Gaussian process optimization with failures: classification and convergence proof - Archive ouverte HAL
Article Dans Une Revue Journal of Global Optimization Année : 2020

Gaussian process optimization with failures: classification and convergence proof

Résumé

We consider the optimization of a computer model where each simulation either fails or returns a valid output performance. We first propose a new joint Gaussian process model for classification of the inputs (computation failure or success) and for regression of the performance function. We provide results that allow for a computationally efficient maximum likelihood estimation of the covariance parameters, with a stochastic approximation of the likelihood gradient. We then extend the classical improvement criterion to our setting of joint classification and regression. We provide an efficient computation procedure for the extended criterion and its gradient. We prove the almost sure convergence of the global optimization algorithm following from this extended criterion. We also study the practical performances of this algorithm, both on simulated data and on a real computer model in the context of automotive fan design.
Fichier principal
Vignette du fichier
optimwithfailurerevised_hal.pdf (448.41 Ko) Télécharger le fichier
Supplementarymaterial.pdf (1.86 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02100819 , version 1 (16-04-2019)
hal-02100819 , version 2 (29-01-2020)

Identifiants

Citer

François Bachoc, Céline Helbert, Victor Picheny. Gaussian process optimization with failures: classification and convergence proof. Journal of Global Optimization, In press, ⟨10.1007/s10898-020-00920-0⟩. ⟨hal-02100819v2⟩
484 Consultations
980 Téléchargements

Altmetric

Partager

More