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Abstract

In quantum control, the robustness with respect to uncertainties in
the system’s parameters or driving field characteristics is of paramount
importance and has been studied theoretically, numerically and exper-
imentally. We test in this paper stochastic search procedures (Stochas-
tic gradient descent and the Adam algorithm) that sample, at each
iteration, from the distribution of the parameter uncertainty, as op-
posed to previous approaches that use a fixed grid. We show that
both algorithms behave well with respect to benchmarks and discuss
their relative merits. In addition the methodology allows to address
high dimensional parameter uncertainty; we implement numerically,
with good results, a 3D and a 6D case.

1 Introduction

Quantum control is a promising technology with many applications ranging
from NMR [12] to quantum computing [15] and laser control of quantum dy-
namics [7]. The controlling field encounters many molecules which although
identical in nature may interact differently with the incoming field because
of e.g., different Larmor frequencies or rf attenuation factors (in NMR spin
control or quantum computing, see [19, 29, 35, 22, 13, 17]), different spatial
profile (see [24]) or other parameters (see [36, 8, 10]). For obvious practical
reasons, it is of paramount importance to ensure that the control quality is
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robust with respect to this heterogeneity. Thus the quantum control problem
involves a unique set of driving fields u(t) ∈ RL, the same for all molecules
in the ensemble, however each molecule is described by a set of parameters
θ ∈ Θ ⊂ Rd and the control outcome depends on both u and θ; the goal can
be expressed as the maximization of the control quality averaged over θ. A
different view is when the variability is not due to the presence of many differ-
ent molecules but when uncertainties in the control implementation require
to devise a field robust to fluctuations in those parameters.

A first natural question is whether this is at all possible, i.e., if a single
field can drive several distinct molecules to a common target; the answer is
given by the theory of ensemble control controllability, see [31, 5, 19, 4, 6] and
is in general positive. However the theory does not explain how to find the
control (except under specific regimes, see [2]). To do so, different algorithms
have been proposed: the pseudo-spectral approach of Li et al. [20, 28, 21]
consider spectral and/or polynomial representations of the control problem
in 2D (d = 2); Wang considers iterative procedures based on sampling [32];
the learning approach of Chen et al. [8] and Kuang et al. [18] (the latter in
the context of time-optimal control) consider a fixed uniform grid over the
inhomogeneous parameter space and was tested for d = 2. Finally, Wu and
al. [33] find robust controls using uniform grids in 2D and 3D (d = 3).

In all these works there is always a fixed grid (or fixed sampling) involved
when the control is searched. The rationale behind this idea is that a fixed
grid makes the search more stable and a good choice of the grid is enough to
describe efficiently the mean performance of the control over the parameter
space in the spirit of a quadrature formula for the average over θ. This
is coherent with results from the approximation theory which inform that

convergence is of order e−
d√N , with respect to the number N of grid points;

however the same formula indicates a bad scaling with respect to d. To
address this curse of dimensionality and also explore the nature of the search
landscape, we take here a different view: at each control iteration we use a
new sampling in the spirit of Monte Carlo methods (see [23, Section 7.7])
for computing high dimensional integrals. This will induce slight oscillations
in the average but has the advantage to cover the space Θ of inhomogeneity
even in high dimensions d. A similar approach has been tested independently
in a very recent work by Wu and al. [34] for a two-dimensional example
and promising results were obtained; see Section 2.2 for comments on the
differences between the two approaches. The procedure we propose is detailed
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in the next section and the numerical results are the object of Section 3.

2 Algorithms for ensemble quantum control

We consider a control u(t) = (u1(t), ..., uL(t)) ∈ RL acting on a molecule
part of a larger ensemble. Each molecule is completely characterized by
some inhomogeneity parameter θ ∈ Θ ⊂ Rd obeying a distribution law P (θ)
on Θ (which can be the uniform distribution or any other). All molecules are
subjected to the same control u(t) during the time interval [0, T ] in order to
reach some target.

2.1 Evolution equations

The dynamics of each molecule in the sample is governed by the Hamiltonian
H(θ, u) = H0(θ) +

∑L
`=1 u`(t)H`(θ) through the Schrödinger equation:

i
d

dt
ψ(t; θ) = H(θ, u)ψ(t; θ), (1)

where ψ is the wave-function of the molecule (here and below we set ~ =
1). Of course, ψ depends on u but for notational convenience we omit to
write explicitly this dependence from now on. Once a finite dimensional
basis {|j〉, j = 1, ..., N} is chosen, the state of the quantum system can be
represented as

|ψ(t; θ)〉 =
N∑
j=1

cj(t; θ)|j〉. (2)

Denoting C(t; θ) = (c0(t; θ), ..., cN(t; θ))T the vector of coefficients C satisfies
the equation:

d

dt
C(t; θ) = X(θ, u)C(t; θ), (3)

where X is the representation of the Hamiltonian H (including the 1/i factor)
in the basis |j〉, j = 1, ..., N .

Note that same setting also applies to non-linear Hamiltonians e.g. Bose-
Einstein condensates (nonlinearity in ψ), or high order control terms [11, 9]
(nonlinearity in u).

The quantum system can also be described in terms of a density matrix
ρ(t; θ); this matrix is expressed in some basis for operators. Same happens
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when the molecule is coupled to a bath or when relaxation phenomena are
at work, see [1]; in both cases the coefficients of this expansion follow an
equation similar to (3).

2.2 Optimization by stochastic gradient descent and
Adam algorithms

The control goal is encoded as the minimization, with respect to u, of an
error, or ”loss” functional L(u, θ) depending on the control u and the Hamil-
tonian parameters θ. When all the ensemble is considered, the following loss
functional is to be minimized:

J (u) =

∫
Θ

L(u, θ)P (dθ). (4)

The stochastic optimization algorithms described below construct an it-
erative process in order to find the u that minimizes (4).

Historically the first to be considered, the stochastic gradient descent
algorithm [26] (henceforth called SGD) consists in the following procedure:

Algorithm 1 SGD

1: Choose a learning rate α > 0, a mini-batch size M > 0 and the initial
control u0.

2: Set iteration counter k = 0.
3: repeat
4: Draw M independent parameters θk1 , ..., θ

k
M from the distribution P (θ)

and compute the approximation gk := 1
M

∑M
m=1∇uL(uk; θkm) of the gra-

dient ∇uJ (uk) of J (·) at uk.
5: set uk+1 = uk − αgk and k = k + 1.
6: until some stopping criterion is satisfied.

In order to accelerate the convergence of the SGD algorithm, several
improvements have been proposed (see [27]) among which the Adam [16]
variant which proved to be one of the most efficient and very scalable. The
difference between Adam and SGD is that Adam uses a different learning
rate for each parameter which is tuned as follows: when the uncertainty
in the gradient is large the learning rate is taken to be small and contrary
otherwise. In order to have a robust estimation for the gradient (in absolute
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value) a Exponential Moving Average is computed on the fly (see below). It
can be described as:

Algorithm 2 Adam

1: Choose the learning rate α > 0, the EMA parameters β1 and β2, the
mini-batch size M > 0, the epsilon ε > 0 and the initial control u0.

2: Set iteration counter k = 0, first moment estimate µ = 0, second moment
estimate v = 0.

3: Set k = k + 1.
4: repeat
5: Draw M independent parameters θk1 , ..., θ

k
M from the distribution P (θ)

and compute the approximation gk := 1
M

∑M
m=1∇uL(uk−1; θkm) of the

gradient ∇uJ (uk−1) of J (·) at uk−1.
6: Compute the moving averages µk := β1µ

k−1 + (1 − β1)gk, vk :=
β2v

k−1 + (1− β2)|gk|2.
7: Compute bias-corrected moment estimates: µ̂k = µk/(1−(β1)k), v̂k =
vk/(1− (β2)k).

8: set uk = uk−1 − αµ̂k/(
√
v̂k + ε).

9: until some stopping criterion is satisfied.

The momentum algorithm used in [34] can be seen as being halfway be-
tween SGD and Adam; it is formally a special case of the Adam algorithm
for β1 = λ, β2 = 1, v0 = 1 and no bias correction step 7 (that is µ̂k = µk,
v̂k = vk). In practice the numerical results are very similar and point in the
same direction; in particular we expect that the momentum algorithm is also
relevant to high dimensional robust control problems.

3 Numerical results

We test the performance of the algorithms in Section 2.2 for several bench-
marks from the literature (or that generalize cases from the literature).

In sections 3.1 and 3.1 we compare the SGD algorithm with a fixed grid
sampling method from the literature. Then in section sections 3.3 and 3.4
we compare the SGD wih the Adam algorithm and in Section 3.5 we draw
further conclusions concerning stochastic optimization.

In the situations considered below, the goal is to maximize the so-called fi-
delity denoted F(u; θ). For sections 3.1 and 3.2 this has the formula F(u; θ) =
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|〈C(T ; θ), Ctarget〉| where Ctarget is a prescribed target state. But this expres-
sion is not differentiable everywhere and numerically it is easier to replace it
with its square. Moreover, to express the problem as a minimization, a −1
multiplicative constant is introduced and 1 added to the result in order to
have it positive. So the cost functional J will be the mean, over θ ∈ Θ of
the error in the fidelity squared as in formula (8). On the contrary, when the
fidelity is more well behaved as in section 3.3 where F(u; θ) = c4(T, θ) or in
section 3.4 where F(u; θ) = c6(T, θ) the square operation is useless and the
cost functional has the form in (11) or (13). However, in all sections, we will
plot the error in the fidelity itself; the reason why not plotting the fidelity
(instead of the error) is that the error can be very small (as in Section 3.1)
and the results are more visible on a logarithmic scale. Note that in some
cases the best control cannot attain the target with 100% quality (even for a
single molecule). However, for any given value of the parameter θ, the best
attainable performance is known (see [12, 30, 14]) and is denoted Fmax(θ).
We will therefore consider the fidelity relative to Fmax(θ). In all cases the
error is computed as the average over Mtest = 300 random independent pa-
rameters θtest1 , θtest2 , ..., θtestMtest

drawn (once for all) from the distribution P (θ)
and has the following expression:

1

Mtest

Mtest∑
k=1

(
1− F(u; θtestk )

Fmax(θtestk )

)
. (5)

For sections 3.1 and 3.2 we will also plot the max relative error:

max
k=1,...,Mtest

(
1− F(u; θtestk )

Fmax(θtestk )

)
. (6)

Finally, in order to compare our algorithm with those from the literature,
we take as indicator of the numerical effort the number of gradient ∇uL(u; θ)
evaluations; for instance one iteration of SGD or Adam algorithms count as
M gradient evaluations. In all situations we used for the Adam algorithm
the standard values β1 = 0.9, β2 = 0.999, ε = 10−8.

3.1 Two level inhomogeneous ensemble

Consider an ensemble of spins as in [8, section III.]. The spins have different
Larmor frequencies ω in the range [0.8, 1.2] and the controls (L = 2) have
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multiplicative inhomogeneity ε ∈ [0.8, 1.2]; we set θ = (ω, ε) and with the
previous notations the dynamics corresponds to the equation:(

ċ1(t; θ)
ċ2(t; θ)

)
=
(

0.5ωi 0.5ε(u2(t)− iu1(t))
−0.5ε(u2(t)− iu1(t)) −0.5ωi

)(
c1(t; θ)
c2(t; θ)

)
, (7)

where c1, c2 are the coefficients of the wavefunction of the spin system in the
canonical basis, as detailed in equation (2).

The initial state of each member of the quantum ensemble is set to |ψ0〉 =
|0〉; i.e., C0 = (1, 0)T , and the goal is to reach the target state |ψtarget〉 =
|1〉; i.e., Ctarget = (0, 1)T . The objective is encoded as the requirement to
minimize:

J(u) =
1

2

(
1−

∫
Θ

|〈C(T ; θ), Ctarget〉|2P (dθ)

)
. (8)

Here Fmax(θ) = 1. The total time is T = 2 is divided into Q = 200 time
steps, of length ∆t = T/Q = 0.01 each. The initial choice for the control u
is uk=0(t) = {u0

1(t) = sin t, u0
2(t) = sin t}.

Several mini-batch sizes M = 1, 4, 8, 16 and 32 are tested and compared
with implementation in [8, section III.A.] where a 2D uniform grid of 5 × 5
values for θ is chosen. In all cases very good convergence results are attained.
We plot in Figure 1 the results for M = 1, M = 4 relative to the convergence
with the uniform 5 × 5 grid. In all cases (M = 1, 4, uniform grid) we set
α = 500; note that the learning rate α was optimized to obtain the best
possible results for the fixed grid algorithm and indeed the results are better
than those in [8, section III.A.]. But similar conclusions are reached for any
value of α. An acceleration by a factor of 5 is obtained for both M = 1
and M = 4, essentially due to the fact that each SGD iteration uses only
M gradient evaluations. Note that the SGD algorithm oscillates but these
oscillations can be cured by lowering α (or stopping the search) as soon as
a good result is obtained. The question of which is the best choice among
M = 1 and M = 4 is a matter of striking a balance between speed and
uncertainty: for M = 4 the convergence is slightly slower but oscillations are
diminished. This behavior is observed, to a larger or lesser extent, in all test
cases.

Note that in order to compare our learning rate α (for the fixed uniform
grid) with that in [8, section III.A.] a multiplicative factor of ∆t/2 has to
be introduced because our gradient (see Appendix A) contains an extra ∆t
factor and the coefficient 1/2. Thus one should transform α = 500 to 1/2 ∗
0.01 ∗ 500 = 2.5 to compare with 0.2 used in [8].
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Figure 1: Convergence for the numerical case in Section 3.1. Top image:
mean fidelity error (as defined in equation (5)). Bottom image: maximum
(over the sample) fidelity error (as defined in equation (6)). We consider
three simulations: a fixed uniform 2D grid (M = 25) as in [8, section III.A.]
and the SGD algorithm with M = 1 and M = 4. This SGD converges about
5 times faster: the mean fidelity error of 2.0 × 10−3 is obtained after 1250
gradient evaluations of the fixed grid algorithm and after 250 evaluations of
the SGD algorithm with M = 1, 4. Same for other levels of errors.
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3.2 A three level Λ atomic ensemble

In this section we test a Λ atomic ensemble from [8, Section IV] which can
be written as a 3-level system with the following dynamics:

ċ1(t; θ)
ċ2(t; θ)
ċ3(t; θ)

 =

 −1.5ωi 0 −iεu2(t)
0 −ωi −iεu1(t)

−iεu2(t) −iεu1(t) 0

c1(t; θ)
c2(t; θ)
c3(t; θ)

, (9)

where ω and ε have uniform distributions in [0.8, 1.2] and c1, c2, c3 are the
coefficients of the wavefunction of the spin system in the canonical basis, as
detailed in equation (2).

The objective is to find a control u(t) = (u1(t), u2(t)) which drives all
the inhomogeneous members from |ψ0〉 = 1√

3
(|1〉 + |2〉 + |3〉) (i.e., C0 =

( 1√
3
, 1√

3
, 1√

3
)) to |ψtarget〉 = |3〉 (i.e., Ctarget = (0, 0, 1)); the objective is en-

coded as the minimization of (8). Here Fmax(θ) = 1.
We plot in Figure 2 the results for M = 1 and M = 4 relative to the

convergence with an uniform grid as in [8, section IV.]. In all cases (M = 1, 4,
uniform grid) we set α = 100. The acceleration factor is around 7 for M = 4
and even larger for M = 1 (but at the price of larger oscillations too).

3.3 A 3D example: two spin systems without cross-
correlated relaxation

As argued before, methods from the literature may have difficulties to address
high dimensional parameters, and often limit to two dimensional (d = 2) in-
homogeneity (see however [33, Sec. V.B] for a 3D case). In order to test
the full power of our method, we consider two situations that extend cases
treated in the literature but have never been treated before. The first test is
a three dimensional (d = 3) example which addresses the coherence transfer
between two spins without cross-correlated relaxation, taken from [28, Sec-
tion III.B.1. eq(15)] (but with an additional inhomogeneity dimension). An
example of such a system is an isolated hetero-nuclear spin system composed
of two coupled spins 1/2 corresponding to atoms 1H and 15N . For a gen-
eral treatment of the relaxation terms and the formulation of this equation
see [1]. The spins display control inhomogeneity described by the parameter
ε as above but there is also variation in the relaxation rate and coupling
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Figure 2: Convergence for the numerical case in Section 3.2. Top image:
mean fidelity error as defined in equation (5). Bottom image: maximum
(over the sample) fidelity error (as defined in equation (6)). We consider two
algorithms: a fixed uniform 2D grid (M = 25) as in [8, section IV.] and the
SGD algorithm with M = 1 and M = 4. This latter approach converges
about 7 times faster: the convergence settles in after 17′500 gradient evalua-
tions of the fixed grid algorithm compared with cca. 2′500 evaluations of the
SGD algorithm. This acceleration factor is even more important for M = 1
but at the price of larger oscillations.
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constant, which, denoting θ = (ε, J, ξ) results in the dynamical system:ċ1(t; θ)
ċ2(t; θ)
ċ3(t; θ)
ċ4(t; θ)

 =

 0 −εu1(t) 0 0
εu1(t) −ξ −J 0

0 J −ξ −εu2

0 0 εu2 0


c1(t; θ)
c2(t; θ)
c3(t; θ)
c4(t; θ)

. (10)

Let us denote by I1x = σx/2, I1y = σy/2, I1z = σz/2 (here σx, σy σz are
the Pauli matrices) the spin operators corresponding to the first spin and
I2x, I2y, I2z the corresponding objects for the second spin. With the usual
notations for the Kronecker products, c1 = 〈I1z〉, c2 = 〈I1x〉, c3 = 〈2I1yI2z〉,
c4 = 〈2I1zI2z〉; the exact derivation of this equation is beyond the scope of
this work, see [1, 12, 14] for details. On the other hand also note that the
dynamics is not reversible (relaxation is present) and the equations do not
correspond to a unitary evolution.

The inhomogeneity θ = (ε, J, ξ) is uniformly distributed in Θ = [0.9, 1.1]×
[0.5, 1.5]×[0, 2]. The final time T = 7π/6 is discretized with Q = 200 uniform
time steps. The control is initialized as before. The initial state is encoded as
c0 = (1, 0, 0, 0) and the target is to minimize the three-dimensional integral:

J (u) = 1−
∫

Θ

c4(T ; θ)P (dθ). (11)

Recall that here the fidelity is F(u; θ) = c4(T, θ); in this case (see [12, 14])
Fmax(θ) =

√
1 + (ξ/J)2 − ξ/J (the worse performance being −Fmax(θ)).

The results are in Figures 3 and 4. Note that although for each θ taken
individually the figure Fmax(θ) can be attained with a pair (recall L = 2)
of suitable control fields, it is unknown whether a unique control pair exists
ensuring 100% (relative to Fmax(θ)) target yield simultaneously for all θ ∈
Θ. In practice we did not find any, irrespective of the algorithm hyper-
parameters such as α, the maximum number of iterations etc.; we conclude
on one hand that this ensemble is not 100% simultaneously controllable and
on the other hand that our procedure improves significantly the robustness
of the control with respect to θ ∈ Θ from an initial value of 67% up to 95%.
Note that the results from the literature (which for this case only consider 2
dimensional inhomogeneity) do not obtain 100% control either (exact figure
is not reported).
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Figure 3: Convergence for the numerical case in Section 3.3. The quantity
plotted is given in equation (5). We set M = 4; for the SGD algorithm
we choose α = 10.0 and for the Adam algorithm we set α = 0.01. The
continuous (−) and dotted (·) curves stand for the mean fidelity errors of the
plain SGD and Adam algorithm respectively; the convergence is similar and
a 95% mean target relative fidelity (or equivalently 5% mean target relative
fidelity error) is obtained. For the controls see Figure 4.
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Figure 4: Converged controls for the SGD (up) and Adam (bottom) for
the situation in in Section 3.3 (for the convergence see Figure 3). Controls
obtained with the SGD algorithm are smoother than those from the Adam
algorithm.
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3.4 A 6D example: two spin systems with cross-correlated
relaxation

We continue here to address new systems that previous methods could not
treat. We consider an ensemble of two spin systems with cross-correlated
relaxation as in [20, Section III.A.2.], [28, Section III.B.2 eq. (16)] and also
[32, Example 3], [1].

The spins display control inhomogeneity described by the parameters
ε1 and ε2 and there is also variation in the auto-correlated relaxation rate
ξa, the quotient ξc/ξa of the cross-correlation relaxation rate ξc with re-
spect to the auto-correlated relaxation rate ξa and finally, a dispersion in
the Larmor frequencies of each spin. Denoting θ = (ε1, ε2, ω1, ω2, ξa, ξc/ξa) ∈
Θ = [0.9, 1.1]2× [0, 1]2× [0.75, 1.25]× [0.7, 0.9], the dynamical system can be
written:


ċ1(t; θ)
ċ2(t; θ)
ċ3(t; θ)
ċ4(t; θ)
ċ5(t; θ)
ċ6(t; θ)

 =


0 −ε1u1(t) ε2u2(t) 0 0 0

ε1u1(t) −ξa ω1 −J −ξc 0
−ε2u2(t) −ω1 −ξa −ξc J 0

0 J −ξc −ξa ω2 −ε2u2(t)
0 −ξc −J −ω2 −ξa ε1u1(t)
0 0 0 ε2u2(t) −ε1u1(t) 0




c1(t; θ)
c2(t; θ)
c3(t; θ)
c4(t; θ)
c5(t; θ)
c6(t; θ)

 .(12)

The vector C = (c1, ..., c6) has real entries and, with the same notations as in
equation (10), c1 = 〈I1z〉, c2 = 〈I1x〉, c3 = 〈I1y〉, c4 = 〈2I1yI2z〉, c5 = 〈2I1xI2z〉,
c6 = 〈2I1zI2z〉. The relations are similar to that in section 3.3, with the
exception that there are two new entries c3 and c5 due to the presence of
cross-correlation, see [12, 14, 1] for details of the derivation of the model; the
dynamics is not reversible (relaxation is present) nor unitary.

We set J = 1; the total time T = 5 is discretized with Q = 200 uniform
time steps. The control is initialized as before. The initial state is encoded as
c0 = (1, 0, 0, 0, 0, 0) and the target is to minimize the six-dimensional integral:

J (u) = 1−
∫

Θ

c6(T ; θ)P (dθ). (13)

Recall that here the fidelity is F(u; θ) = c6(T, θ). In this case too, the
best attainable performance for a single molecule is known (see [12, 14]) and

defined by Fmax(θ) =
√

1 + η2 − η where η =
√

ξ2
a−ξ2

c

J2+ξ2
c
.
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Figure 5: Convergence for the numerical case in Section 3.4. The quantity
plotted is defined as in the Figure 3. We set M = 4; for the SGD algorithm
we choose α = 10.0 and for the Adam algorithm we set α = 0.01. The
continuous (−) and dotted (·) curves stand for the mean fidelity errors of the
plain SGD and Adam algorithm respectively; the convergence is similar and
91% mean relative fidelity is obtained. For the controls see Figure 6.

The simulation results are in Figures 5 and 6. Same conventions are kept
as in the previous section (fidelity is relative to maximum attainable figure)
and same considerations still apply: 100% simultaneous controllability does
not seem attainable but significant improvement in the robustness is obtained
(91% up from −8%).

3.5 Stochastic convergence behaviors

The convergence of the stochastic algorithms can have two important regimes:

1. first, when all members of the ensemble can be simultaneously opti-
mized to 100%; in our situation this is equivalent to simultaneous con-
trollability. In this case convergence is ”easier” because it is ”enough”
to follow the gradient for each parameter value in order to converge;
at convergence all gradients (as distribution with respect to ω), will
collapse to (in practice will be close to) a Dirac mass.

2. secondly, when members of the ensemble cannot be simultaneously op-
timized; in this case, reaching full control for some θ value will harm
the quality of some other parameter values θ′ 6= θ. At convergence
gradients will not be distributed as a Dirac mass any more, but the
average with respect to theta will be zero (in practice small).
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Figure 6: Converged controls for the SGD (up) and Adam (bottom) for
the situation in in Section 3.4 (for the convergence see Figure 5). Controls
obtained with the SGD algorithm are smoother than those from the Adam
algorithm.

We illustrate this behavior in figures 7 and 8 where we plot the histograms
of the gradient (with respect to the first field) ∇u1(t)J (u(tn), θ) as random
variables of θ at some time snapshots t. It is noticed that while in the first
example it is possible to reduce significantly the gradient absolute value for
all members of the sample (because simultaneous controllability holds true),
in the second test case this reduction reaches a limit and the algorithm tries
instead to center the gradients on zero so that the average be as low as
possible.

4 Discussion and conclusion

We proposed and tested in this work a stochastic approach to compute the
optimal controls of inhomogeneous quantum ensembles. The algorithms have
been employed before in other areas of stochastic optimization but not tested
in this context (see [34] for similar algorithms). Their specificity is to draw at
each iteration a new set of parameters from the inhomogeneous distribution.
Although at first the intuition may not recommend such an approach, the
numerical results indicate not only convergence but also faster convergence
than methods based on fixed samples. In addition the method can address
situations when the space of parameters is large and was tested successfully
on a 6-dimensional example.

For lower dimensional examples (as in Sections 3.1 and 3.2) the accel-
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Figure 7: Histogram of the gradients ∇u1(t)J (u(tn), θ) computed over the
test sample θtest1 , θtest2 , ..., θtestMtest

(recall Mtest = 300). Six time instants t are
chosen uniformly in [0, T ]: t = 0, T/5, 2T/5, ..., T . In red are the gradients
at u = u1 (iteration k = 1) and in blue the gradients at u = u500 (iteration
k = 500). Here we consider the case in Section 3.1, see Figure 8 for the test
case in Section 3.4.
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Figure 8: Histogram of the gradients as in Figure 7 except that here the
results correspond to the test case in Section 3.4.
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eration of the stochastic algorithms (SGD, Adam) is due essentially to the
lower effort per iteration compared to a fixed grid sampling (both being pro-
portional to the number of samples used). In higher dimensions the fixed
grid approach is inherently less efficient due to the curse of dimensionality
and may even be prohibitively large.

On the other hand, compared with SGD, the Adam algorithm has the
advantage to be more robust with respect to the choice of the learning rate
α, but the controls are less regular.

Finally, one of the limitations of this work is to use constant learning
rates. Variable learning rates are potentially interesting as it could speed
up convergence in the initial phases by using large values of α and avoid
oscillations in the end by lowering α. Several schedules are proposed in the
stochastic optimization literature (inverse linear, piecewise constant, ...) but
their analysis remains for future work.

*

A Gradient computation

We detail below the computation of the gradient for a single parameter θ,
the general case being just a mean over θ. Consider the so-called adjoint
state λ(t; θ); it is defined at the final time as the derivative of the out-
come with respect to C(T ; θ). For instance, for sections 3.1 - 3.2: λ(T ; θ) =
−〈Ctarget, C(T, θ)〉Ctarget while for sections 3.3 - 3.4 we set λ(T ; θ) = −1.
Then for t < T , λ(t; θ) is the solution of the (backward) equation d

dt
λ(t; θ) =

X(t, θ)†λ(t; θ), where X(t, θ)† is the transpose conjugate of X when X has
complex entries (examples 3.1 and 3.2) and reduces to the transpose when X

is a real matrix (examples 3.3 and 3.4). Then∇u(t)J = 〈λ(t; θ), ∂X(t;θ)
∂u(t)

C(t; θ)〉.
In practice, given that u is discretized, the state C and the adjoint state λ are
also discretized at time instants tn = n∆t: Cn(θ) ' C(tn; θ), λn(θ) ' λ(tn; θ)
which satisfy Cn+1(θ) = e∆tX(u(tn);θ)Cn(θ) and λn(θ) = e∆tX(u(tn);θ)†λn+1(θ)

and the exact discrete gradient is ∇u(tn)J = 〈λn+1(θ), ∂e
∆tX(u(tn);θ)

∂u(tn)
Cn(θ)〉.

Finally, in order to compute ∂e∆tX(u(tn);θ)

∂u(tn)
we use a ”divide and conquer”

approach coupled with a 8-th order expansion as in [3, formula (11)]) to
obtain at the same time the exponential and the gradient ([25, Chapter VI])

from the knowledge of the inputs X(u(tn); θ) and ∂X(u(tn);θ)
∂uk(tn)

.
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