Gaussian process optimization with simulation failures - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Gaussian process optimization with simulation failures

Résumé

We address the optimization of a computer model, where each simulation either fails or returns a valid output performance. We suggest a joint Gaussian process model for classification of the inputs (computation failure or success) and for regression of the performance function. We discuss the maximum likelihood estimation of the covariance parameters, with a stochastic approximation of the gradient. We then extend the celebrated expected improvement criterion to our setting of joint classification and regression, thus obtaining a global optimization algorithm. We prove the convergence of this algorithm. We also study its practical performances, on simulated data, and on a real computer model in the context of automotive fan design.
Fichier principal
Vignette du fichier
optim_with_failure_hal.pdf (5.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02100819 , version 1 (16-04-2019)
hal-02100819 , version 2 (29-01-2020)

Identifiants

  • HAL Id : hal-02100819 , version 1

Citer

F Bachoc, Céline Helbert, V. Picheny. Gaussian process optimization with simulation failures. 2019. ⟨hal-02100819v1⟩

Collections

ICJ-PSPM
452 Consultations
951 Téléchargements

Partager

More