Stochastic learning control of inhomogeneous quantum ensembles - Archive ouverte HAL
Article Dans Une Revue Physical Review A Année : 2019

Stochastic learning control of inhomogeneous quantum ensembles

Résumé

In quantum control, the robustness with respect to uncertainties in the system's parameters or driving field characteristics is of paramount importance and has been studied theoretically, numerically and experimentally. We test in this paper stochastic search procedures (Stochastic gradient descent and the Adam algorithm) that sample, at each iteration, from the distribution of the parameter uncertainty, as opposed to previous approaches that use a fixed grid. We show that both algorithms behave well with respect to benchmarks and discuss their relative merits. In addition the methodology allows to address high dimensional parameter uncertainty; we implement numerically, with good results, a 3D and a 6D case.
Fichier principal
Vignette du fichier
stoch_quantum_ensemble_control_turinici_v3.pdf (402.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02149374 , version 1 (06-06-2019)
hal-02149374 , version 2 (09-09-2019)
hal-02149374 , version 3 (25-11-2019)

Identifiants

Citer

Gabriel Turinici. Stochastic learning control of inhomogeneous quantum ensembles. Physical Review A, 2019, 100 (5), pp.053403. ⟨10.1103/PhysRevA.100.053403⟩. ⟨hal-02149374v3⟩
103 Consultations
266 Téléchargements

Altmetric

Partager

More