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Gaussian process optimization with failures: classification and convergence proof

We consider the optimization of a computer model where each simulation either fails or returns a valid output performance. We first propose a new joint Gaussian process model for classification of the inputs (computation failure or success) and for regression of the performance function. We provide results that allow for a computationally efficient maximum likelihood estimation of the covariance parameters, with a stochastic approximation of the likelihood gradient. We then extend the classical improvement criterion to our setting of joint classification and regression. We provide an efficient computation procedure for the extended criterion and its gradient. We prove the almost sure convergence of the global optimization algorithm following from this extended criterion. We also study the practical performances of this algorithm, both on simulated data and on a real computer model in the context of automotive fan design.

Introduction

Bayesian optimization (BO) is now established as an efficient tool for solving optimization problems with non-linear objectives that are expensive to evaluate. A wide range of applications have been tackled, from hyperparameter tuning of machine learning algorithms [START_REF] Snoek | Practical Bayesian optimization of machine learning algorithms[END_REF] to wing shape design [START_REF] Keane | Computational approaches for aerospace design: the pursuit of excellence[END_REF]. In the simplest BO setting, the aim is to find the maximum of a fixed unknown function f : D → R, where D is a box of dimension d. Under that configuration, the classical Efficient Global Optimization [EGO, 13] and its underlying acquisition function Expected Improvement (EI) are still considered state-of-the-art.

Several authors have adapted BO to the constrained optimization framework, i.e. when the acceptable design space A ⊂ D is defined by a set of non-linear, expensive-to-compute equations c:

A = {x ∈ D s.t. c(x) ≤ 0},
either by adapting the EI function [START_REF] Schonlau | Global versus local search in constrained optimization of computer models[END_REF][START_REF] Sasena | Exploration of metamodeling sampling criteria for constrained global optimization[END_REF][START_REF] Gelbart | Bayesian optimization with unknown constraints[END_REF][START_REF] Gramacy | Modeling an augmented Lagrangian for blackbox constrained optimization[END_REF][START_REF] Picheny | Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian[END_REF] or by proposing alternative acquisition functions [START_REF] Picheny | A stepwise uncertainty reduction approach to constrained global optimization[END_REF][START_REF] Hernandez-Lobato | Predictive entropy search for Bayesian optimization with unknown constraints[END_REF]. We consider here the problem of crash constraints, where the objective f is typically evaluated using a computer code that fails to provide simulation results f (x) for some input conditions x. We write A of the form

A = {x ∈ D; s(x) = 1}
where s : D → {0, 1} is a fixed unknown function.

We assume that, for each x ∈ D, a single computation provides the pair (s(x), 1 s(x)=1 f (x)). Hence, it is as costly to see if a simulation at x fails as to observe the simulation result f (x) when there is no failure. A typical example of failure might be a computational fluid dynamics (CFD) solver that does not converge. This convergence failure could be caused by an overly large time-step yielding an instability in the numerical scheme and a divergence, or by an inadequate mesh close to the boundary of the domain (see also the discussions in [START_REF] Sacher | A classification approach to efficient global optimization in presence of noncomputable domains[END_REF]). Another typical example of failure is when f (x) provides the numerical performance (e.g. the empirical risk) of a complex machine learning model (e.g. a deep neural network) depending on architecture parameters in x [START_REF] Kandasamy | Neural architecture search with Bayesian optimisation and optimal transport[END_REF]. The computation of f (x) then relies on a gradient or stochastic gradient descent, using retro-propagation in the case of deep learning, for example. In this case, a failure occurs when the gradient descent does not converge, so that there is no observable value of f (x) at convergence. In these two examples, we note that it is no less costly to observe a failure of the form s(x 1 ) = 0 than to successfully observe f (x 2 ) with s(x 2 ) = 1.

This optimization problem with failures was considered first by [START_REF] Gramacy | Optimization under unknown constraints[END_REF], where a Gaussian process classifier [GPC,[START_REF] Nickisch | Approximations for binary Gaussian process classification[END_REF] was used together with a spatialized EI. [START_REF] Lindberg | Optimization under constraints by applying an asymmetric entropy measure[END_REF] also proposed the use of a GPC with EI, modified using an asymmetric entropy to limit as much as possible the computational resources spent on crashed simulations. However, both approaches rely on expensive Monte Carlo simulations, which make them impractical in some cases, and do not provide any convergence guarantee.

The contribution of this paper is two-fold. First, a new GPC model is proposed, where a latent GP is simply conditioned on the signs of the observations instead of their values. Its likelihood function maximization is studied, as well as its use to predict the feasibility probability (i.e. crash likeliness) of a new design x. Second, leveraging recent results on sequential strategies [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF], we propose an algorithm in the form of EGO with guaranteed convergence.

The outline of this paper is as follows. First, we introduce our GPC model (Section 2) and its use in a Bayesian optimization algorithm (Section 3). Section 4 states our main consistency result. Finally, our algorithm is illustrated on several simulated toy problems (Section 5), and applied to an industrial case study (Section 6). A conclusion is given in Section 7. All the proofs are deferred to the appendix.

A Classification model for crash constraints

This section presents our classification model used to characterize the feasible space A. It takes the classical form of a GPC with a latent GP, but conditioned solely on pointwise observations of its sign.

Conditioning GPs on observation signs

Let Z be a Gaussian process on D that has a constant mean function with value µ Z ∈ R and stationary covariance function k Z . Given a set of points x 1 , . . . , x n ∈ D and corresponding observations Z n = (Z(x 1 ), . . . , Z(x n )) , GP regression typically amounts to using the posterior mean m Z n (x,

z n ) = E(Z(x)|Z n = z n ) and variance k Z n (x) = Var(Z(x)|Z n = z n ), for z n ∈ R n .
Now, in the classification setting, Z is a latent process and Z n is not available. We propose here to predict 1 Z(x)>0 given the sign of Z n ; that is, we consider the conditional non-failure probability

P nf (x) = P ( Z(x) > 0| sign(Z n ) = s n ) ,
where

s n = (i 1 , . . . , i n ) with i 1 , . . . , i n ∈ {0, 1} and sign(v) = (1 v 1 >0 , . . . , 1 vn>0 ) for v = (v 1 , . . . , v n ) ∈ R n .
To our knowledge, there is no exact integral-free expression of P nf (x). The following lemma provides an expression of P nf (x) that is more amenable to numerical approximation.

Lemma 1. For s n ∈ {0, 1} n , let φ Zn sn be the conditional p.d.f. of Z n given sign(Z n ) = s n . Let us define, for a ∈ R, b ≥ 0, Φ a b = 1 -Φ a b if b = 0 1 -a>0 if b = 0 ,
where Φ is the standard Gaussian c.d.f. Then we have

P nf (x) = R n φ Zn sn (z n ) Φ -m Z n (x, z n ) k Z n (x) dz n .
Proof. The proof is deferred to Appendix A.

Because of Lemma 1, we suggest the following algorithm to approximate P nf (x).

Algorithm 1.

Sample z

n , . . . , z (N ) n ∈ R n from the p.d.f. φ Zn sn .

2. For any x ∈ D, approximate P nf (x) by

P nf (x) = 1 N N i=1 Φ -m Z n (x, z (i) n ) k Z n (x)
.

The benefit of Algorithm 1 is that Step 1, which is the most costly, has to be performed only once (independently of x ∈ D). In this step, z

n , . . . , z (N ) n can be sampled either by a basic rejection method (sampling Z n from its Gaussian p.d.f. φ Zn until the signs of Z n match i 1 , . . . , i n ), or by a more advanced rejection method called Rejection Sampling from the Mode (RSM) [START_REF] Maatouk | A New Rejection Sampling Method for Truncated Multivariate Gaussian Random Variables Restricted to Convex Sets[END_REF], or by more involved Markov Chain Monte Carlo (MCMC) methods [START_REF] Botev | The normal law under linear restrictions: simulation and estimation via minimax tilting[END_REF][START_REF] Taylor | RestrictedMVN: multivariate normal restricted by affine constraints[END_REF][START_REF] Pakman | Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians[END_REF]; see also their presentations in [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF]. Step 2 is not costly and can be repeated for many inputs x. {1 Z(x)>0 ; x ∈ D} is the same when Z has mean and covariance function µ 1 and k θ 1 or µ 2 and k θ 2 . Hence, it is sufficient to let {k Z θ ; θ ∈ Θ} be a set of stationary correlation function and to let µ ∈ R be unrestricted.

For s n ∈ {0, 1} n , let P µ,θ (sign(Z n ) = s n ) be the probability that sign(Z n ) = s n , calculated when Z has mean function µ and covariance function k θ . Then, the maximum likelihood estimators for µ and θ are

(μ, θ) ∈ argmax (µ,θ)∈R×Θ P µ,θ (sign(Z n ) = s n ). ( 1 
)
The likelihood criterion to optimize is the probability of an orthant of R n , evaluated under a multidimensional Gaussian distribution. Several advanced Monte Carlo methods exist to approximate this probability [START_REF] Botev | The normal law under linear restrictions: simulation and estimation via minimax tilting[END_REF][START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF][START_REF] Azzimonti | Estimating orthant probabilities of high-dimensional Gaussian vectors with an application to set estimation[END_REF]. In addition, stochastic approximations of the gradient of P µ,θ (sign(Z n ) = s n ) with respect to (µ, θ) can be obtained from conditional realizations of Z n given sign(Z n ) = s n . Calculations are provided in Appendix B.

Comparison with classical GPC

The model in Sections 2.1 and 2.2 can be written as

I i = 1 Z(x i )>0 for i = 1, . . . , n and I = 1 Z(x)>0 , (2) 
where I 1 , . . . , I n ∈ {0, 1} are observed and I ∈ {0, 1} is to be predicted. In the model (2), the parameters to estimate are the constant mean µ ∈ R and the correlation parameter θ for Z.

Another widely used Gaussian process-based classification model is the one given in [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Nickisch | Approximations for binary Gaussian process classification[END_REF]. In this model, there is again a Gaussian process Z and, conditionally on Z(x 1 ), . . . , Z(x n ), Z(x), the variables I 1 , . . . , I n , I are independent and take values 0 or 1. Furthermore, with Z n = (Z(x 1 ), . . . , Z(x n )) again:

P (I i = 1|Z n , Z(x)) = sig(σ f Z(x i )) for i = 1, . . . , n and P (I = 1|Z n , Z(x)) = sig(σ f Z(x)), (3) 
where sig : R → (0, 1) is a continuous strictly increasing function satisfying sig(t) → 0 as t → -∞ and sig(t) → 1 as t → +∞ and with σ f > 0. For instance, a classical choice in [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Nickisch | Approximations for binary Gaussian process classification[END_REF] is the logit function defined by sig(t) = e t /(1 + e t ).

In the model (3), it is assumed in [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Nickisch | Approximations for binary Gaussian process classification[END_REF] that the mean function of Z is zero1 . The parameter to estimate for the covariance function of Z is θ, from the set of stationary covariance functions {k θ ; θ ∈ Θ}. The parameter σ f also has to be estimated. Since the mean function of Z is assumed to be zero, one can see that pairs (θ 1 , σ f,1 ) and (θ 2 , σ f,2 ), for which

σ 2 f,1 k θ 1 = σ 2 f,2 k θ 2 ,
give the same distribution of I 1 , . . . , I n , I in [START_REF] Benassi | Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion[END_REF]. Thus, for model (3), we let {k θ ; θ ∈ Θ} be a set of correlation functions, and σ f ≥ 0 has to be estimated as well. We now compare our model ( 2) with (3). The framework (2) corresponds to the limit of the model in (3), as σ f → +∞. Indeed, let sgn(t) = 0 if t < 0, sgn(t) = 1/2 if t = 0 and sgn(t) = 1 if t > 0. Then, as observed in [START_REF] Nickisch | Approximations for binary Gaussian process classification[END_REF], when σ f = +∞, we have P (I = 1|Z n , Z(x)) = sgn(Z(x)) and P (I i = 1|Z n , Z(x)) = sgn(Z(x i )), for i = 1, . . . , n. Since the components of Z n take values 0 with zero probability, (2) and (3) indeed give identical distributions of (I 1 , . . . , I n , I) when σ f = +∞.

In the framework described in Section 1, repeated calls to the code function for the same input x either all crash or all successfully return an output value. Hence, model [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF] is more appropriate than model (3) (especially with small values of σ f ). Figure 1 shows the two models built on a 50 point design of experiments (obtained from the uniform distribution) on a 2D toy problem. While model (3), based on expectation-propagation (EP) [START_REF] Nickisch | Approximations for binary Gaussian process classification[END_REF], returns a function with smooth transitions, our model (2) returns a much sharper function, which is more appropriate for a framework of deterministic failures. In addition, model (3) returns conditional crash probabilities that are not equal to exactly zero or one for input points with observed binary outputs. By contrast, the conditional probabilities returned by our model [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF] are exactly zero or one for these input points with observed outputs. Again this is more appropriate for deterministic failures.

In terms of inference, we have discussed in Section 2.1 that, for a fixed θ, the only costly step for model [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF] is to sample realizations of the p.d.f. φ Zn sn . This p.d.f. is that of a truncated Gaussian vector (restricted to an orthant of R n ). Instead, the distribution to sample with model (3) (the conditional distribution of Z n given I 1 = i 1 , . . . , I n = i n ) admits a density on R n , which values at z 1 , . . . , z n are proportional to

  n j=1 sig(σ f z j ) i j [1 -sig(σ f z j )] 1-i j   φ Zn (z 1 , . . . , z n ), (4) 
where φ Zn is the Gaussian p.d.f. of Z n . The density in (4) is arguably more complicated than a truncated Gaussian density function, for which many implemented algorithms are available, as discussed above when introducing the references [START_REF] Botev | The normal law under linear restrictions: simulation and estimation via minimax tilting[END_REF][START_REF] Taylor | RestrictedMVN: multivariate normal restricted by affine constraints[END_REF][START_REF] Pakman | Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians[END_REF][START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF]. In [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Nickisch | Approximations for binary Gaussian process classification[END_REF], several approximations of the distribution in (4) by multidimensional Gaussian distributions are presented (in particular, the Laplace and EP approximations, the variational method and the Kullback-Leibler method). These approximations are usually relatively fast to obtain from local optimization methods. Yet, they are approximations of a non-Gaussian distribution, and do not come (to our knowledge) with theoretical guarantees. Similarly, for parameter estimation, the likelihood function of I 1 , . . . , I n is approximated, and the approximation is maximized with respect to θ and σ f . This yields a relatively fast procedure for estimating θ and σ f , for which, again, no theoretical guarantees are available.

In contrast, with model (2), the simulation from the truncated conditional distribution φ Zn sn , with s n = (i 1 , . . . , i n ) (Section 2.1) and the maximum likelihood estimation of θ and µ (Section 2.2) do not rely on approximations, and are based on Monte Carlo techniques rather than optimization. Hence, compared to model [START_REF] Benassi | Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion[END_REF], the inference in model (2) may come with computational cost, but has more accuracy guarantees. For instance, there exists a large body of literature guaranteeing the convergence of Monte Carlo algorithms for long runs [START_REF] Meyn | Markov chains and stochastic stability[END_REF].

We assert that, with model (3) and the Gaussian approximation discussed above, once the conditional distribution of (Z(x 1 ), . . . , Z(x n )) given I 1 = i 1 , . . . , I n = i n is approximated, it is not costly to obtain the conditional distribution of I given (I 1 , . . . , I n ) (see [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Nickisch | Approximations for binary Gaussian process classification[END_REF]). This is similar to Algorithm 1 for model [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF].

Finally, the constrained optimization problems addressed in the present article are of the form max x∈A f (x), where A is a fixed unknown subset. It is hence very natural to use the Bayesian prior {x ∈ D; Z(x) > 0} on A, which is obtained from our classification model [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF]. In contrast, classification model (3) does not provide a fixed set of admissible inputs, since any x in D has non-zero probabilities to yield both categories of the binary output. As a consequence, our suggested acquisition function in (9) below, and particularly its definition of the current admissible maximum M q , rely on classification model [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF]. Hence, also the proof of convergence in Section 4 relies on classification model (2).

Bayesian optimization with crash constraints

Let us now address the case of optimization in the presence of computational failures. This problem requires a model for the objective function in addition to the one for the constraint. In this section, we first consider the problem of joint modeling, then its use in a Bayesian optimization algorithm.

Joint modeling of the objective and constraint

Let us consider two independent continuous Gaussian processes Y and Z from D to R. In our framework, for an input point x, we can observe the pair

(sign[Z(x)], sign[Z(x)]Y (x)).
(

) 5 
That is, we observe whether the computation fails (Z(x) ≤ 0) or not, and in case of computation success, we observe the objective Y (x). For Z, as in Section 2, we select a constant mean µ Z ∈ R and a correlation parameter

θ Z ∈ Θ Z , where {k Z θ Z ; θ Z ∈ Θ Z } is a set of correlation functions with Θ Z ⊂ R p Z . For Y , we select a constant mean µ Y ∈ R and a covariance parameter θ Y ∈ Θ Y , where {k Y θ Y ; θ Y ∈ Θ Y } is a set of covariance functions with Θ Y ⊂ R p Y .
Let the pair (5) be observed for the input points x 1 , . . . , x n ∈ D. For j = 1, . . . , n we let I j = sign(Z(x j )) and consider the observation (i 1 , . . . , i n , i 1 y 1 , . . . , i n y n ) of

(I 1 , . . . , I n , I 1 Y (x 1 ), . . . , I n Y (x n )) . (6) 
In the next lemma, we show that a likelihood can be defined for these 2n observations. Since the distribution of I i Y (x i ) is a mixture of continuous and discrete distributions, we add a random continuous noise in case I i = 0. This random noise does not add or remove information, and is just a technicality in order to write the following lemma in terms of likelihood with respect to a simple fixed measure on R 2n .

Let us introduce some notation before stating the lemma. For s n = (i 1 , . . . , i n ) ∈ {0, 1} n , let Y n,sn be the vector extracted from (Y (x 1 ), . . . , Y (x n )) by keeping only the indices j ∈ {1, . . . , n} for which

i j = 1. Let φ Y µ Y ,θ Y ,sn be the p.d.f. of Y n,sn , calculated under the assumption that Y has a constant mean function µ Y and covariance function k Y θ Y . For v = (v 1 , . . . , v n ) ∈ R n ,
let v sn be the vector extracted from v by keeping only the indices j ∈ {1, . . . , n} for which i j = 1.

Lemma 2. For j = 1, . . . , n, let V j = I j Y (x j ) + (1 -I j )W j where W 1 , . . . , W n are in- dependent and follow the standard Gaussian distribution. Let f µ Z ,θ Z ,µ Y ,θ Y be the p.d.f. of (I 1 , . . . , I n , V 1 , . . . , V n ), defined with respect to the measure (⊗ n i=1 µ) ⊗ (⊗ n i=1 λ)
where µ is the counting measure on {0, 1} and λ is the Lebesgue measure on R. Then we have

f µ Z ,θ Z ,µ Y ,θ Y (i 1 , . . . , i n , v 1 , . . . , v n ) =P µ Z ,θ Z (I 1 = i 1 , . . . , I n = i n ) φ Y µ Y ,θ Y ,sn (v sn )     j=1,...,n i j =0 φ(v j )     ,
where φ is the standard Gaussian p.d.f. and P µ Z ,θ Z (•) is the probability of an event, calculated under the assumption that Z has mean and covariance functions µ Z and k Z θ Z . Proof. The proof is deferred to Appendix A.

In view of Lemma 2, the maximum likelihood estimators of µ

Z , θ Z , µ Y , θ Y are (μ Z , θZ ) ∈ argmax (µ Z ,θ Z )∈R×Θ Z P µ Z ,θ Z (I 1 = i 1 , . . . , I n = i n ) (7) and (μ Y , θY ) ∈ argmax (µ Y ,θ Y )∈R×Θ Y φ Y µ Y ,θ Y ,sn (Y q ) , (8) 
with Y q the realization of Y n,sn . The likelihood maximization in ( 7) can be tackled as in Section 2. The likelihood maximization in [START_REF] Ginsbourger | Kriging is well-suited to parallelize optimization[END_REF] corresponds to the standard maximum likelihood in Gaussian process regression.

Once the likelihood has been optimized, it is common practice to take the optimal mean and covariance parameters at face value and neglect the uncertainty associated with their estimation (the "plugin" approach), although more Bayesian alternatives have been proposed [START_REF] Benassi | Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion[END_REF], albeit at a higher computational cost. Note that, in practice, covariance parameters obtained from maximum likelihood estimation with data from deterministic functions can have undesirable properties in some cases. In particular, the estimates may depart substantially from oracle values (which would provide an efficient Gaussian process model for the deterministic function at hand) or even lead to failed runs in some cases [START_REF] Zhigljavsky | Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems[END_REF]. In particular, overly large variance estimates may be obtained when working with the squared exponential covariance function [START_REF] Zhigljavsky | Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems[END_REF]. For this reason, it is important to study the covariance parameter estimates that are obtained carefully, which we do in the numerical examples in Section 5. In addition, the squared exponential covariance function, leading to the potential issues described in [START_REF] Zhigljavsky | Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems[END_REF], is not considered in Section 5; the Matérn covariance functions are considered instead.

Under the plugin approach, we provide the conditional distributions of Z and Y in the following lemma, given the observations in [START_REF] Gelbart | Bayesian optimization with unknown constraints[END_REF].

Lemma 3. Conditionally on

I 1 = i 1 , I 1 Y (x 1 ) = i 1 y 1 , . . . , I n = i n , I n Y (x n ) = i n y n ,
the stochastic processes Y and Z are independent. The stochastic process Z follows the conditional distribution of Z given I 1 = i 1 , . . . , I n = i n and the stochastic process Y follows the conditional distribution of Y given Y n,sn = Y q , with Y n,sn as in Lemma 2 and with Y q defined as in [START_REF] Ginsbourger | Kriging is well-suited to parallelize optimization[END_REF].

Proof. The proof is deferred to Appendix A.

In other words, conditionally on the observations, Z is conditioned on its signs at x 1 , ..., x n , and Y is conditioned on its values at the x i 's for which Z(x i ) > 0. Hence, conditional inference on Z can be carried out as described in Section 2, and Y follows the standard Gaussian conditional distribution in Gaussian process regression.

Acquisition function and sequential design

Given the observations in [START_REF] Gelbart | Bayesian optimization with unknown constraints[END_REF], we now suggest an acquisition function that can be optimized to select a new observation point x n+1 ∈ D, given a set of existing n observations. We follow the classical improvement principle [START_REF] Mockus | The application of Bayesian methods for seeking the extremum[END_REF][START_REF] Jones | Efficient global optimization of expensive black box functions[END_REF], adapted to the partial observation setting. Thus, we choose:

x n+1 ∈ argmax x∈D E 1 Z(x)>0 [Y (x) -M q ] + F n , (9) 
where (with σ(•) the sigma-algebra generated by a set of random variables):

F n = σ (I 1 , I 1 Y (x 1 ), . . . , I n , I n Y (x n )) (10) 
denotes our observation event and:

M q = max i=1,...,n;Z(x i )>0 Y (x i ) with the convention M q = -∞ if Z(x 1 ) ≤ 0, . . . , Z(x n ) ≤ 0. We call E 1 Z(x)>0 [Y (x) -M q ] + F n the expected feasible improvement (EFI).
As in Lemma 3, for s n = (i 1 , . . . , i n ) ∈ {0, 1} n , we let Y n,sn be the vector extracted from (Y (x 1 ), . . . , Y (x n )) by keeping only the indices j ∈ {1, . . . , n} for which i j = 1. Thanks to this lemma we have:

E 1 Z(x)>0 [Y (x) -M q ] + F n =P ( Z(x) > 0| I 1 = i 1 , . . . , I n = i n ) E [Y (x) -M q ] + Y n,sn :=P nf (x) × EI(x). (11) 
Hence, the EFI is equal to the product of the conditional probability of non-failure P nf (x) (conditionally on the signs of Z) and of the standard expected improvement EI(x) (conditionally on the observed values of Y ). This criterion is similar to the one proposed in [START_REF] Schonlau | Global versus local search in constrained optimization of computer models[END_REF] and later [START_REF] Gelbart | Bayesian optimization with unknown constraints[END_REF] for quantifiable constraints. The criterion in [START_REF] Lindberg | Optimization under constraints by applying an asymmetric entropy measure[END_REF] is slightly different in order to favor the exploration of the boundary, but at the loss of a consistent definition of improvement:

EI(x) α 1 × 2P nf (x) (1 -P nf (x)) P nf (x) -2wP nf (x) + w 2 α 2 ,
with α 1 , α 1 and w positive parameters.

The conditional probability of non-failure P nf (x) can be approximated by P nf (x) from Algorithm 1. In this algorithm, the first step is costly but needs to be performed only once independently of x, hence is outside the optimization loop [START_REF] Ginsbourger | On degeneracy and invariances of random fields paths with applications in Gaussian process modelling[END_REF]. Then, P nf (x) is a smooth function of x that is not costly to evaluate.

Turning to the expected improvement EI(x), let q be the length of Y n,sn . For a realization (y 1 , . . . , y n ) of (Y (x 1 ), . . . , Y (x n )), let Y q be the vector extracted from (y 1 , . . . , y n ) by keeping only the indices j ∈ {1, . . . , n} for which i j = 1. Hence, Y q is a realization of Y n,sn .

Let x → m Y q (x, Y q ) and (x, y) → k Y q (x, y) be the conditional mean and covariance functions of Y given Y n,sn = Y q . Let also k Y q (x) = k Y q (x, x). It is well-known (see e.g. [START_REF] Jones | Efficient global optimization of expensive black box functions[END_REF]) that

EI(x) = m Y q (x, Y q ) -M q Φ   m Y q (x, Y q ) -M q k Y q (x)   + k Y q (x)φ   m Y q (x, Y q ) -M q k Y q (x)   , (12) 
with Φ and φ the c.d.f. and p.d.f. respectively of the standard Gaussian distribution. Solving the optimization problem in ( 9) is greatly facilitated by analytical gradients, which are available in our case. Calculations are provided in Appendix C. Remark 1. In the case of the global optimization of black box functions with statistical Bayesian models and in the absence of simulation failures, it is very common to select the observation points as maximizers of the expected improvement. Nevertheless, other ways of selecting the observation points exist, for instance maximizing the improvement probability (see [START_REF] Bull | Convergence rates of efficient global optimization algorithms[END_REF] in [START_REF] Žilinskas | Bi-objective decision making in global optimization based on statistical models[END_REF]). In addition, [START_REF] Žilinskas | Bi-objective decision making in global optimization based on statistical models[END_REF] recently showed that the expected improvement strategy and the improvement probability are both special cases of a bi-objective optimization problem that consists in maximizing the conditional expectation (for a maximization problem) and the conditional variance as a function of the observation points.

In future work, it would be interesting to extend the improvement probability and the bi-objective setting to the case of simulation failures, as is done in (9) and (11) for the expected improvement. Our motivation for focusing on the expected improvement is its wide use in the absence of simulation failures and the fact that we obtain the expression (11) which is computationally convenient, in conjunction with Algorithm 1. Furthermore, convergence proofs exist for the optimization algorithm based on the expected improvement [START_REF] Vazquez | Convergence properties of the expected improvement algorithm with fixed mean and covariance functions[END_REF][START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF], which we extend to the simulation failure case in the next section.

Convergence

In this section, we prove the convergence of the sequential choice of observation points given by ( 9), with the slight difference that ( 9) is replaced by

x n+1 ∈ argmax x∈D E      max u∈D P(Z(u)>0|Fn,x)=1 var(Y (u)|Fn,x)=0 Y (u) -Mq F n      , (13) 
with Mq = max

x∈D P(Z(x)>0|Fn)=1 k Y q (x)=0 Y (x) (14) 
and where F n,x is the sigma algebra generated by the random variables

I 1 , I 1 Y (x 1 ), . . . , I n , I n Y (x n ), 1 Z(x)>0 , 1 Z(x)>0 Y (x).
We note that M q corresponds to the maximum over the q observed values of Y , while Mq is the maximum of Y over the input points x for which it is known (after the n first observations) that Z(x) > 0 and that Y (x) = m Y q (x, Y q ). The algorithms given by ( 9) and ( 13) coincide when Z and Y are non-degenerate, that is (ξ(v i )) i=1,...,r has a non-degenerate distribution for any two-by-two distinct points v 1 , . . . , v r ∈ D, with ξ = Z and ξ = Y . These two algorithms can be different when Y or Z are degenerate (which can happen, for instance, when their trajectories are known to satisfy symmetry properties, see e.g. [START_REF] Ginsbourger | On degeneracy and invariances of random fields paths with applications in Gaussian process modelling[END_REF]).

Hence, using [START_REF] Jones | Efficient global optimization of expensive black box functions[END_REF] in the case of degenerate processes enables us to take into account that there are cases where some input points can be known to yield higher values of Y than max Y q and to yield strictly positive values of Z. Furthermore, [START_REF] Jones | Efficient global optimization of expensive black box functions[END_REF] takes into account the fact that, for u ∈ {x 1 , . . . , x n , x}, the values 1 Z(u)>0 and Y (u) can have zero uncertainty when 1 Z(x)>0 and 1 Z(x)>0 Y (x) are observed.

Following [START_REF] Vazquez | Convergence properties of the expected improvement algorithm with fixed mean and covariance functions[END_REF], we say that a Gaussian process ξ with continuous trajectories has the no-empty ball (NEB) property if, for any x 0 ∈ D and any > 0,

inf n∈N x 1 ,...,xn∈D ||x i -x 0 ||≥ , ∀i var(ξ(x 0 )|ξ(x 1 ), . . . , ξ(x n )) > 0.
Many standard covariance kernels correspond to Gaussian processes having the NEB property. Indeed, a sufficient condition for the NEB property is that the covariance kernel is stationary with a spectral density decreasing no faster than an inverse polynomial at infinity [START_REF] Vazquez | Convergence properties of the expected improvement algorithm with fixed mean and covariance functions[END_REF]. The most notable covariance function that does not have the NEB property is the squared exponential covariance function [START_REF] Vazquez | Pointwise consistency of the kriging predictor with known mean and covariance functions[END_REF], but other classical kernel families, such as the Matérn one used in our experiments, do.

We are now in position to state the convergence result.

Theorem 1. Let D be a compact hypercube of R d . Let (X i ) i∈N be such that X 1 = x 1 is fixed in D and, for n ≥ 1, X n+1 is selected by [START_REF] Jones | Efficient global optimization of expensive black box functions[END_REF].

θ Z = 0.1 θ Z = 0.3 θ Y = 0.1 case 1 case 3 θ Y = 0.3 case 2 case 4
Table 1: Studied ranges for the simulations.

1. Assume that Y and Z are Gaussian processes with continuous trajectories. Then, a.s. as n → ∞,

sup x∈D P(Z(x) > 0|F n )(m Y q (x, Y n,sn ) -Mq ) + → 0 and sup x∈D P(Z(x) > 0|F n )k Y q (x) → 0.
2. Furthermore, if Y and Z have the NEB property, then

(X i ) i∈N is a.s. dense in D. As a consequence max i=1,...,n;Z(X i )>0 Y (X i ) → max u∈D;Z(u)>0 Y (u) a.s. as n → ∞.
Proof. Theorem 1 is proved by combining and extending the techniques from [START_REF] Vazquez | Convergence properties of the expected improvement algorithm with fixed mean and covariance functions[END_REF][START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF]. The proof is deferred to Appendix A.

The first part of Theorem 1 states that, as n → ∞, all the input points x provide an asymptotically negligible expected improvement (similarly, a negligible information). Indeed, they either have a crash probability that goes to one, or a conditional variance that goes to zero and a conditional mean that is no larger than the current maximum Mq .

The second part of the theorem shows that, as a consequence, the sequence of observation points is dense as n → ∞ and that the observed maximum converges to the global maximum. The nature of this convergence result is similar to those given in the unconstrained case in [START_REF] Vazquez | Convergence properties of the expected improvement algorithm with fixed mean and covariance functions[END_REF][START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF]. This convergence result guarantees that our suggested algorithm will not leave unexplored regions. Another formulation of Theorem 1 is that our suggested algorithm will not be trapped in local maxima of Y .

Simulations on 2D Gaussian processes

In this section the behavior of our optimization algorithm with crash constraints, which we now call Expected Feasible Improvement with Gaussian Process Classification with signs (EFI GPC sign), is studied on simulated 2D Gaussian processes. We compare this algorithm with the optimization procedure defined in Section 3.2, but where the probabilities of satisfying the constraints are obtained from the classical Gaussian process classifier of [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Nickisch | Approximations for binary Gaussian process classification[END_REF] based on Expectation Propagation; see Section 2.3. This second algorithm is called EFI GPC EP.

Simulations setting

The two algorithms are run on a function f : [0, 1] 2 → R taken as a realization of a 2D Gaussian process Y . The correlation kernel is a tensorized Matern5 2 kernel with the same correlation length parameter θ Y in each direction [START_REF] Roustant | DiceOptim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization[END_REF]. Observation of f is conditioned on a function s : [0, 1] 2 → {0, 1} such that s is a realization of 1 Z>0 , where Z is a 2D Gaussian process independent of Y . Z is also chosen with a tensorized Matern5 2 kernel with the same parameter θ Z in each direction.

Two levels of ranges for θ Y and θ Z are considered to represent different behaviours of the functions f and s. Four cases are studied and summarized in Table 1. In our simulations, the processes Y and Z have mean µ Y = µ Z = 0 and variance σ 2 Y = σ 2 Z = 1. 1). Parameters are estimated by maximum likelihood.

The initial Design of Experiments (DoE) is a maximin Latin hypercube design of 9 points. Then, 41 points are sequentially added according to (15):

x n+1 ∈ argmax x∈D P nf (x) × EI(x). (15) 
Note that, as discussed above, P nf (x) is calculated either through our algorithm GPC sign or by a classical GPC, which we denote as GPC EP.

Results of our method EFI GPC sign

In the following we define the regret at step n

R n = max x∈[0,1] 2 ,Z(x)>0 Y (x) - max 1≤i≤n,Z(x i )>0 Y (x i ).
It represents the gap between the global maximum and the current maximum value of the output on the current design of experiments {x 1 , . . . , x n }. We consider 20 different realizations of Y and Z. In Figure 2 (left) the mean of R n is plotted along the iteration steps in the four different cases described in Table 1. It can be noticed that in each case the algorithm converges to the global maximum. The convergence speed depends on the range level. When the correlation length of the process Y is high, i.e. θ Y = 0.3, the problem appears to be much easier, independently of the correlation length of θ Z . To a lesser extent, a high range of the process Z also helps to accelerate the convergence. The evolution of the Number of Successes (N oS) with iteration is plotted in Figure 2 (right).

In case 2 and case 4 (θ Y = 0.3), the best point is rapidly found, exploration steps are then more numerous and the increase of N oS slows down. Range parameter estimations for the processes Y and Z are given in the top table of Table 2. The bottom table gives the estimation of trend and variance parameters for both processes. It can be observed that parameter estimation for the process Z is difficult since only signs are available. For instance, µ Z is overestimated. This reflects under-sampling of crash areas that provide no information on the process Y . The situation is different for the process Y . Despite failure events, available information and estimation accuracy increase with iterations. 

Comparison between EFI GPC sign and EFI GPC EP

The performances of both methods (EFI GPC sign and EFI GPC EP ) are compared on the same simulations as previously. It can be seen in Figure D.1 provided in Section D of the supplementary material that the regret of EFI GPC sign converges more rapidly to 0. This can be explained by the fact that the number of sucesses is more important with EFI GPC sign than with EFI GPC EP, since EFI GPC sign avoids crash areas more often (see Figure D.2 from the supplementary material). Parameter estimations of EFI GPC EP are given in Table 3. It can be observed that Z-parameter estimation can hardly be compared between methods since the classification models are different. Concerning the process Y , the estimated correlation parameters tend towards the real values with more iterations. We note that when the estimated values of σ 2 f are large, the EP classification model is then close to the sign classification model. An example of the progression of the algorithms in case 1 (θ Z = θ Y = 0.1) is given in Figures D. [START_REF] Benassi | Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion[END_REF] for EFI GPC sign and D.4 for EFI GPC EP in the supplementary material. Both algorithms evolve quite similarly but EFI GPC sign reaches the maximum a bit earlier. Moreover, the number of crashes is lower with EFI GPC sign than with EFI GPC EP.

Industrial case study

The aim of this section is to find the shape of an automotive fan system that maximizes its efficiency. The geometry of the turbomachinery (more precisely, that of the rotor blades) is described by 15 parameters: 5 chord lengths, 5 stagger angles and 5 heights of maximum camber. A drawing of a blade is provided in model based on iterative resolution of isentropic efficiency at medium radius, resolution of radial equilibrium, and deduction of blade angles through empirical correlations.

In this context we aim at selecting the geometric parameters that maximize the efficiency of the turbomachinery for a fixed input flow rate and for a fixed pressure rise. The ranges of the 15 geometric parameters are given in Table E.1 in the supplementary material.

For some parameter configurations the simulation does not converge and a NA is returned. These simulation failures can be related to the empirical rules injected in the implementation of the program, which limit its validity domain. Indeed, if the calculation comes out of the admissible domain, the empirical correlations become inaccurate and the simulation is not valid any more.

The issue is to find the optimal geometry considering these failures. A set of initial simulations has been run to explore failure events. We made each geometric parameter vary from its minimum to its maximum around three particular points on the diagonal of the hypercube in dimension 15; P oint1 is close to the minimal corner of the hypercube, P oint2 is at the center and P oint3 is close to the maximal corner of the hypercube. Coordinates are given in Table E.2 in the supplementary material.

The results of these simulations are represented in Figure 3. It can be observed that NAs are more frequent at the edges of the hypercube and near P oint1, although no obvious structure can be directly inferred. Besides, highest efficiencies are obtained around the center of the hypercube.

Both methods EFI GPC sign and EFI GPC EP are applied from an initial maximin LHS composed of 75 points. Among them 18 simulations failed. The output range of the valid simulations is roughly [0.3, 0.7] and the highest observed efficiency is 0.70. 100 simulations are then successively chosen according to [START_REF] Kandasamy | Neural architecture search with Bayesian optimisation and optimal transport[END_REF]. A tensorized matern5 2 kernel is chosen for both the Z and Y processes. As can be seen in Figure 4, a maximum efficiency of 0.75 is achieved at iteration 22 (resp. 25) for algorithm EFI GPC sign (resp. EFI GPC EP ). Several types of behavior of the algorithms can be observed along the iterations. At the beginning of the algorithms, simulations are added to locally improve efficiency; a single crash occurs over the 20 first points. Then, and especially above iteration 50, the algorithms explore other uncertainty areas and more failures occur. It can be noticed on Figure 4 that our algorithm EFI GPC sign avoids crash areas better than EFI GPC EP. Only 23 failures occur over 100 iterations with EFI GPC sign whereas 34 crashes occur with EFI GPC EP.

Conclusion

In this paper we have addressed the problem of global optimization of a black-box function under "crash" constraints. To do so, we revisited Gaussian process classification with a model based on observation signs. This model exhibited sharp classification boundaries, which were appropriate in our framework, and allowed us to propose the first algorithm with guaranteed convergence for this problem. Numerical experiments showed promising results, in particular as the algorithm causes fewer simulation failures (in a sense, wasted computational resources) that the current state-of-the-art.

For simplicity, we considered the case where simulations were run one at a time. A possible extension of this work would be to tackle the case of batch-sequential strategies, in the spirit of [START_REF] Ginsbourger | Kriging is well-suited to parallelize optimization[END_REF][START_REF] Wu | The parallel knowledge gradient method for batch Bayesian optimization[END_REF]. We believe that both theoretical and practical aspects could be addressed without major difficulty. Another extension with practical importance would be to tackle problems for which either the objective function and/or the failure events are stochastic; however, a large portion of the proofs proposed here would not apply directly. Finally, convergence rates have not been considered here. Following [START_REF] Bull | Convergence rates of efficient global optimization algorithms[END_REF][START_REF] Srinivas | Gaussian process optimization in the bandit setting: no regret and experimental design[END_REF], future work may address this problem. by definition of φ Zn sn (z n ), and that

P ( Z(x) > 0| Z(x 1 ) = z 1 , . . . , Z(x n ) = z n ) = Φ -m Z n (x, z n ) k Z n (x)
by Gaussian conditioning.

Proof of Lemma 2. For any measurable function f , by the law of total expectation and using the independence of Y , (W 1 , . . . , W n ) and Z, we have 

E [f (I 1 , . . . , I n , V 1 , . . . , V n )] = i 1 ,...,in∈{0,1} P µ Z ,θ Z (I 1 = i 1 , . . . , I n = i n ) E [f (i 1 , . . . , i n , i 1 Y (x 1 ) + (1 -i 1 )W 1 , . . . , i n Y (x n ) + (1 -i n )W n )] = i 1 ,...,in∈{0,1} P µ Z ,θ Z (I 1 = i 1 , . . . , I n = i n ) R n dvφ Y µ Y ,θ Y ,sn (v sn )     j=1,...,n i j =0 φ(v j )     f (i 1 , . . . , i n , v 1 , . . . , v n ) .
P (I 1 = i 1 , . . . , I n = i n ) E [ f (Y )g(Z)h(i 1 , . . . , i n )ψ(i 1 Y (x 1 ), . . . , i n Y (x n ))| I 1 = i 1 , . . . , I n = i n ] = i 1 ,...,in∈{0,1} P (I 1 = i 1 , . . . , I n = i n ) h(i 1 , . . . , i n ) E [f (Y )ψ(i 1 Y (x 1 ), . . . , i n Y (x n ))] E [ g(Z)| I 1 = i 1 , . . . , I n = i n ] = i 1 ,...,in∈{0,1} P (I 1 = i 1 , . . . , I n = i n ) h(i 1 , . . . , i n ) E [ψ(i 1 Y (x 1 ), . . . , i n Y (x n ))E [ f (Y )| Y n,sn ]] E [ g(Z)| I 1 = i 1 , . . . , I n = i n ] .
The last display can be written as, with L n the distribution of

I 1 , . . . , I n , I 1 Y (x 1 ), . . . , I n Y (x n ), R 2n dL n (i 1 , . . . , i n , i 1 y 1 , . . . , i n y n )h(i 1 , . . . , i n )ψ(i 1 y 1 , . . . , i n y n ) E [ f (Y )| Y n,sn = Y q ] E [ g(Z)| I 1 = i 1 , . . . , I n = i n ] ,
where Y q is as defined in the statement of the lemma. This concludes the proof.

We now address the proof of Theorem 1. We let (X i ) i∈N be the random observation points, such that X i is obtained from ( 13) and ( 14) for i ∈ N. The next lemma shows that conditioning on the random observation points and observed values works "as if" the observation points X 1 , . . . , X n were non-random. Lemma 4. For any x 1 , . . . , x k ∈ D, i 1 , ..., i k ∈ {0, 1} k and i 1 y 1 , ..., i k y k ∈ R k , the conditional distribution of (Y, Z) given

X 1 = x 1 , sign(Z(X 1 )) = i 1 , sign(Z(X 1 ))Y (X 1 ) = i 1 y 1 , . . . , X k = x k , sign(Z(X k )) = i k , sign(Z(X k ))Y (X k ) = i k y k
is the same as the conditional distribution of (Y, Z) given

sign(Z(x 1 )) = i 1 , sign(Z(x 1 ))Y (x 1 ) = i 1 y 1 , . . . , sign(Z(x k )) = i k , sign(Z(x k ))Y (x k ) = i k y k .
Proof. This lemma can be shown similarly as Proposition 2.6 in [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF].

Proof of Theorem 1. For k ∈ N, we remark that F k is the sigma-algebra generated by

X 1 , sign(Z(X 1 )), sign(Z(X 1 ))Y (X 1 ), . . . , X k , sign(Z(X k )), sign(Z(X k ))Y (X k ).
We let E k , P k and var k denote the expectation, probability and variance conditionally on F k . For x ∈ D, we let E k,x , P k,x and var k,x denote the expectation, probability and variance conditionally on X 1 , sign(Z(X 1 )), sign(Z(X 1 ))Y (x 1 ), . . . , X k , sign(Z(X k )), sign(Z(X k ))Y (X k ), x, sign(Z(x)), sign(Z(x))Y (x).

We let σ 2 k (u) = var k (Y (u)), m k (u) = E k [Y (u)] and P k (u) = P k (Z(u) > 0). We also let

σ 2 k,x (u) = var k,x (Y (u)), m k,x (u) = E k,x [Y (u)
] and P k,x (u) = P k,x (Z(u) > 0). With these notations, the observation points satisfy, for k ∈ N,

X k+1 ∈ argmax x∈D E k    max u:P k,x (u)=1 σ k,x (u)=0 Y (u) -M k    , (17) 
where

M k = max u:P k (u)=1 σ k (u)=0 Y (u).
We first show that (17) can be defined as a stepwise uncertainty reduction (SUR) sequential design [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF]. We have

X k+1 ∈argmax x∈D E k    max P k,x (u)=1 σ k,x (u)=0 Y (u) -max P k (u)=1 σ k (u)=0 Y (u)    ( 18 
)
∈argmin x∈D E k   Ek,x max Z(u)>0 Y (u) -max P k,x (u)=1 σ k,x (u)=0 Y (u)   
since the second term in [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF] does not depend on x and from the law of total expectation. We let

H k = E k    max Z(u)>0 Y (u) -max P k (u)=1 σ k (u)=0 Y (u)    and H k,x = E k,x    max Z(u)>0 Y (u) -max P k,x (u)=1 σ k,x (u)=0 Y (u)    .
Then we have for k ≥ 1

X k+1 ∈ argmin x∈D E k (H k,x ) .
We have, using the law of total expectation, and since 

E k,x max P k,x (u)=1,σ k,x (u)=0 Y (u) = max P k,x (u)=1,σ k,x (u)=0 Y (u), H k -E k (H k+1 ) =E k     max P k,X k+1 (u)=1 σ k,X k+1 (u)=0 Y (u) -max P k (u)=1 σ k (u)=0 Y (u)     ≥ 0 since, for all u, x ∈ D, σ k,x ( 
E k    max P k,x (u)=1 σ k,x (u)=0 Y (u) -max P k (u)=1 σ k (u)=0 Y (u)    (19) 
≥ sup x∈D E k 1 Z(x)>0 (Y (x) -M k ) + ≥ sup x∈D P k (x)γ(m k (x) -M k , σ k (x)),
from Lemma 3 and (12), where

γ(a, b) = aΦ a b + bφ a b .
Recall from Section 3 in [START_REF] Vazquez | Convergence properties of the expected improvement algorithm with fixed mean and covariance functions[END_REF] that γ is continuous and satisfies γ(a, b) > 0 if b > 0 and γ(a, b) ≥ a if a > 0. We have for k ∈ N, 0 ≤ σ k (u) ≤ max v∈D var(Y (v)) < ∞. Also, with the same proof as that of Proposition 2.9 in [START_REF] Bect | A supermartingale approach to Gaussian process based sequential design of experiments[END_REF], we can show that the sequence of random functions (m k ) k∈N converges a.s. uniformly on D to a continuous random function m ∞ on D. Thus, from [START_REF] Maatouk | A New Rejection Sampling Method for Truncated Multivariate Gaussian Random Variables Restricted to Convex Sets[END_REF], by compacity, we have, a.s. as k → ∞,

sup x∈D P k (x)(m k (x) -M k ) + → 0 and sup x∈D P k (x)σ k (x) → 0. Hence, Part 1. is proved.
Let us address Part 2. For all τ ∈ N, consider fixed v 1 , . . . , v Nτ ∈ D for which max u∈D min i=1,...,Nτ ||u -

v i || ≤ 1/τ . Consider the event E τ = {∃u ∈ D; inf i∈N ||X i -u|| ≥ 2/τ }. Then, E τ implies the event E v,τ = ∪ Nτ j=1 E v,τ,j where E v,τ,j = {inf i∈N ||X i -v j || ≥ 1/τ }.
Let us now show that P(E v,τ,j ) = 0 for j = 1, . . . , N τ . Assume that E v,τ,j ∩ C holds, where C is the event in Part 1. of the theorem, with P(C) = 1. Since Y has the NEB property, we have lim inf k→∞ σ k (v j ) > 0. Hence, P k (v j ) → 0 as k → ∞ since C is assumed. We then have var

(1 Z(v j )>0 |1 Z(X 1 )>0 , . . . , 1 Z(X k )>0 ) = P k (v j )(1 -P k (v j )) → 0 (20) a.s. as k → ∞. But we have var(1 Z(v j )>0 |1 Z(X 1 )>0 , . . . , 1 Z(X k )>0 ) =E 1 Z(v j )>0 -P k (v j ) 2 1 Z(X 1 )>0 , . . . , 1 Z(X k )>0 =E E 1 Z(v j )>0 -P k (v j ) 2 Z(x 1 ), . . . , Z(x k ) 1 Z(X 1 )>0 , . . . , 1 Z(X k )>0 . Since P k (v j ) is a function of Z(x 1 ), . . . , Z(x n ), we obtain var(1 Z(v j )>0 |1 Z(X 1 )>0 , . . . , 1 Z(X k )>0 ) ≥E var 1 Z(v j )>0 |Z(x 1 ), . . . , Z(x k ) 1 Z(X 1 )>0 , . . . , 1 Z(X k )>0 =E g Φ -m k (v j ) σ k (v j ) 1 Z(X 1 )>0 , . . . , 1 Z(X k )>0 ,
with g(t) = t(1 -t) and with Φ as in Lemma 1. We let S = sup k∈N |m k (v j )| and s = inf k∈N σ k (v j ). Then, from the uniform convergence of m k discussed below and from the NEB property of Z, we have P(E S,s ) = 1 where E S,s = {S < +∞, s > 0}. Then, if E v,τ,j ∩ C ∩ E S,s holds, we have

var(1 Z(v j )>0 |1 Z(X 1 )>0 , . . . , 1 Z(X k )>0 ) ≥E g Φ S s 1 Z(X 1 )>0 , . . . , 1 Z(X k )>0 → a.s. k→∞ E g Φ S s F Z,∞ ,
where F Z,∞ = σ( 1 Z(X i )>0) i∈N ) from Theorem 6.23 in [START_REF] Kallenberg | Foundations of Modern Probability[END_REF]. Almost surely, conditionally on F Z,∞ we have a.s. S < ∞ and s > 0. Hence we obtain that, on the event E v,τ,j ∩ A with

P(A) = 1, var(1 Z(v j )>0 |1 Z(X 1 )>0 , . . . , 1 Z(X k )>0
) does not go to zero. Hence, from (20), we have P(E v,τ,j ) = 0. This yields that (X i ) i∈N is a.s. dense in D. Hence, since {u; Z(u) > 0} is an open set, we have max Let s n = (i 1 , . . . , i n ) ∈ {0, 1} n be fixed. Assume that the likelihood P µ,θ (sign(Z n ) = s n ) has been evaluated by Pµ,θ (sign(Z n ) = s n ). Assume also that realizations z 2 (zn-µ1n) k Z θ (x,x) -1 (zn-µ1n)

i;Z(X i )>0 Y (X i ) → max Z(u)>0 Y ( 
(1 n k Z θ (x, x) -1 (z n -µ1 n ))dz n =P µ,θ (sign(Z n ) = s n )E µ,θ 1 n k Z θ (x, x) -1 (Z n -µ1 n ) sign(Z n ) = s n ) ,
where E µ,θ means that the conditional expectation is calculated under the assumption that Z has constant mean function µ and covariance function k Z θ . Hence we have the stochastic approximation ∇µ for ∂/∂µP µ,θ (sign(Z n ) = s n ) given by ∇µ = Pµ,θ (sign

(Z n ) = s n ) 1 N N i=1
1 n k Z θ (x, x) -1 (z (i) n -µ1 n ).

Derivating with respect to θ i for i = 1, . . . , p yields, with adj(M ) the adjugate of a matrix M ,

∂ ∂θ i P µ,θ (sign(Z n ) = s n ) = Z -1 2 |k Z θ (x, x)| -1 Tr adj(k Z θ (x, x)) ∂k Z θ (x, x) ∂θ i + 1 2 (z n -µ1 n ) ∂k Z θ (x, x) ∂θ i k Z θ (x, x) -1 ∂k Z θ (x, x) ∂θ i (z n -µ1 n ) 1 (2π) n/2 1 |k Z θ (x, x)| e - 1 
2 (zn-µ1n) k Z θ (x,x) -1 (zn-µ1n) dz n = P µ,θ (sign

(Z n ) = s n ) E µ,θ -1 2 |k Z θ (x, x)| -1 Tr adj(k Z θ (x, x)) ∂k Z θ (x, x) ∂θ i + 1 2 (Z n -µ1 n ) ∂k Z θ (x, x) ∂θ i k Z θ (x, x) -1 ∂k Z θ (x, x) ∂θ i (Z n -µ1 n ) sign(Z n ) = s n ) .
Hence we have the stochastic approximation ∇θ i for ∂/∂θ i P µ,θ (sign(Z n ) = s n ) given by ∇θ i = Pµ,θ (sign

(Z n ) = s n ) 1 N N i=1 -1 2 |k Z θ (x, x)| -1 Tr adj(k Z θ (x, x)) ∂k Z θ (x, x) ∂θ i + 1 2 (z (i) n -µ1 n ) ∂k Z θ (x, x) ∂θ i k Z θ (x, x) -1 ∂k Z θ (x, x) ∂θ i (z (i) n -µ1 n ) .
Remark 2. Several implementations of algorithms are available to obtain the realizations z

(1) n , . . . , z

(N )
n , as discussed after Algorithm 1. It may also be the case that some implementations provide both the estimate Pµ,θ (sign(Z n ) = s n ) and the realizations z C Expressions of the mean and covariance of the conditional Gaussian process and of the gradient of the acquisition function

Let µ Y and k Y be the mean and covariance functions of Y . Treating x 1 , . . . , x n as ddimensional line vectors, let x q be the matrix extracted from (x 1 , . . . , x n ) by keeping only the lines which indices j satisfy i j = 1. We first recall the classical expressions of GP conditioning:

m Y q (x, Y q ) = µ Y + k Y (x, x q ) k Y (x q , x q ) -1 Y q -µ Y k Y q (x, x ) = k Y (x, x ) -k Y (x, x q ) k Y (x q , x q ) -1 k Y (x q , x ).
∇ x m Y q (x, Y q ) and ∇ x k Y q (x, x) are straightforward provided that ∇ x k Y (x, y) is available:

∇ x m Y q (x, Y q ) = [∇ x k Y (x, x q )] k Y (x q , x q ) -1 Y q -µ Y ∇ x k Y q (x, x) = ∇ x k Y (x,
x) -2k Y (x, x q ) k Y (x q , x q ) -1 ∇ x k Y (x q , x).

Then:

∇ x EI q (x) = Φ   m Y q (x, Y q ) -M q k Y q (x, x)   ∇ x m Y q (x, Y q )+φ   M q -m Y q (x, Y q ) k Y q (x, x)   1 2 k Y q (x, x)
∇ x k Y q (x, x).

For P nf (x), using the approximation of Algorithm 1, we have:

P nf (x) = 1 N N i=1 Φ -m Z n (x, z (i) n ) k Z n (x, x)
, with k Z n (x, x) as k Y n (x, x) and

m Z n (x, z (i) n ) = µ Z + k Z (x, x) k Z (x, x) -1 z (i) n -µ Z .
Applying the standard differentiation rules delivers:

∇ x P nf (x) = 1 N N i=1 φ m Z n (x, z (i) n ) k Z n (x, x) 1 k Z n (x, x) ∇ x m Z n (x, z (i) n ) - m Z n (x, z (i) n ) 2[k Z n (x, x)] 3/2 ∇ x k Z n (x, x) .
The gradient of the acquisition function can then be obtained using the product rule.

Figure 1 :

 1 Figure 1: GPC model (3) based on EP and the logit function (left) and our GPC model (2) (right).

Figure 2 :

 2 Figure 2: Evolution of average R n (left) and number of successes (NoS, right) along the iteration steps. Four cases of range values are considered (see Table1). Parameters are estimated by maximum likelihood.

(

  

  Figure E.1 in Section E in the supplementary material. A turbomachinery program has been developed by researchers at the LMFA (Laboratory of acoustics and fluid dynamics) in Ecole Centrale Lyon. It is a multi-physics 1D

Figure 3 :

 3 Figure 3: Evolution of the efficiency (output of the code) from min to max in each direction around P oint1, P oint2 and P oint3. The colors indicate the different curves when varying the different input variables. A crash at a given value of x is indicated by the absence of the curve value. The bullets are used to highlight the beginning of the crash ranges for the input variables. To simplify the reading, points are plotted in a normalized domain [-1, 1] 15 .

Figure 4 :

 4 Figure 4: Efficiency values for 175 geometric configurations. The first 75 points come from the initial DoE and are plotted in black. The 100 other points have been added by our optimization algorithms with failures (a) EFI GPC sign and (b) EFI GPC EP. Crashes are represented by vertical lines. On Figure (a) (resp. (b)), for EFI GPC sign (resp. EFI GPC EP ), the best point is represented by a magenta diamond (resp. blue square) and is found at simulation number 97 (resp. 100).

  This concludes the proof by definition of a p.d.f. Proof of Lemma 3. Consider measurable functions f (Y ), g(Z), h(I 1 , . . . , I n ) and ψ(I 1 Y (x 1 ), . . . , I n Y (x n )). We have, by independence of Y and Z, E [f (Y )g(Z)h(I 1 , . . . , I n )ψ(I 1 Y (x 1 ), . . . , I n Y (x n ))] = i 1 ,...,in∈{0,1}

  u) a.s. as n → ∞. B Stochastic approximation of the likelihood gradient for Gaussian process based classification In Appendixes B and C, for two matrices A and B of sizes a × d and b × d, and for a function h : R d × R d → R, let h(A, B) be the a × b matrix [h(a i , b j )] i=1,...,a,j=1,...,b , where a i and b j are the lines i and j of A and B.

1 2

 1 conditional distribution of Z n given sign(Z n ) = s n , are available. Let Z = {z n ∈ R n : sign(z n ) = s n }. Treating x 1 , . . . , x n as d-dimensional line vectors, let x be the matrix (x 1 , . . . , x n ) . Then we haveP µ,θ (sign(Z n ) = s n ) = (zn-µ1n) k Z θ (x,x) -1 (zn-µ1n) dz n ,where 1 n = (1, . . . , 1) ∈ R n and |.| denotes the determinant.Derivating with respect to µ yields∂ ∂µ P µ,θ (sign(Z n ) = s n ) =

Table 2 :

 2 Method EFI GPC sign at step 10 and 41: (a) Estimation of θ Z and θ Y , (b) Estimation of µ Z (true value is 0), µ Y (true value is 0) and σ 2

				a) Range parameters		
		θ Z	θZ	θZ	θ Y	θY	θY
		true value iteration 10 iteration 41 true value iteration 10 iteration 41
	Case 1	0.1	0.44 (0.33) 0.37 (0.30)	0.1	0.17 (0.23) 0.10 (0.02)
	Case 2	0.1	0.32 (0.29) 0.24 (0.25)	0.3	0.36 (0.23) 0.32 (0.16)
	Case 3	0.3	0.52 (0.35) 0.41 (0.30)	0.1	0.11 (0.08) 0.09 (0.02)
	Case 4	0.3	0.49 (0.34) 0.51 (0.39)	0.3	0.34 (0.18) 0.28 (0.12)
				(b) Trend and variance parameters	
		μZ	μZ	μY	μY	σ2 Y	σ2 Y
		iteration 10 iteration 41 iteration 10 iteration 41 iteration 10 iteration 41
	Case 1 0.30 (0.26) 0.64 (0.85) -0.03 (0.57) -0.09 (0.31) 0.68 (0.49) 0.82 (0.32)
	Case 2 0.27 (0.33) 0.41 (0.39) 0.03 (0.70) 0.00 (0.53) 0.79 (0.51) 0.89 (0.70)
	Case 3 0.41 (0.33) 0.51 (0.41) -0.13 (0.36) -0.06 (0.30) 0.66 (0.30) 0.83 (0.21)
	Case 4 0.26 (0.20) 0.48 (0.41) -0.16 (0.56) -0.07 (0.49) 0.74 (0.58) 0.75 (0.51)

Y (true value is 1). Mean (standard deviation) over 20 simulations.

Table 3 :

 3 Mean and standard deviation (in parentheses) estimates (over 20 runs) of the kernel parameters at two steps of the EFI GPC EP method.

				(a) Range parameters		
		θ Z	θZ	θZ	θ Y	θY	θY
		true value iteration 10 iteration 41 true value iteration 10 iteration 41
	Case 1	0.1	0.30 (0.35) 0.13 (0.10)	0.1	0.26 (0.48) 0.10 (0.03)
	Case 2	0.1	0.23 (0.28) 0.18 (0.19)	0.3	0.98 (1.54) 0.36 (0.16)
	Case 3	0.3	0.47 (0.37) 0.34 (0.23)	0.1	0.21 (0.45) 0.12 (0.16)
	Case 4	0.3	0.44 (0.35) 0.35 (0.29)	0.3	0.48 (0.73) 0.43 (0.73)
				(b) Trend and variance parameters	
		σ2 f	σ2 f	μY	μY	σ2 Y	σ2 Y
		iteration 10 iteration 41 iteration 10 iteration 41 iteration 10 iteration 41
	Case 1 8.91 (2.77) 10.00 (0.00) -0.10 (0.55) -0.12 (0.33) 0.70 (0.54) 0.77 (0.29)
	Case 2 9.79 (0.84) 10.00 (0.00) 0.04 (0.73) 0.14 (0.53) 1.03 (0.77) 0.94 (0.73)
	Case 3 9.44 (2.07) 10.00 (0.00) -0.11 (0.37) -0.06 (0.35) 0.62 (0.33) 0.81 (0.26)
	Case 4 8.37 (3.28)	9.47 (2.29) -0.21 (0.55) -0.09 (0.56) 1.11 (1.81) 0.92 (0.84)

A constant mean function could be incorporated and estimated with no additional complexity.
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A Proofs

Proof of Lemma 1. With φ Zn the p.d.f. of Z n and with s n = (i 1 , . . . , i n ) , we have

The equation ( 16) is obtained by observing that