Toward a Procedural Fruit Tree Rendering Framework for Image Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Toward a Procedural Fruit Tree Rendering Framework for Image Analysis

Résumé

We propose a procedural fruit tree rendering framework, based on Blender and Python scripts allowing to generate quickly labeled dataset (i.e. including ground truth semantic segmentation). It is designed to train image analysis deep learning methods (e.g. in a robotic fruit harvesting context), where real labeled training datasets are usually scarce and existing synthetic ones are too specialized. Moreover, the framework includes the possibility to introduce parametrized variations in the model (e.g. lightning conditions, background), producing a dataset with embedded Domain Randomization aspect.
Fichier principal
Vignette du fichier
IAMPS_2019.pdf (2.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02140367 , version 1 (07-06-2019)

Identifiants

Citer

Thomas Duboudin, Maxime Petit, Liming Chen. Toward a Procedural Fruit Tree Rendering Framework for Image Analysis. 7th International Workshop on Image Analysis Methods in the Plant Sciences, Jul 2019, Lyon, France. pp.4 - 5. ⟨hal-02140367⟩
80 Consultations
103 Téléchargements

Altmetric

Partager

More