Stochastic learning control of inhomogeneous quantum ensembles - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Stochastic learning control of inhomogeneous quantum ensembles

Résumé

In quantum control, the robustness with respect to uncertainties in the system's parameters or driving field characteristics is of paramount importance and has been studied theoretically, numerically and experiementally. We test in this paper stochastic search procedures (Stochastic gradient descent and the Adam algorithm) that sample, at each iteration, from the distribution of the parameter uncertainty, as opposed to previous approaches that use a fixed grid. We show that both algorithms behave well with respect to benchmarks and discuss their relative merits. In addition the methodology allows to address high dimensional parameter uncertainty; we implement numerically, with good results, a 3D and a 6D case.
Fichier principal
Vignette du fichier
stoch_quantum_ensemble_control_Turinici_2019.pdf (367.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02149374 , version 1 (06-06-2019)
hal-02149374 , version 2 (09-09-2019)
hal-02149374 , version 3 (25-11-2019)

Identifiants

Citer

Gabriel Turinici. Stochastic learning control of inhomogeneous quantum ensembles. 2019. ⟨hal-02149374v1⟩
103 Consultations
266 Téléchargements

Altmetric

Partager

More