Rational real algebraic models of compact differential surfaces with circle actions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Rational real algebraic models of compact differential surfaces with circle actions

Résumé

We give an algebro-geometric classification of smooth real affine algebraic surfaces endowed with an effective action of the real algebraic circle group $\mathbb{S}^1$ up to equivariant isomorphisms. As an application, we show that every compact differentiable surface endowed with an action of the circle $S^1$ admits a unique smooth rational real quasi-projective model up to $\mathbb{S}^1$-equivariant birational diffeomorphism.
Fichier principal
Vignette du fichier
RealModelsDiffS1-Surf.pdf (1.2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02097339 , version 1 (11-04-2019)

Identifiants

Citer

Adrien Dubouloz, Charlie Petitjean. Rational real algebraic models of compact differential surfaces with circle actions. 2019. ⟨hal-02097339⟩
45 Consultations
103 Téléchargements

Altmetric

Partager

More