〉+ 〈∇′(〈∇′v, eN 〉), ε6〉) v2
t dS.

(4.9)

Next we integrate over (−∞, r2) for some r2 large enough so that∣∣∣∣N − 2− 2a+ ε2 −
1

2
∂tε1

∣∣∣∣ ≥ 1

2
|N − 2− 2a| > 0,

here we use the crucial assumption (4.6). Since all the terms on the right-hand side of (4.9) are
integrable on (−∞, r2) because of (4.8) and the bounds on v, we obtain that∫ r2

−∞

∫
SN−1

+

v2
t dS <∞. (4.10)

Differentiating (4.7) with respect to t and using the estimates on v and the εj we obtain (see
[12, p. 302] for a similar calculation)∫ r2

−∞

∫
SN−1

+

v2
ttdS <∞. (4.11)
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Because vt and vtt are uniformly continuous on (−∞, r1], we infer from (4.10) and (4.11)

lim
t→−∞

(
‖vt(t, .)‖L2(SN−1

+ ) + ‖vtt(t, .)‖L2(SN−1
+ )

)
= 0.

Therefore the set A(T−(v)) is a compact connected subset of the set of nonnegative solutions of{
∆′ω + (a(a+ 2−N)− µ)ω = 0 in SN−1

+ ,

ω = 0 on ∂SN−1
+ .

Step 3. The case a(a+2−N)−µ = N−1. The set A(T−(v)) is a subset of ker(−∆′−(N−1))Id
in H1

0 (SN−1
+ ) and more precisely A(T−(v)) = {mψ1 : m ∈ I∗} where I∗ is a compact interval of

[0,∞). We set

X(t) =

∫
SN−1

+

v(t, .)ψ1dS.

Then X satisfies
X ′′(t) + (N − 2− 2a)X ′(t) + F (t) = 0, (4.12)

where

F (t) =

∫
SN−1

+

[
ε1(t, .)vtt + ε2(t, .)vt + ε3(t, .)v + 〈∇′v, ε4(t, .)〉

+〈∇′vt, ε5(t, .)〉+ 〈∇′(〈∇′v, eN 〉), ε6(t, .)〉]ψ1dS.

Then |F (t)| ≤ c16e
t. We consider a sequence {tn} converging to −∞ and c∗ ∈ I∗ such that

X(tn) → c∗. Since X ′(t) and X ′′(t) converges to 0 as t → −∞, we integrate (4.12) on (tn, t)
and let n→∞. Then we get

X ′(t) + (N − 2− 2a)(X(t)− c∗) +O(et) = 0.

Letting t→ −∞ yields X(t)→ c∗. Hence we have proved that

lim
t→−∞

v(t, .) = c∗ψ1 in C1(SN−1
+ ).

Step 4. The case a(a+ 2−N)− µ 6= N − 1. Clearly A(T−(v)) = {0} and

lim
t→−∞

v(t, .) = 0 in C1(SN−1
+ ). (4.13)

Furthermore, since we have assumed a ≥ −α−, there holds actually a > −α−. We recall that
λk is the k-th eigenvalue of −∆′ in H1

0 (SN−1
+ ) and put

Hk = ker(−∆′ − λkId) = span〈φk,1, φk,2, ..., φk,jk〉 and H1
0 (SN−1

+ ) =
∞
⊕
k=1

Hk.

We denote
Pk(x) = x2 + (N − 2)x− µ− λk.
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Then P1(α−) = 0 and Pk(α−) = λ1 − λk < 0 for k ≥ 2. Since a(a + 2 − N) − µ 6= N − 1 by
assumption, we define a partition of N∗ by setting

N1 := {k ∈ N∗ : a(a+ 2−N)− µ− λk ≥ 0}, N2 := {k ∈ N∗ : a(a+ 2−N)− µ− λk < 0}

and
W1 = ⊕

k∈N1

Hk and W2 = ⊕
k∈N2

Hk.

Then

−
∫
SN−1

+

φ∆′φdS ≥ γ
∫
SN−1

+

φ2dS for all φ ∈W2, (4.14)

where
γ = µ+ λk2 − a(a+ 2−N) > 0 with k2 = inf N2.

We denote by Pj the orthognal projector onto Wj in H1
0 (SN−1

+ ) and set v = P1v+P2v = v1 +v2.
Then the projection of (4.7) on to W2 is

(v2)tt + (N − 2− 2a) (v2)t + (a(a+ 2−N)− µ) v2 + ∆′v2 = F2(t, .),

where F2 satisfies the same estimates (4.8) as εj . Then, using (4.8) and (4.14)

∫
SN−1

+

(v2)ttv2dS + (N − 2− 2a)

∫
SN−1

+

(v2)tv2dS − γ
∫
SN−1

+

v2
2dS ≥ −c17e

t

(∫
SN−1

+

v2
2dS

) 1
2

.

Put Y (t) = ‖v2(t, .)‖L2(SN−1
+ ), because∫

SN−1
+

(v2)tv2dS = Y ′(t)Y (t) and

∫
SN−1

+

(v2)ttv2dS ≥ Y ′′(t)Y (t),

we obtain the following differential inequality

Y ′′ + (N − 2− 2a)Y ′ − γY ≥ −c17e
t in D′(−∞, r2).

The characteristic roots of the equation y′′ + (N − 2− 2a)y′ − γy = 0 are

ak2,− = a+
1

2

(
2−N −

√
4µ+ 4λk2 + (N − 2)2

)
= αk2,− + a < 0

ak2,+ = a+
1

2

(
2−N +

√
4µ+ 4λk2 + (N − 2)2

)
= αk2,+ + a > 0.

(4.15)

where the αk2,± are the roots of equations (2.1) with k = k2. The solutions of

z′′ + (N − 2− 2a)z′ − γz = −c17e
t in D′(−∞, r2).

endow the form z(t) = Aetak2,− +Betak2,+ + c18e
t if ak2,+ 6= 1 or z(t) = Aetak2,− +Bet +Ctet if

ak2,+ = 1, for some explicit constant c18 depending on c17 and the coefficients in the equation.
Since Y (t)→ 0 when t→ −∞ by (4.13), it follows from the maximum principle that

Y (t) ≤ c19e
tak2 + + c18e

t if ak2 + 6= 1, or Y (t) ≤ c20|t|et if ak2 + = 1 for t ≤ r2.
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Then using standard elliptic equations a priori estimates, initialy in L2(SN−1
+ ), then in Lp(SN−1

+ )

and finally in Cτ (SN−1
+ ), we obtain that for t ≤ r3,

‖v2(t, .)‖C1(SN−1
+ ) ≤

{
c21e

tak2,+ + c22e
t if ak2,+ 6= 1,

c23|t|et if ak2,+ = 1,
(4.16)

where r3 ≤ r2 − 1.
For the components in W1 we have

v1(t, ·) =
∑
k∈N1

∑
1≤j≤jk

wk,j(t)φk,j(·), (4.17)

where the φk,j form an orthoromal basis of Hk. Then

w′′k,j + (N − 2− 2a)w′k,j + (a(a+ 2−N)− µ− λk)wk,j = Fk,j(t) (4.18)

The characteristic roots of equation z′′ + (N − 2 − 2a)z′ + (a(a+ 2−N)− µ− λk) z = 0 are
given in (4.15) with a general k, ak− = a + αk− and ak+ = a + αk+ where αk± are the roots
of (2.1). They have same sign (including 0) since a(a+ 2−N)− µ− λk ≥ 0, furthermore, their
sum is positive since N − 2 − 2a < 0, as a consequence of a > −α−. By standard calculation
the solution of (4.18) has the form

wk,j(t) = m1e
tak+ +m2e

tak− −
∫ 0

t

e(t−s)ak+ − e(t−s)ak−

ak+ − ak−
Fk,j(s)ds. (4.19)

Since |Fk,j(s)| ≤ c24e
s there holds∣∣∣∣∣

∫ 0

t

e(t−s)ak+ − e(t−s)ak−

ak+ − ak−
Fk,j(s)ds

∣∣∣∣∣ ≤ c25

{
|t|et if ak− = 1
max{et, etak−} if ak− 6= 1

(4.20)

In particular, if k1 = maxN1, then ak1± = min{ak± : k ∈ N1}.
We assume first that ak1− > 0. Combining this fact with (4.17) and (4.20) we obtain

‖v1(t, .)‖L∞(SN−1
+ ) ≤ c26

{
|t|et if ak1− = 1
max{et, etak1 −} if ak1− 6= 1

(4.21)

Furthermore, because of the explicit formulation and (4.8), the left-hand side of (4.20) can be
replaced by ‖v1(t, .)‖

C1(SN−1
+ )

. Combining (4.16) and (4.20) we obtain the result since v(t, .) = 0

on (−∞, r1)× ∂SN−1
+ .

Next we suppose that ak1− = 0. Then for k = k1, (4.19) endows the form

wk1,j(t) = m1e
tak1 + +m2 −

1

ak1 +

∫ 0

t
(e(t−s)ak1 + − 1)Fk1,j(s)ds. (4.22)

This implies that

wk1,j(t)→ m2 +
1

ak1 +

∫ 0

−∞
Fk1,j(s)ds := Ak1,j as t→∞.
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If Ak1,j 6= 0 it would imply that

jk∑
j=1

Ak1,jφk1,j is a nonzero eigenfunction of order k1 > 1, hence

it changes sign and it would imply that v changes sign at −∞ (notice that all the other terms
wk,j(t) tends to 0 exponentially because of (4.19)-(4.20)). Hence Ak1,j = 0 and (4.22) endows
the form

wk1,j(t) = m1e
tak1,+ − 1

ak+

∫ 0

t
e(t−s)ak,+Fk1,j(s)ds−

∫ t

−∞
Fk1,j(s)ds.

Because ∫ t

−∞
Fk1,j(s)ds = O(et) as t→∞,

we conclude that for k = k1, there holds

|wk1,j(t)| ≤ c27

{
|t|et if ak1,+ = 1,

max{et, etak1,+} if ak1,+ 6= 1

and finally we infer (4.21), which complete the proof. �

Proof of Theorem A. Assume that u ∈ C2(Ω\{0}) is a positive solution of Lµu = 0 vanishing
on ∂Ω \ {0}.

Case 1: µ > µ1. We claim (4.2) holds for some c13 ≥ 0.

By Lemma 4.1, (4.1) holds for some a > 0. If a < −α−, then (4.2) holds with c13 = 0. If
a = −α−, then (4.2) holds by Proposition 4.2-(i). Hence we are left with the case a > −α−. As
in the proof of Proposition 4.2 we define k1 and k2. By replacing a by a′ = a+ ε, we can assume
that ak2,+ 6= 1 and ak1,− 6= 1, to avoid the resonance complication in (4.16) and (4.21), hence

‖v(t, .)‖
C1(SN−1

+ )
≤ c27

(
etak2,+ + etak1,− + et

)
.

Furthermore k2 = k1 + 1 and

ak2 + − ak1− =
1

2

(√
4µ+ 4λk1+1 + (N − 2)2 +

√
4µ+ 4λk1 + (N − 2)2

)
> 0,

which yields
‖v(t, .)‖

C1(SN−1
+ )

≤ c28

(
etak1,− + et

)
.

This implies that u satisfies

u(x) ≤ c29

(
|x|αk1,− + |x|1−a

)
ρ(x).

We iterate this procedure up to obtain

u(x) ≤ c30|x|α−ρ(x)

and we conclude as in the proof of Proposition 4.2, Step 3. �
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Case 2: µ = µ1. In this case, the difficulty comes from the fact that there is no dissipation
of energy in (4.9) for a = −α− = N−2

2 . But from the above iterative procedure in the Case 1,
we could obtain could obtain that for some δ ∈ (0, 1),

u(x) ≤ c31|x|−
N−2

2
−δρ(x).

We finally show that there exists c32 ≥ 0 such that

lim
r→0

r
N−2

2
u(r, .)

ln r
= −c32ψ1(.) (4.23)

in C1(SN−1
+ ) and

lim
r→0

r
N
2
ur(r, .)

ln r
=

(N − 2)c32

2
ψ1(.) (4.24)

uniformly in SN−1
+ .

Note that (4.7) reduces that

(1 + ε1(t))vtt + ε2(t)vt + (N − 1 + ε3(t))v + ∆′v

+ 〈∇′v, ε4(t, .)〉+ 〈∇′vt, ε5(t, .)〉+ 〈∇′(〈∇′v, eN 〉), ε6(t, .)〉 = 0,

in (−∞, r0)× SN−1
+ , vanishes on (−∞, r0)× ∂SN−1

+ and the εj verify (4.8), and

v(t, σ) ≤ c33e
−δt.

Since the operator involved in the equation is uniformly elliptic we have by standard regularity
theory

‖v‖
C2,δ([T−1,T+1]×SN−1

+ )
+ ‖vt‖

C1,δ([T−1,T+1]×SN−1
+ )

+ ‖vtt‖
Cδ([T−1,T+1]×SN−1

+ )

≤ c34‖v‖L∞((T−2,T+2)×SN−1
+

≤ c35e
−δT

for any T ≤ r0 + 3. We set

X(t) =

∫
SN−1

+

v(t, .)ψ1dS,

then
X ′′(t) + F (t) = 0 (4.25)

where

F (t) =

∫
SN−1

+

(
ε1vtt + ε2vt + ε3v + 〈∇′v, ε4(t, .)〉+ 〈∇′vt, ε5(t, .)〉+ 〈∇′(〈∇′v, eN 〉), ε6(t, .)〉

)
ψ1dS.

Hence
|F (t)| ≤ c36e

(1−δ)t. (4.26)
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This implies that X ′(t) admits a limit c37 ≤ 0 when t→ −∞ and

lim
t→−∞

t−1X(t) = c37.

Set
W2 = ⊕

k≥2
ker(∆′ + λkId),

and denote by v2 the orthogonal projection of v onto W2. Then

v2 tt + (N − 1)v2 + ∆′v2 = F2(t, .), (4.27)

where
|F2(t, .)| ≤ c38e

(1−δ)t.

Since λ2 = 2N , the function Y (t) = ‖v2(t, .)‖L2(SN−1
+ ) satisfies in D′(−∞, r1)

Y ′′ − (N + 1)Y ≥ −c38e
(1−δ)t.

Because Y (t) = o(e−
√
N+1t) when t → −∞, it follows by the maximum principle that Y (t) =

O(e
√
N+1t + e(1−δ)t) = O(e(1−δ)t). Using again the standard regularity estimates for elliptic

equations, we derive

‖v2(t, .)‖
C1(SN−1

+ )
+ ‖v2 t(t, .)‖

C(SN−1
+ )

≤ c39e
(1−δ)t. (4.28)

Combining (4.25) and (4.27) we derive (4.23). Since v(t, .) = X(t)ψ1 + v2(t, .) it follows from
(4.28) that

lim
t→−∞

vt(t, .) = c37ψ1 uniformly in SN−1
+ .

Thus, the indentity ur(r, ·) = r−
N
2

(
2−N

2 v(t, ·) + vt(t, ·)
)

implies (4.23) and (4.24). �

4.2 Existence and uniqueness

Proof of Theorem B. We still assume that Ω satisfies the condition (C-1) and ∂RN+ is tangent
to ∂Ω at 0. For ε > 0 let uε be the solution of

Lµuε = 0 in Ωε := Ω \Bε,

uε = 0 on ∂Ω ∩Bc
ε,

uε = φµ on Ω ∩ ∂Bε.
(4.29)

Since Ω ⊂ RN+ , uε ≤ φµ in Ωε and

∂uε
∂n

∣∣∣∣
Ω∩∂Bε

≤ ∂φµ
∂n

∣∣∣∣
Ω∩∂Bε

< 0, (4.30)

where n = ε−1x. Furthermore, if 0 < ε′ < ε, uε′bΩ∩∂Bε≤ uεbΩ∩∂Bε= φµ, hence uε′ ≤ uε in Ωε.
There exists u0 = limε→0 uε and u0 is a nonnegative solution of Lµu = 0 in Ω which vanishes on
∂Ω \ {0} and is smaller than φµ.
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Let ζ ∈ Xµ(Ω), ζ > 0, then, with n′ = − x
|x| = −n,

0 =

∫
Ωε

ζγΩ
µLµuεdx

=

∫
Ωε

uεL∗µζdγΩ
µ +

∫
∂Bε∩Ω

(
−∂uε
∂n′

ζγΩ
µ +

(
ζ
∂γΩ

µ

∂n′
+ γΩ

µ

∂ζ

∂n′

)
uε

)
dS.

Using (4.29) and (4.30) we obtain∫
Ωε

uεL∗µζdγΩ
µ ≥

∫
∂Bε∩Ω

(
∂φΩ

µ

∂n
ζγΩ

µ −

(
ζ
∂γΩ

µ

∂n
+ γΩ

µ

∂ζ

∂n

)
φΩ
µ

)
dS.

We take ζ = 1, hence L∗µζ = `Ωµ and we get

`Ωµ

∫
Ωε

uεdγ
Ω
µ ≥

∫
∂Bε∩Ω

(
∂φΩ

µ

∂n
γΩ
µ −

∂γΩ
µ

∂n
φΩ
µ

)
dS

≥ 2
√
µ+ µ1

∫
SN−1

+

ψ2
1dS − o(1),

in the case µ > µ1, and

`Ωµ

∫
Ωε

uεdγ
Ω
µ ≥

∫
∂Bε∩Ω

(
∂φΩ

µ

∂n
γΩ
µ −

∂γΩ
µ

∂n
φΩ
µ

)
dS

≥
(
N

2
− 1

)∫
SN−1

+

ψ2
1dS − o(1),

in the case µ = µ1. Since uε ≤ φΩ
µ ,

uεγ
Ω
µ ≤ γΩ

µ φ
Ω
µ = r2−Nψ2

1 ∈ L1(Ω).

Therefore, by dominated convergence theorem, we conclude that

`Ωµ

∫
Ω
u0dγ

Ω
µ ≥


2
√
µ+ µ1

∫
SN−1

+

ψ2
1dS if µ > µ1,(

N

2
− 1

)∫
SN−1

+

ψ2
1dS if µ = µ1.

(4.31)

We infer that the function u0 is nonzero. It is a positive solution of Lµu0 = 0 in Ω which vanishes
on ∂Ω \ {0}. It follows from Theorem A that there exists k ≥ 0 such that

lim
x→0

u(x)

ρ(x)|x|α−−1
= k if µ > µ1,

lim
x→0

u(x)

ρ(x)|x|−N/2 ln |x|
= k if µ = µ1.
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Next we next show that k = 1. In fact, if k < 1, there exists ε0 > 0 such that for any ε ∈ (0, ε0)

uε ≤
k + 1

2
φΩ
µ ,

and then

lim
ε→0+

`Ωµ

∫
Ωε

uεdγ
Ω
µ ≤

k + 1

2
`Ωµ

∫
Ωε

φΩ
µdγ

Ω
µ <


2
√
µ+ µ1

∫
SN−1

+

ψ2
1dS if µ > µ1,(

N

2
− 1

)∫
SN−1

+

ψ2
1dS if µ = µ1,

which contradicts (4.31). Thus, (1.11) and (1.12) hold true. �

Proof of Corollary C. Identity (1.14). As a consequence of Proposition 4.2, for any ζ ∈ Xµ(Ω)
and ε > 0 we set Ωε = Ω ∩Bc

ε, and there holds

0 =

∫
Ωε
ζγΩ

µLµφΩ
µdx

=

∫
Ωε
φΩ
µL∗µζdγΩ

µ +

∫
Ω∩∂Bε

(
−
∂φΩ

µ

∂n
ζγΩ

µ +

(
γΩ
µ

∂ζ

∂n
+ ζ

∂γΩ
µ

∂n

)
φΩ
µ

)
dS.

Using Proposition A.1 we have∫
Ω∩∂Bε

(
−
∂φΩ

µ

∂n
ζγΩ

µ +

(
γΩ
µ

∂ζ

∂n
+ ζ

∂γΩ
µ

∂n

)
φΩ
µ

)
dS = −ζ(0)A(ε)(1 + o(1)),

where A(ε) is defined in (2.5).
The uniqueness follows direct from Kato’s inequality (3.4). �

5 The Dirichlet problem

Proof of Theorem D. Note that in section §3.2 for λ ∈M(∂Ω;βµ), problem{
Lµu = 0 in Ω,

u = λ on ∂Ω

has a unique solution, denoting KΩ
µ (λ), which verifies the indentity∫

Ω
KΩ
µ (λ)L∗µζdγΩ

µ =

∫
∂Ω
ζd(λβΩ

µ ) for all ζ ∈ Xµ(Ω).

Moreover, problem {
Lµu = ν in Ω,

u = 0 on ∂Ω
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has a unique solution, denoting GΩ
µ (ν), which verifies the indentity∫

Ω
KΩ
µ (λ)L∗µζdγΩ

µ =

∫
Ω
ζdγΩ

µ for all ζ ∈ Xµ(Ω).

Together with Corollary C and the linearity of operator Lµ, we have that KΩ
µ (λ)+GΩ

µ (ν)+kφµΩ
is a weak solution of (1.21) satisfying (1.23) and the uniqueness follows directly from Kato’s
inequality (3.4). �

Our final part is to classify the boundary data for nonnegative Lµ-harmonic function.

Proof of Theorem E. Let Ω be a bounded C2 domain and u be a nonnegative Lµ-harmonic
function in Ω. We now show that there exists a nonnegative measure λ on ∂Ω \ {0} and k ≥ 0
such that

u = KΩ
µ [λ] + kφΩ

µ . (5.1)

For ε > 0 the term µ|x|−2 is bounded in Ωε = Ω∩Bc
ε. Hence the exists a nonnegative Radon

measure λε such that u is the unique solution of{
Lµu = 0 in Ωε,

u = λε on ∂Ωε.

Furthermore λε is the boundary trace is achieved in dynamical sense, see [14] and references
therein. Hence for any ζ ∈ C(Ω) vanishing on Bε, there holds

lim
δ→0

∫
Σδ

uζdS =

∫
∂Ω∩Bcε

ζdλε,

where Σδ = {x ∈ Ω : ρ(x) = δ}. If we write

λε = λεb∂Ω∩Bcε+ubΩ∩∂Bε ,

it proves that for 0 < ε′ < ε, λεb∂Ω∩Bcε= λε′b∂Ω∩Bcε . This defines in a unique way a nonnega-
tive Radon λ on ∂Ω \ {0} measure such that (5.1) holds for all ζ ∈ Xµ(Ω) vanishing near 0.
Furthermore ρu ∈ L1(Ωε) for any ε > 0. Denote by KΩε

µ the Poisson potential of Lµ in Ωε. Then

ubΩε= KΩε
µ [λεb∂Ω∩Bcε ] + KΩε

µ [ubΩ∩∂Bε ].

For 0 < ε′ < ε, one has that KΩε′
µ [λε′b∂Ω∩Bc

ε′
]bΩ∩∂Bε≥ 0. Therefore KΩε′

µ [λε′b∂Ω∩Bc
ε′

] ≥ KΩε
µ [λεb∂Ω∩Bcε ]

in Ωε. Hence
lim
ε→0

KΩε
µ [λεb∂Ω∩Bcε ] = KΩ

µ [λ] ≤ u in Ω.

Next we aim to characterize the behaviour at 0. By contradiction we assume that

lim sup
ε→0

∫
Ω∩∂Bε

udβΩ
µ = lim

εk→0

∫
Ω∩∂Bεk

udβΩ
µ =∞.
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Then for any m > 0 there exists a sequence {εm,k} ⊂ R∗+ tending to 0 and a sequence {`m,k} ⊂
R∗+ tending to ∞ such that ∫

Ω∩∂Bεk
min{u, `m,k}dβΩ

µ = m.

Set τm,k = min{ubΩ∩∂Bεk , `m,k} and set um,k = KΩεk
µ [τm,kχΩ∩∂Bεk

]. Then

um,k ≤ u in Ωεk ,

and we recall that ∫
Ω∩∂Bεk

φΩ
µdβ

Ω
µ = cµ(1 + ◦(1)),

where cµ is the constant defined in (2.4). Combining the boundary Harnack inequality with the
standard Harnack inequality, one infers

c47
ρ(x)

ρ(y)
≤ c46

φΩ
µ (x)

φΩ
µ (y)

≤
um,k(x)

um,k(y)
≤ c44

φΩ
µ (x)

φΩ
µ (y)

≤ c45
ρ(x)

ρ(y)
(5.2)

for all x, y ∈ Ω such that |x| = |y| ≥ 2εk. If we set φ̇Ω
µ (x) =

φΩ
µ (x)

ρ(x)
and u̇m,k(x) =

um,k(x)

ρ(x)
, then

(5.2) becomes

c47 ≤ c46

φ̇Ω
µ (x)

φ̇Ω
µ (y)

≤
u̇m,k(x)

u̇m,k(y)
≤ c44

φ̇Ω
µ (x)

φ̇Ω
µ (y)

≤ c45. (5.3)

Assume for a while that we have proved that there exists θ > 0, independent of m and k
such that for for any ∫

∂B2εk
∩Ω
u̇m,kd

(
ρβΩ

µ

)
≥ θ
∫
∂Bεk∩Ω

u̇m,kd
(
ρβΩ

µ

)
= θm. (5.4)

If we assume that for δ ≤ 2εk0

2cµ ≥
∫

Ω∩∂Bδ
φ̇Ω
µd
(
ρβΩ

µ

)
≥ cµ

2
,

one has for k ≥ k0, ∫
Ω∩∂B2εk

u̇m,kd
(
ρβΩ

µ

)
≥ θm ≥ θm

2cµ

∫
Ω∩∂B2εk

φ̇Ω
µd
(
ρβΩ

µ

)
Since

φ̇Ω
µ (x) ≤ c45

c46
φ̇Ω
µ (y)

and
u̇m,k(x) ≥ c47u̇m,k(y),

we derive
1

c47
u̇m,k(x)

∫
∂B2εk

∩Ω
d
(
ρβΩ

µ

)
≥ θmc46

2cµc45
φ̇Ω
µ (x)

∫
Ω∩∂B2εk

d
(
ρβΩ

µ

)
.
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Therefore
um,k(x) ≥ c48mφ

Ω
µ (x) for all x ∈ Ω s.t. | x |= 2εk,

and c48 > 0 is independent of m and εk. This implies by the maximum principle and letting
εk → 0

u(x) ≥ um,k(x) ≥ c48mφ
Ω
µ (x) for all x ∈ Ω. (5.5)

Since m is arbitrary we obtain a contradiction. Hence there holds

lim sup
ε→0

∫
Ω∩∂Bε

udβΩ
µ = lim

εk→0

∫
Ω∩∂Bεk

udβΩ
µ = mu <∞. (5.6)

Then inequality (5.5) holds without truncation with m replaced by mu. We recall that

wε := KΩε
µ [ubΩ∩∂Bε ] = ubΩε−KΩε

µ [λεb∂Ω∩Bcε ] in Ωε. (5.7)

Case 1: We first assume that mu > 0. Then (5.4) combined with the maximum principle yields∫
∂Bεk∩Ω

ẇεkd
(
ρβΩ

µ

)
≥
∫
∂B2εk

∩Ω
ẇεkd

(
ρβΩ

µ

)
≥ θ
∫
∂Bεk∩Ω

ẇεkd
(
ρβΩ

µ

)
= θmu(1 + o(1))

with ẇε = ρ−1wε. Inequality (5.3) is replaced by

c47 ≤ c46

φ̇Ω
µ (x)

φ̇Ω
µ (y)

≤ ẇε(x)

ẇε(y)
≤ c44

φ̇Ω
µ (x)

φ̇Ω
µ (y)

≤ c45 in Ω2ε. (5.8)

Therefore, for εk small enough and |x| = 2εk,

ẇε(x)

∫
∂Bεk∩Ω

d
(
ρβΩ

µ

)
≤ c45

∫
∂Bεk∩Ω

ẇεk(y)d
(
ρβΩ

µ

)
≤ 2c45mu

≤ 4c45mu

cµ

∫
∂Bεk∩Ω

φ̇Ω
µ (y)d

(
ρβΩ

µ

)
≤ 4c44c45mu

cµc47
φ̇Ω
µ (x)

∫
∂Bεk∩Ω

d
(
ρβΩ

µ

)
,

which implies

wεk(x) ≤ 4c44c45mu

cµc47
φΩ
µ (x) := c49muφ

Ω
µ (x) for x ∈ Ω ∩ ∂B2εk . (5.9)

Hence

wεk(x) ≤ 4c44c45mu

cµc47
φΩ
µ (x) := c49muφ

Ω
µ (x) for x ∈ Ω ∩ ∂B2εk . (5.10)

Since wεk and φµ are Lµ-harmonic in Ω2εk , and vanishes on ∂Ω∩B2εk it follows that inequality

(5.10) also holds for any x ∈ Ω2εk . By definition wεk = KΩεk
µ [ubΩ∩∂Bεk ], hence

KΩεk
µ [ubΩ∩∂Bεk ](x) ≤ c49muφ

Ω
µ (x) for x ∈ Ω2εk . (5.11)
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Next we obtain the estimate from below. From (5.8), with |x| = 2εk,

ẇεk(x)

∫
∂Bεk∩Ω

d
(
ρβΩ

µ

)
≥ c47

∫
∂Bεk∩Ω

ẇεk(y)d
(
ρβΩ

µ

)
≥ c47mu

2

≥ c47mu

4cµ

∫
∂Bεk∩Ω

φ̇Ω
µ (y)d

(
ρβΩ

µ

)
≥ c47c44mu

4cµc45
φ̇Ω
µ (x)

∫
∂Bεk∩Ω

d
(
ρβΩ

µ

)
.

Hence
wεk(x) ≥ c47c44mu

4cµc45
φΩ
µ (x) := c50muφ

Ω
µ (x) for x ∈ Ω ∩ ∂B2εk .

It follows that
KΩεk
µ [ubΩ∩∂Bεk ](x) ≥ c50muφ

Ω
µ (x) for x ∈ Ω2εk . (5.12)

From (5.7), (5.12) and (5.11) we infer

c50muφ
Ω
µ ≤ ubΩεk−K

Ωεk
µ [λεkb∂Ω∩Bcεk

] ≤ c48muφ
Ω
µ in Ω2εk . (5.13)

This implies, by letting εk → 0,

c50muφ
Ω
µ ≤ u−KΩ

µ [λ] ≤ c48muφ
Ω
µ in Ω.

Therefore, the function u−KΩ
µ [λ] is Lµ-harmonic and positive in Ω and it vanishes on ∂Ω. By

Corollary C, it implies that it coincides with cφΩ
µ for some c ≥ 0 (and in that case c50mu ≤ c ≤

c49mu).

Case 2: Assume mu = 0. Following the same inequalities as in Case 1, (5.9) is replaced by: for
any δ > 0 there exists k0 > 0 such that for k ≥ k0,

wεk(x) ≤ δφΩ
µ (x) for x ∈ Ω ∩ ∂B2εk .

Hence (5.13) is transformed into

0 ≤ ubΩεk−K
Ωεk
µ [λεkb∂Ω∩Bcεk

] ≤ δφΩ
µ in Ω2εk .

Letting successively εk → 0 and δ → 0 yields u−KΩ
µ [λ] = 0 in Ω, which ends the proof. �

Appendix: Estimates (1.9) and (1.16)

Proposition A.1 Assume Ω is a bounded C2 domain such that 0 ∈ ∂Ω satisfying condition
(C-1) and let γΩ

µ be defined by (1.8) and normalized by ‖γΩ
µ ‖L2(Ω) = 1. Then

lim
r→0

r1−α+γΩ
µ (r, .) = c1ψ1 in C1

loc(S
N−1
+ )

and

lim
r→0

r−α+γΩ
µ r(r, .) = c1

(
1− N

2

)
ψ1 locally uniformly in SN−1

+ .
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Proof. Since α+ + (N − 2)α+ − µ+ 1−N = 0, the function x 7→ w(x) := |x|α+ satisfies

L̃µw(x) := Lµw − `Ωµw = |x|α+−2
(
N − 1− `Ωµ |x|2

)
in RN \ {0}.

Furthermore, ∇w ∈ L2
loc(RN ). Let R0 > 0 such that N − 1 ≥ `ΩµR2

0 and m > 0 such that mw ≥
γΩ
µ on Ω∩Bc

R0
. Then the function (γΩ

µ −mw)+ belongs to Hµ(Ω) and satisfies L̃µ(γΩ
µ −mw)+ ≤ 0

in the dual of Hµ(Ω). Hence∫
Ω

(
|∇(γΩ

µ −mw)+|2 +

(
µ

|x2|
− `Ωµ

)
(γΩ
µ −mw)2

+

)
dx ≤ 0.

Therefore (γΩ
µ −mw)+ ≤ 0, which implies that

0 < γΩ
µ (x) ≤ m|x|α+ for all x ∈ Ω.

Then we proceed as in the proof of Proposition 4.2. We flatten the boundary near 0 and set

v(t, σ) = r−α+ γ̃Ω
µ (r, σ) with t = ln r,

where the function γ̃Ω
µ is defined similarly as ũ in (4.3). Then v is bounded in (−∞, T0]× SN−1

+

where it satisfies

(1 + ε1(t, .))vtt + (N − 2 + 2α+ + ε2(t, .)) vt +
(
α+(α+ +N − 2)− µ+ ε3(t, .) + e2t`Ωµ

)
v

+ ∆′v + 〈∇′v, ε4(t, .)〉+ 〈∇′vt, ε5(t, .)〉+ 〈∇′(〈∇′v, eN 〉), ε6(t, .)〉 = 0,

instead of (4.7). It vanishes on (−∞, T0]× ∂SN−1
+ and the εj satisfy again (4.8).

Case 1: µ > µ1. The energy method used in proof of Proposition 4.2 applies with no
modification and we infer that there exists c51 ≥ 0 such that

v(t, .)→ c51ψ1 as t→ −∞

in C1(SN−1
+ ) and vt(t, .)→ 0 uniformly in SN−1

+ . If c51 = 0, we can prove, as in Proposition 4.2-
(ii) that there exists τ > 0 such that

γΩ
µ (x) ≤ c52|x|α++τ for all x ∈ Ω. (5.14)

Iterating this process, we infer that (5.14) holds for any τ > 0. For k > 1, let αk,+ be the
positive root of (2.1) and put wk(x) = |x|αk,+ . Then

L̃µwk(x) = |x|αk,+−2
(
λk − `Ωµ |x|2

)
in RN \ {0}.

Since λk →∞, as k →∞, we choose k such that λk > `Ωµ (diam(Ω))2. Hence wk is a supersolution

of L̃µ. Because γΩ
µ (x) = o(wk(x)) near x = 0, it follows that γΩ

µ (x) ≤ εo(wk(x)) in Ω for any

x ∈ Ω. Hence γΩ
µ = 0, which is a contradiction. Finally it implies that c51 > 0, which yields

(1.9)-(i). Because the convergence holds in C1(SN−1
+ ) and vt(t, .)→ 0, we infer

lim
r→0

r1−α+∇γ̃Ω
µ (r, .) = c51

(
α+ψ1e +∇′ψ1

)
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where e = x
|x| . This implies the claim.

Case 2: µ = µ1. Set v(t, .) = r
N
2
−1u(r, .) with t = ln r and X(t) =

∫
SN−1

+

v(t, .)ψ1dS and

obtain again (4.25), where F (t, .) satisfies (4.26). Since X ′t) → 0 and X is bounded, it follows
that X(t) admits a limit c52 ≥ 0 when t→ −∞. As in the proof of Theorem A, we infer that

lim
t→−∞

v(t, .) = c52ψ1 in C1(SN−1
+ ) and lim

t→−∞
vt(t, .) = 0 uniformly in SN−1

+ .

If c52 = 0 we derive a contradiction as in the first case. �

Proof of (1.16). Since ρ∗ ≤ 1
lΩµ

, then comparison principle implies that σΩ
µ ≥ γΩ

µ in Ω. Next

we show σΩ
µ ≤ c2γ

Ω
µ in Ω. In fact, we only have to show this inequality holds in a neighborhood

of the origin.
Case 1: the boundary is flat at the origin. We first prove above inequality when Ω is flat in

a neighborhood of the origin, i.e. B′R × [0, R) ⊂ Ω ⊂ RN+ for some R > 0.
For τ ∈ R, denote

wτ (x) = |x|τxN and w̃τ (x) = |x|τx2
N in RN+ ,

and direct calculation shows that

Lµwτ (x) = [µ−τ(τ+N)]|x|τ−2xN , Lµw̃τ (x) = [µ−τ(τ+N+2)]|x|τ−2x2
N−2|x|τ for x ∈ RN+ .

Let

u(x) =

{
wα+−1 − 1

2 w̃α+−1 if α+ ≥ 0,

wα+−1 − N−2
2(N+2)wα+ − 2

N+2 w̃α+−1 if α+ < 0,

by resetting R ∈ (0, 1] such that u > 0 in RN−1 × (0, R].
When α+ ≥ 0, we have that µ− (α+ − 1)(α+ − 1 +N) = 0 and

Lµu(x) = α+|x|α+−3x2
N + |x|α+−1 ≥ |x|α+−1,

thus there exists t1 > 0 such that t1u ≥ σΩ
µ on Ω ∩ (RN−1 × {R}) and

Lµ(t1u)(x) ≥ t1|x|α+−1 ≥ LµσΩ
µ (x) in Ω ∩ (RN−1 × (0, R))

By comparison principle, we have that

σΩ
µ ≤ t1u

which, together with the inequality u ≤ 2t1wα+−1, implies that σΩ
µ ≤ c2γ

Ω
µ .

When α+ ∈ [2−N
2 , 0) if N ≥ 3,

Lµu(x) = N−2
2(N+2)(2α+ + 2 +N)|x|α+−2xN + 4

N+2α+|x|α+−3x2
N + 4

N+2 |x|
α+−1

≥
(

N−2
2(N+2)(2α+ + 2 +N)− 4α+

N+2

)
|x|α+−2xN + 4

N+2 |x|
α+−1

≥ 4
N+2 |x|

α+−1.



Schrödinger operators with boundary singular potential 33

The remaining of the proof is similar to the previous one and we omit it.

Case 2: the boundary is not flat at origin.
We define the function Θ = (Θ1, ...,ΘN ) on DR by yj = Θj(x) = xj if 1 ≤ j ≤ N − 1 and

yN = ΘN (x) = xN − θ(x′). Since DΘ(0) = Id we can assume that Θ is a diffeomorphism from
DR onto Θ(DR). We set

u1(x) = u(y) for all y ∈ D+
R = B′R × [0, R).

Then by (4.4) and (4.5), we have that

(−∆u1(x) +
µ

|x|2
)u1(x) = (−∆u(y) +

µ

|y|2
u(y)) +O(|y|)

(
|D2u(y)|+ µ

|y|2
u(y)

)
Then by resetting R > 0 small and the calculation in Case 1, we have that

Lµu1(x) ≥ c53|x|α+−1, ∀x ∈ Θ−1(D+
R).

By Hopf’s Lemma, there exists t2 > 0 such that t2u1 ≥ σΩ
µ on Θ−1(∂B′R × [0, R)) and by

compactness of Θ−1(B
′
R × {R}), there exists t3 > 0 such that t3u1 ≥ σΩ

µ on Θ−1(B
′
R × {R}).

Applying comparison principle, for some t4 ≥ max{t2, t3}, we have that

σΩ
µ ≤ t4u in Θ−1(D+

R)

and we have σΩ
µ ≤ c2γ

Ω
µ near the orgin. �

Proposition A.2 Under the assumption of Proposition A.1 there exists c53 > 0 such that

lim
r→0

r1−α+σΩ
µ (r, .) = c53ψ1 in C1

loc(S
N−1
+ ) (5.15)

and

lim
r→0

r−α+σΩ
µ r(r, .) = c53

(
1− N

2

)
ψ1 locally uniformly in SN−1

+ . (5.16)

Proof. We follow the proof of Proposition A.1, flattening the boundary near 0 and defining a
new function σ̃Ω

µ as previously. By (1.16) the function

v(t, σ) = r−α+ σ̃Ω
µ (r, σ) with t = ln r,

is bounded and it satisfies

(1 + ε1(t, .))vtt + (N − 2 + 2α+ + ε2(t, .)) vt + (α+(α+ +N − 2)− µ+ ε3(t, .)) v

+ ∆′v + 〈∇′v, ε4(t, .)〉+ 〈∇′vt, ε5(t, .)〉+ 〈∇′(〈∇′v, eN 〉), ε6(t, .)〉 = etm(t, .),

instead of (4.7), where the function m is bounded as well as its gradient. Then v satisfies the
same bounds as the ones in the proof of Proposition 4.2. The only difference is that the energy
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estimate (4.9) is replaced by∫
SN−1

+

(
N − 2− 2α+ + ε2 −

1

2
∂tε1

)
v2
t dS −

1

2

∫
SN−1

+

∂tε3v
2dS

=
d

dt

[∫
SN−1

+

(
1

2
|∇v|2 − 1

2
[α+(α+ + 2−N)− µ+ ε3] v2 − 1

2
(1 + ε1)v2

t

)
dS

]
−
∫
SN−1

+

(〈∇′v, ε4〉+ 〈∇′vt, ε5〉+ 〈∇′(〈∇′v, eN 〉), ε6〉) v2
t dS + et

∫
SN−1

+

m(t, .)v(t, .)dS.

(5.17)
Therefore, if 2α+ 6= N − 2, we conclude that (4.10) holds, and (4.11) follows. We infer (5.15)
and (5.16) as in the proof of Proposition 4.2. When 2α+ = N − 2 the proof of (4.10) and (4.10)
in the case 2α+ = N − 2 is carried out as in the proof of Proposition 4.2-Step 3. �
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[9] H. Chen, L. Véron. Weak solutions of semilinear elliptic equations with Leray-Hardy po-
tential and measure data, Mathematics in Engineering 1 (2019), 391-418.



Schrödinger operators with boundary singular potential 35
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