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RATIONAL REAL ALGEBRAIC MODELS OF COMPACT DIFFERENTIAL SURFACES WITH
CIRCLE ACTIONS

ADRIEN DUBOULOZ AND CHARLIE PETITJEAN

Dedicated to Lucy Moser-Jauslin on her 60th birthday

ABSTRACT. We give an algebro-geometric classification of smooth real affine algebraic surfaces endowed with
an effective action of the real algebraic circle group S1 up to equivariant isomorphisms. As an application, we
show that every compact differentiable surface endowed with an action of the circle S1 admits a unique smooth
rational real quasi-projective model up to S1-equivariant birational diffeomorphism.

INTRODUCTION

A description of normal complex affine surfaces admitting an effective action of the complex multiplica-
tive group Gm,C = (C∗,×) was given by Flenner and Zaidenberg [9] in terms of their graded coordinate
rings. Generalizing earlier constructions due to Dolgachev-Pinkham-Demazure [7, 13, 6], they described
these graded rings as rings of sections of divisors with rational coefficients on suitable one-dimensional ratio-
nal quotients of the given action. This type of presentation, which is nowadays called the DPD-presentation
of normal affine surfaces with Gm,C-actions, was generalized vastly by Altmann and Hausen [1] to give pre-
sentations of normal complex affine varieties of any dimension endowed with effective actions of tori Grm,C in
terms of so-called polyhedral Weil divisors on suitable rational quotients obtained as limits of GIT quotients.

For normal affine varieties over arbitrary base fields k endowed with effective actions of non necessarily
split tori, that is, commutative k-groups schemes G whose base extension to a separable closure ks of k are
isomorphic to split tori Grm,,ks , only partial extensions of the Altmann-Hausen formalism are known so far.
Besides the toric case considered by several authors, a first step was made by Langlois [10] who obtained
a generalization to affine varieties endowed with effective actions of complexity one. In another direction,
Liendo and the first author [8] recently extended the Altmann-Hausen framework to describe normal real
affine varieties endowed with an effective action of the 1-dimensional non-split real torus, the circle

S1 = Spec(R[u, v]/(u2 + v2 − 1)) ∼= SO2(R).

The common approach in these generalizations is based on the understanding of the interplay between the
algebro-combinatorial data in an Altmann-Hausen presentation of the variety with split torus action obtained
by base extension to a separable closure ks of the base field k and Galois descent with respect to the Galois
group Gal(ks/k). In the real case, this amounts to describe normal real affine varieties as normal complex
affine varieties endowed with an anti-regular involution σ, called a real structure. The results in [8] then
essentially consist of a description of S1-actions on normal real affine varieties in the language of [1] extended
to complex affine varieties with real structures.

The goal of this article is to give a survey of this description and some applications in the special case of
normal real affine surfaces, formulated in the language of DPD-presentations of Flenner and Zaidenberg. The
first main result, Theorem 14, describes the one-to-one correspondence between normal real affine surfaces
with effective S1-actions and certain pairs (D,h) called real DPD-pairs on smooth real affine curves C,
consisting of a Weil Q-divisor D on the complexification of C and rational function h on C. We also
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characterize which such pairs correspond to smooth real affine surfaces. A second main result, Theorem 20,
consists of a classification of real S1-orbits on a smooth real affine surface in relation to the structure of the
real fibers of the quotient morphism for the S1-action.

To give an illustration of the flavor of these results, consider the smooth complex affine surface

S = {xy2 = 1− z2} ⊂ Spec(C[x±1, y, z]).

The group Gm,C acts effectively on S by t · (x, y, z) = (t2x, t−1y, z) and the categorical quotient for this
action is the projection π = prz : S → A1

C = Spec(C[z]). All fibers of π consist of a unique Gm,C-orbit,
isomorphic to Gm,C acting on itself by translations, except for π−1(−1) and π−1(1) which are isomorphic
to Gm,C on which Gm,C acts with stabilizer equal to the group µ2 of complex square roots of unity. The
composition of the involution t 7→ t−1 of Gm,C with the complex conjugation defines a real structure σ0 on
Gm,C for which the pair (Gm,C, σ0) describes a real algebraic group isomorphic to S1. The composition of
the involution (x, y, z) 7→ (x−1, xy, z) of S with the complex conjugation defines a real structure σ on S,
making the pair (S, σ) into a smooth real affine surface. The Gm,C-action on S is compatible with these two
real structures and defines a real action of S1 on the real affine surface (S, σ). The quotient morphism π can
in turn be interpreted as a real morphism π : (S, σ) → A1

R = Spec(R[z]) which is the categorical quotient
of (S, σ) for the S1-action in the category of real algebraic varieties. A real DPD-pair (D,h) describing the
S1-action on (S, σ) is then given for instance by the Weil Q-divisor D = 1

2{−1} + 1
2{1} on A1

C and the
rational function h = 1 − z2 on A1

R. The fibers of π : (S, σ) → A1
R over real points c of A1

R all consist of a
single S1-orbit which is isomorphic to S1-acting on itself by translations if c ∈]− 1, 1[, to S1 acting on itself
with stabilizer µ2 if c ∈ {−1, 1}, and to the real affine curve without real point {u2 + v2 = −1} otherwise.

The set of real points of the above surface (S, σ) endowed with the induced Euclidean topology is dif-
feomorphic to the Klein bottle K (see subsection 3.1.4). Furthermore, the S1-action on (S, σ) induces a
differentiable action of the real circle S1 on K which coincides with the standard S1-action on K viewed as
the S1-equivariant connected sum RP2]S1RP2 of two copies of the projective plane RP2. In other words,
(S, σ) endowed with its S1-action is an equivariant real affine algebraic model of the Klein bottleK endowed
with its differentiable S1-action. By a result of Comessatti [5], a compact connected differential manifold
of dimension 2 without boundary admits a projective rational real algebraic model if and only if it is non-
orientable or diffeomorphic to the sphere S2 or the torus T = S1 × S1. It was established later on by
Biswas and Huisman [3] that such a projective model is unique up to so-called birational diffeomorphisms,
that is, diffeomorphisms induced by birational maps defined at every real point and admitting inverses of the
same type. As an application of the real DPD-presentation formalism, we establish the following uniqueness
property of rational models of compact differentiable surfaces with S1 -actions among all smooth rational
quasi-projective real algebraic surfaces with S1-actions.

Theorem 1. A connected compact real differential manifold of dimension 2 without boundary endowed with
an effective differentiable S1-action admits a smooth rational quasi-projective real algebraic model with
S1-action, unique up to S1-equivariant birational diffeomorphism.

The article is organized as follows. In the first section we review the equivalence of categories between
quasi-projective real varieties and quasi-projective complex varieties equipped with real structures and recall
the interpretation of S1-actions on such varieties as forms of Gm,C-actions on complex varieties with real
structures. We also describe a correspondence between S1-torsors and certain pairs consisting of a invert-
ible sheaf and a rational function on their base space which to our knowledge did not appear before in the
literature. The second section is devoted to the presentation of smooth real affine surfaces with S1-action in
terms of real DPD-pairs and to the study of their real S1-orbits. In the third section, we first present differ-
ent constructions of rational projective and affine real algebraic models of compact differential surfaces with
S1-actions and then proceed to the proof of Theorem 1.
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1. PRELIMINARIES

In what follows the term algebraic variety over field k refers to a geometrically integral schemeX of finite
type over k. In the sequel, k will be equal to either R or C, and we will say that X is a real, respectively
complex, algebraic variety.

1.1. Real and complex quasi-projective algebraic varieties. Every complex algebraic variety V can be
viewed as a scheme over the field R of real numbers via the composition of its structure morphism p : V →
Spec(C) with the étale double cover Spec(C)→ Spec(R) induced by the inclusion R ↪→ C = R[i]/(i2 +1).
The Galois group Gal(C/R) = µ2 acts on Spec(C) by the usual complex conjugation z 7→ z.

Definition 2. A real structure on a complex algebraic variety V consists of an involution of R-scheme σ of
V which lifts the complex conjugation, so that we have a commutative diagram

V
σ //

p

��

V

p

��
Spec(C)

z 7→z //

%%

Spec(C)

yy
Spec(R).

When V = Spec(A) is affine, a real structure σ is equivalently determined by its comomorphism σ∗ : A →
A, which is an involution of A viewed as an R-algebra.

A real morphism (resp. real rational map) between complex algebraic varieties with real structures
(V ′, σ′) and (V, σ) is a morphism (resp. a rational map) of complex algebraic varieties f : V ′ → V such that
σ ◦ f = f ◦ σ′ as morphisms of R-schemes.

For every real algebraic variety X , the complexification

XC = X ×R C := X ×Spec(R) Spec(C)

of X comes equipped with a canonical real structure σX given by the action of Gal(C/R) by complex
conjugation on the second factor. Conversely, if a complex variety p : V → Spec(C) is equipped with a real
structure σ and covered by σ-invariant affine open subsets -so for instance if V is quasi-projective-, then the
quotient π : V → V/〈σ〉 exists in the category of schemes and the structure morphism p : V → Spec(C)
descends to a morphism V/〈σ〉 → Spec(R) = Spec(C)/〈z 7→ z〉 making V/〈σ〉 into a real algebraic variety
X such that V ∼= XC. In the case where V = Spec(A) is affine, the algebraic variety X = V/〈σ〉 is
affine, equal to the spectrum of the ring Aσ

∗
of σ∗-invariant elements of A. This correspondence extends to

a well-known equivalence of categories:

Lemma 3. [4] The functor X 7→ (XC, σX) is an equivalence between the category of quasi-projective
real algebraic varieties and the category of pairs (V, σ) consisting of a complex quasi-projective variety V
endowed with a real structure σ.

In what follows, we will switch freely from one point of view to the other, by viewing a quasi-projective
real algebraic variety X either as a geometrically integral R-scheme of finite type or as a pair (V, σ) consist-
ing of a quasi-projective complex algebraic variety V endowed with a real structure σ. A real form of a given
real algebraic variety (V, σ) is a real algebraic variety (V ′, σ′) such that the complex varieties V and V ′ are
isomorphic. A real closed subscheme Z of a real algebraic variety (V, σ) is a σ-invariant closed subscheme
of V , endowed with the induced real structure σ|Z .

The set V (C) of complex points of a smooth complex algebraic variety V can be endowed with a natural
structure of real smooth manifold locally inherited from that on AnC(C) ' Cn ' R2n [14, Lemme 1 and
Proposition 2]. Every morphism of smooth complex algebraic varieties f : V ′ → V induces a differentiable
map f(C) : V (C)→ V (C) which is a diffeomorphism when f is an isomorphism. Similarly, a real structure
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σ on V induces a differentiable involution of V (C), whose set of fixed points V (C)σ , called the real locus of
(V, σ), is a smooth differential real manifold. The real algebraic variety (V, σ) is then said to be an algebraic
model of this differential manifold.

Definition 4. A birational diffeomorphism ϕ : (V ′, σ′) 99K (V, σ) between smooth real algebraic varieties
with non empty real loci is a real birational map whose restriction to the real locus V ′(C)σ

′
of (V ′, σ′) is a

diffeomorphism onto the real locus V (C)σ of (V, σ), and which admits a rational inverse of the same type.

Example 5. Let (Q1,C, σQ1
) be the complexification of the smooth affine curve Q1 in A2

R = Spec(R[u, v])
defined by the equation u2 + v2 = 1. The stereographic projection from the real point N = (0, 1) of
(Q1,C, σQ1) induces an everywhere defined birational diffeomorphism

πN : (Q1,C \ {N}, σQ1
|Q1,C\{N})→ (A1

C = Spec(C[z]), σA1
R
), (u, v) 7→ u

1− v
with image equal to A1

C \ {±i}. Its inverse is given by

z 7→ (u, v) = (
2z

z2 + 1
,
z2 − 1

z2 + 1
).

1.2. Circle actions as real forms of hyperbolic Gm-actions.

Definition 6. The circle S1 is the nontrivial real form (Gm,C, σ0) of (Gm,C, σGm,R) whose real structure is
the composition of the involution t 7→ t−1 of Gm,C = Spec(C[t±1]) with the complex conjugation. It is a
real algebraic group isomorphic to the group

SO2 (R) = Spec(C[t±1]σ
∗
0 ) ∼= Spec(R[u, v]/(u2 + v2 − 1)),

with group law given by (u, v) · (u′, v′) = (uu′ − vv′, uv′ + u′v).
An action of S1 on a real algebraic variety (V, σ) is a real action of (Gm,C, σ0) on (V, σ), that is, an action

µ : Gm,C × V → V of Gm,C on V for which the following diagram commutes

Gm,C × V

σ0×σ
��

µ // V

σ

��
Gm,C × V

µ // V.

Let π : (V, σ)→ (C, τ) be an affine morphism between real algebraic varieties and let µ : Gm,C×V → V
be an S1-action on (V, σ) by real (C, τ)-automorphisms. Putting A = π∗OV , µ is uniquely determined by
its associated OC-algebra co-action homomorphism

µ∗ : A → A⊗OC
OC [t±1].

The latter determines a Z-grading of A by its OC-submodules

Am = {f ∈ A, µ∗f = f ⊗ tm} , m ∈ Z,
of semi-invariants germs of sections of weight m.

The action µ is said to be effective if the set {m ∈ Z, Am 6= {0}} is not contained in a proper subgroup
of Z, and hyperbolic if there exists m < 0 and m′ > 0 such that Am and Am′ are non zero. The following
lemma is an extension in the relative affine setting of [8, Lemma 1.7].

Lemma 7. Let π : (V, σ)→ (C, τ) be an affine morphism between real algebraic varieties and let µ : Gm,C×
V → V be an effective S1-action on (V, σ) by (C, τ)-automorphisms. Let A =

⊕
m∈ZAm be the corre-

sponding decomposition of the quasi-coherentOC-algebraA = π∗OV into semi-invariantsOC-submodules.
Then the following hold:

1) The action µ is hyperbolic and σ∗Am = τ∗A−m for every m ∈ Z.
2) TheOC-moduleA0 is a quasi-coherentOC-subalgebra of finite type ofA. Furthermore, the restriction

σ∗ : A0 → τ∗A0 of σ∗ is the comorphism of a real structure τ0 on SpecC(A0) for which the induced
morphism π0 : (SpecC(A0), τ0)→ (C, τ) is a real morphism.
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Proof. Since π : (V, σ) → (C, τ) is an affine morphism, σ is equivalenty determined by its comorphism
σ∗ : A → τ∗A. Since µ is a non trivial action, there exists a nonzero element m ∈ Z such that Am 6= {0}.
The commutativity of the diagram in Definition 6 implies that for a local section f of Am,

µ∗(σ∗(f)) = (σ∗ ⊗ σ∗0)(f ⊗ tm) = σ∗(f)⊗ t−m

hence that σ∗(f) ∈ τ∗A−m. Thus σ∗Am ⊆ τ∗A−m, and since (τ∗σ
∗)◦σ∗ = idA, it follows that the equality

σ∗Am = τ∗A−m holds. This shows that the action µ is hyperbolic and that σ∗A0 = τ∗A0. The fact that
A0 is a quasi-coherent OC-algebra of finite type is well-known [11, Theorem 1.1], and the fact that σ∗|A0 is
the comomorphism of a real structure τ0 on SpecC(A0) making π0 : (SpecC(A0), τ0) → (C, τ) into a real
morphism is a straightforward consequence of the definitions. �

Definition 8. In the setting of Lemma 7, the real affine morphism (V, σ) → (SpecC(A0), τ0) is called the
real (categorical) quotient morphism of the S1-action on (V, σ).

1.3. Principal homogeneous S1-bundles. Recal that a Gm,C-torsor over a complex algebraic variety C is
a C-scheme ρ : P → C endowed with an action µ : Gm,C × P → P of Gm,C by C-scheme automorphisms,
such that P is Zariski locally isomorphic over C to C × Gm,C on which Gm,C acts by translations on the
second factor.

Definition 9. An S1-torsor (also called a principal homogeneous S1-bundle) over a real algebraic variety
(C, τ) is a real algebraic variety ρ : (P, σ) → (C, τ) endowed with an S1-action µ : Gm,C × P → P for
which ρ : P → V is a Gm,C-torsor.

Recall that isomorphism classes of Gm,C-torsors ρ : P → C over C are in one-to-one correspondence
with elements of the Picard group Pic(C) ∼= H1(C,O∗C) of C. More explicitly, for every such P , there exists
an invertible OC-submodule L of the sheaf of rational functions KC of C and an isomorphism of Z-graded
algebras

ρ∗OP ∼=
⊕
m∈Z
L⊗m,

where for m < 0, L⊗m denotes the −m-th tensor power of the dual L∨ of L. Furthermore, two invertible
OC-submodules ofKC determine isomorphic Gm,C-torsors if and only if they are isomorphic. For S1-torsors,
we have the following counterpart:

Lemma 10. For every S1-torsor ρ : (P, σ) → (C, τ) there exists a pair (L, h) consisting of an invertible
OC-submodule L ⊂ KC and a nonzero real rational function h on (C, τ) such that ρ∗OP =

⊕
m∈Z L⊗m

and L ⊗ τ∗L = h−1OC as OC-submodules of KC .
Furthermore, two such pairs (L1, h1) and (L2, h2) determine isomorphic S1-torsors if and only if there

exists a rational function f ∈ Γ(C,K∗C) such that L∨1 ⊗ L2 = f−1OC and h2 = (fτ∗f)h1.

Proof. Let A =
⊕

m∈ZAm be the decomposition of A = ρ∗OP into OC-submodules of semi-invariants
with respect to the action µ and let L be an invertible OC-submodule of KC for which we have an isomor-
phism of graded OC-algebras

Ψ : A =
⊕
m∈Z
Am

∼=→
⊕
m∈Z
L⊗m.

By Lemma 7 1), we have σ∗Am = τ∗A−m for everym ∈ Z. It follows that for everym ∈ Z, the composition

ϕm : τ∗Ψ ◦ σ∗ ◦Ψ−1 : L⊗m → τ∗L⊗−m

is an isomorphism of OC-modules such that ϕ0 = τ∗ : OC = L⊗0 → τ∗L⊗−0 = τ∗OC and

ϕm+m′ = ϕm ⊗ ϕm′ : L⊗(m+m′) = L⊗m ⊗ L⊗m
′
→ τ∗L⊗(−m+−m′) = τ∗L⊗(−m) ⊗ τ∗L⊗(−m′)

for every m,m′ ∈ Z. Furthermore, since τ∗σ∗ ◦ σ∗ = idA and τ2
∗ = idOC

, we have

τ∗ϕ−m ◦ ϕm = idL⊗m and τ∗ϕm ◦ ϕ−m = idL⊗(−m)
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for every m ∈ Z. For m = 1 and m′ = −1, the commutativity of the diagram

L ⊗ L∨

ev

��

ϕ1⊗ϕ−1 // τ∗L∨ ⊗ τ∗L

τ∗ev

��
OC

τ∗ // τ∗OC ,

where ev : L ⊗ L∨
∼=→ OC is the canonical homomorphism f ⊗ f ′ 7→ f ′(f), implies that

ϕ−1 = (tϕ1)−1 : L∨ → τ∗L.

It follows that ϕm = ϕ⊗m1 for m ≥ 1 and that ϕm = (tϕ1)⊗(−m) for m ≤ −1. The collection (ϕm)m∈Z is
thus uniquely determined by ϕ0 = τ∗ and an isomorphism ϕ1 : L → τ∗L∨ satisfying the identity τ∗(tϕ1)−1◦
ϕ1 = idL, hence equivalently by an isomorphism ψ = τ∗ϕ1 : τ∗L → L∨ such that (tψ−1)◦ τ∗ψ = idL. An
isomorphism ψ : τ∗L

∼=→ L∨ is in turn equivalenty determined by an isomorphism OC
∼=→ L⊗ τ∗L, that is,

by a rational function h ∈ Γ(C,K∗C) such that L⊗ τ∗L = h−1OC asOC-submodules of KC . The condition
(tψ−1) ◦ τ∗ψ = idL then amounts to the property that h−1(τ∗h) = 1, i.e. that h is a real rational function
on (C, τ).

Two invertibleOC-submodules L1,L2 ⊂ KC define equivariantly isomorphic Gm,C-torsors ρ1 : P1 → C

and ρ2 : P2 → C if and only if there exists an isomorphism α : L1

∼=→ L2. When L1 and L2 come with
respective isomorphisms ψ1 : τ∗L1 → L∨1 and ψ2 : τ∗L2 → L∨2 corresponding to S1-actions on (P1, σ1)

and (P2, σ2), the condition that a given isomorphism α : L1

∼=→ L2 induces an S1-equivariant isomorphism
between (P1, σ1) and (P2, σ2) is equivalent to the commutativity of the diagram

τ∗L1

τ∗α

��

ψ1 // L∨1
tα−1

��
τ∗L2

ψ2 // L∨2 .

The isomorphism α is uniquely determined by a rational function f ∈ Γ(C,K∗C) such thatL∨1⊗L2 = f−1OC
asOC-submodules of KC . By definition of h1 and h2 as the unique nonzero real rational functions on (C, τ)
such that Li⊗τ∗Li = h−1

i OC , i = 1, 2, the commutativity of the above diagram is equivalent to the equality
h2 = (fτ∗f)h1. �

Example 11. By Hilbert’s Theorem 90, every Gm,C-torsor over Spec(C) is isomorphic to the trivial one, that
is, to Gm,C acting on itself by translations. In contrast, there exists precisely two non-isomorphic S1-torsors
over Spec(R) = (Spec(C), σSpec(R)):

1) The trivial one given by S1 = (Gm,C = Spec(C[t±1], σ0) acting on itself by translations. A corre-
sponding pair is (L, h) = (C, 1),

2) A nontrivial one Ŝ1 = (Spec(C[u±1], σ̂0) whose real structure σ̂0 is the composition of the involution
u 7→ −u−1 with the complex conjugation, endowed with the S1-action given by t · u = tu. A corresponding
pair is (L, h) = (C,−1).

Note that the real locus of S1 is isomorphic to the real circle S1 = {x2 + y2 = 1} ⊂ R2 whereas the real
locus of Ŝ1 is empty.

2. CIRCLE ACTIONS ON SMOOTH REAL AFFINE SURFACES

In this section, we first review the correspondence between normal real affine surfaces (S, σ) with effective
S1-actions and suitable pairs consisting of a Weil Q-divisor and a rational function on smooth real affine
curves (C, τ), which we call real DPD-pairs. We characterize smooth affine surfaces in terms of properties
of their corresponding pairs. We then describe the structure of exceptional orbits of S1-actions on smooth
surfaces (S, σ) in relation to degenerate fibers of their quotient morphisms.



RATIONAL REAL ALGEBRAIC MODELS OF COMPACT DIFFERENTIAL SURFACES WITH CIRCLE ACTIONS 7

2.1. Real DPD-presentations of smooth real affine surfaces with S1-actions. Recall that a Weil Q-divisor
on a smooth real affine curve (C = Spec(A0), τ) is an element of the abelian group consisting of formal
sums

D =
∑
c∈C

D(c){c} ∈ Q⊗Z Div(C)

such that D(c) ∈ Q is equal to zero for all but finitely many points c ∈ C. The support of D is the finite set
of points c ∈ C such that D(c) 6= 0. The group of Weil Q-divisors is partially ordered by the relation

(D ≤ D′ ⇔ D(c) ≤ D′(c) ∀c ∈ C).

Every nonzero rational function f on C determines a Weil Q-divisor div(f) =
∑
c∈C(ordcf){c} with

integral coefficients. For every Weil Q-divisorD on C, we denote by Γ(C,OC(D)) theA0-submodule of the
field of fractions Frac(A0) of A0 generated by nonzero rational functions f on C such that div(f) +D ≥ 0.

Given an automorphism α of C as a scheme over R or C, the pull-back of D =
∑
c∈C D(c){c} by α is

the Weil Q-divisor
α∗D =

∑
c∈C

D(c){α−1(c)} =
∑
c∈C

D(α(c)){c}.

Definition 12. A real DPD-pair on a smooth real affine curve (C, τ) is a pair (D,h) consisting of a Weil
Q-divisor D on C and a nonzero real rational function h on (C, τ) satisfying D + τ∗D ≤ div(h).

We say that two rational numbers ri = pi/qi, i = 1, 2, where gcd(pi, qi) = 1, form a regular pair if
|p1q2 − p2q1| = 1.

Definition 13. A real DPD-pair (D,h) on a smooth real affine curve (C, τ) is said to be regular if for every
c ∈ C such thatD(c)+D(τ(c)) < ordc(h) the rational numbersD(c) andD(τ(c))−ordc(h) form a regular
pair.

Given a smooth real affine curve (C, τ), a pair (L, h) consisting of an invertible OC-submodule L ⊂ KC
and a real rational function h on (C, τ) such that L ⊗ τ∗L = h−1OC as OC-submodules of KC determines
a Cartier divisor D on C such that D + τ∗D = div(h), hence a regular real DPD-pair (D,h) on (C, τ). By
Lemma 10, every smooth real affine surface (S, σ) endowed with the structure of an S1-torsor over (C, τ) is
determined by such a regular real DPD-pair (D,h). More generally, we have the following:

Theorem 14. Every normal real affine surface (S, σ) with an effective S1-action µ : Gm,C × S → S
is determined by a smooth real affine curve (C, τ) and a real DPD-pair (D,h) on it. Furthermore, the
following hold:

1) Two DPD-pairs (D1, h1) and (D2, h2) on the same curve (C, τ) determine S1-equivariantly isomorphic
real affine surfaces if and only if there exists a real automorphism ψ of (C, τ) and a rational function f on C
such that

ψ∗D2 = D1 + div(f) and ψ∗h2 = (fτ∗f)h1.

2) The normal real affine surface (S, σ) determined by a real DPD-pair (D,h) is smooth if and only if the
pair is regular.

The correspondence between normal real affine surface (S, σ) with an effective S1-actions and real DPD-
pairs on smooth real affine curves (C, τ) was established in [8, Proposition 3.2] as a particular case of a
general correspondence between S1-actions on normal real affine varieties and suitable pairs (D,h) on cer-
tain normal real semi-projective varieties [8, Corollary 2.16], whose proof uses the formalism of polyhedral
divisors due to Altmann and Hausen [1]. Since this correspondence provides an explicit method to determine
the data (S, σ) and (C, τ), (D,h) from each others, we will review it in detail using the DPD-formalism of
[9] in the next subsections.

Proof of Theorem 14. Assertion 1) follows from Corollary 2.16 in [8]. Note that if (D2, h2) is regular real
DPD-pair then for every real automorphism ψ of (C, τ) and every rational function f onC, the real DPD-pair

(D1, h1) = (ψ∗D2 − div(f), (fτ∗f)−1ψ∗h2)
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is regular due to the fact that div(f) and div((fτ∗f)−1ψ∗h2) are integral Weil divisors on C.
To prove 2), let (S, σ) be the normal real affine surface with S1-action determined by real DPD-pair (D,h)

on a smooth real affine curve (C, τ) as in § 2.1.1 below. Let π : (S, σ)→ (C, τ) be its real quotient morphism
and let D+ = D and D− = τ∗D − div(h). By [9, Theorem 4.15], the singular locus of S is contained in
the fibers of the quotient morphism π : S → C over the points c ∈ C such that D+(c) + D−(c) < 0.
Furthermore, for such a point c, S is smooth at every point of π−1(c) if and only if the rational numbers
D+(c) and D−(c) form a regular pair. �

2.1.1. From real DPD-pairs to normal real affine surfaces with effective S1-actions. Given a real DPD-pair
(D,h) on a smooth real affine curve (C = Spec(A0), τ), we set D+ = D and D− = τ∗D+ − div(h). The
condition D + τ∗D ≤ div(h) implies that D+ +D− ≤ 0, so that for every m′ ≤ 0 ≤ m, the product

Γ(C,OC(−m′D−)) · Γ(C,OC(mD+))

in Frac(A0) in contained either in Γ(C,OC(−(m′+m)D−)) if m′+m ≤ 0 or in Γ(C,OC((m′+m)D+))
if m′ +m ≥ 0. It follows that the graded A0-module

A0[D−, D+] =
⊕
m<0

Γ(C,OC(−mD−))⊕ Γ(C,OC)⊕
⊕
m>0

Γ(C,OC(mD+))

is a gradedA0-algebra for the multiplication law given by component wise multiplication in Frac(A0). By [9,
§ 4.2], A0[D+, D−, h] is finitely generated over C and normal. The grading then corresponds to an effective
hyperbolic Gm,C-action µ : Gm,C × S → S on the normal complex affine surface S = Spec(A0[D−, D+]).
The ring of invariants for this action is equal to A0 and the morphism π : S → C = Spec(A0) induced by
the inclusion A0 ⊂ A0[D−, D+] is the categorical quotient morphism. Since D− = τ∗D+ − div(h), for
every m ≥ 1, the homomorphism

τ∗m : Γ(C,OC(mD+)) 7→ Γ(C,OC(mD−)), f 7→ hmτ∗f

is an isomorphism with inverse

τ∗−m : Γ(C,OC(−mD−)) 7→ Γ(C,OC(−mD+)), f 7→ hmτ∗f.

Letting τ0 = τ , these isomorphisms collect into an automorphism σ∗ =
⊕

m∈Z τ
∗
m of A0[D−, D+] which is

the comorphism of a real structure σ on S for which we have σ ◦ µ = µ ◦ (σ0 × σ). It follows that (S, σ) is
a normal real affine surface and that µ : Gm,C × S → S is an effective S1-action on (S, σ) in the sense of
Definition 6.

Example 15. Let (C = Spec(A0), τ) be a smooth real affine curve with a real point c whose defining ideal
is principal, generated by a real regular function h on (C, τ). Let D be the trivial divisor 0. Then (D,h) is
a real DPD-pair on (C, τ) for which we have D+ = D = 0 and D− = τ∗D− − div(h) = −{c}. It follows
that Γ(C,OC(mD+)) = A0 and that Γ(C,OC(mD−)) = hmA0 for every m ≥ 0. The corresponding
homomorphism

τ∗m : Γ(C,OC(mD+)) = A0 7→ hmA0 = Γ(C,OC(mD−))

is the multiplication by hm. The algebra A0[D+, D−] is generated by the homogeneous elements

x = 1 ∈ Γ(C,OC(D+)) = Γ(C,OC) and y = h ∈ Γ(C,OC(D−)) = Γ(C,OC(−{c}))

of degree 1 and −1 respectively. These satisfy the obvious homogeneous relation xy = h, and we have

A0[D+, D−] ∼= A0[x, y]/(xy − h).

The corresponding Gm,C-action µ on S = Spec(A0[D+, D−]) is given by t · (x, y) = (tx, t−1y) and the real
structure σ for which µ becomes an S1-action on (S, σ) is the lift of τ defined by σ∗x = y and σ∗y = x.
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2.1.2. From normal real affine surfaces with effective S1-actions to real DPD-pairs. Given a normal real
affine surface (S, σ) with an effective S1-action µ : Gm,C × S → S, it follows from Lemma 7 that the
coordinate ringA of S decomposes as the direct sumA =

⊕
m∈ZAm of semi-invariants sub-spaces such that

σ∗(Am) = A−m for every m ∈ Z. The curve C = Spec(A0) is the categorical quotient of the Gm,C-action
on S. The restriction of σ∗ to A0 induces a real structure τ on C. Let s ∈ Frac(A) be any semi-invariant
rational function of weight 1 and let h = sσ∗s ∈ Frac(A). Since σ∗s is a semi-invariant rational function
of weight −1, h is a σ∗-invariant rational function of weight 0, hence a τ∗-invariant element of Frac(A0).
For every m ∈ Z, s−mAm is a locally free A0-submodule of Frac(A0). By [9, § 4.2], there exists Weil
Q-divisors D+ and D− on C satisfying D+ +D− ≤ 0 such that for every m ≥ 0 we have

s−mAm = Γ(C,OC(mD+)) and smA−m = Γ(C,OC(mD−))

as A0-submodules of Frac(A0). Since by Lemma 7 and the definition of h, we have

τ∗(s−m ·Am) = h−m(sm ·A−m) ∀m ∈ Z,

it follows that D− = τ∗D+− div(h). So setting D = D+, the pair (D,h) is a real DPD- pair on the smooth
real affine curve (C, τ). By construction, S ∼= Spec(A0[D−, D+]) and the real structure σ on S coincides
with that constructed from (D,h) in the previous subsection.

Example 16. Let (C = Spec(R), τ) be a smooth real affine curve with a real point c whose defining ideal
is principal, generated by some real regular function f on (C, τ). Let A = R[x±1, y]/(xy2 − f) and let
S = Spec(A). The morphism µ : Gm,C × S → S, (t, (x, y)) 7→ (t2x, t−1y) defines an Gm,C-action on S
by C-automorphisms, which becomes an S1-action by (C, τ)-automorphisms when S is endowed with the
unique real structure σ lifting τ such σ∗x = x−1 and σ∗y = xy. The ring of Gm,C-invariant A0 is equal
to R[xy2]/(xy2 − f) ∼= R. Choosing s = y−1 as semi-invariant rational function of weight 1, we have
h = y−1σ∗(y−1) = x−1y−2 = f−1 ∈ Frac(R). The decompositon of A into subspaces of semi-invariants
functions is then given for every m ≥ 0 by

s−mAm = s−mR · (xy)m = R · (xy2)m = fmR = Γ(C,OC(mD+),

s2m+1A−2m−1 = s2m+1R · (x−my) = R · (xy2)−m = f−mR = Γ(C,OC((2m+ 1)D−)),

s2mA−2m = s2mR · x−m = R · (x−my−2m) = f−mR = Γ(C,OC(2mD−)).

It follows that D+ = −r{c} for some rational number r ∈]0, 1] and that

D− = τ∗(D+)− div(h) = r{c} − div(f−1) = (1− r){c}.

Since f−mR = Γ(C,OC((2m+ 1)D−)) = Γ(C,OC(2mD−)) for every m ≥ 0, it follows that

m

2m+ 1
≤ (1− r) < m+ 1

2m+ 1
and

1

2
≤ (1− r) < m+ 1

2m

for every m ≥ 0. Thus (1− r) = 1
2 and a real DPD-pair on (C, τ) corresponding to (S, σ) endowed with the

S1-action µ is (D,h) = (− 1
2{c}, f

−1).

2.2. Real fibers of the quotient morphism: principal and exceptional orbits. Let (S, σ) be a smooth real
affine surface with an effective S1-action µ : Gm,C × S → S, and let π : (S, σ)→ (C, τ) be its real quotient
morphism. Recall that π : S → C = Spec(Γ(S,OS)Gm,C) is surjective and that each fiber of π contains
a unique closed Gm,C-orbit Z and is the union of all Gm,C-orbits in S containing Z in their closure. In the
complex case, [9, Theorem 18] provides a description of the structure of the fibers of π in terms of a pair of
Weil Q-divisors D+ and D− on C for which Γ(S,OS) = A0[D−, D+] (see § 2.1.2). In this subsection, we
specialize this description to fibers of π over points in the real locus of (C, τ). We begin with the following
example which illustrates different possibilities for such fibers.

Example 17. Let Sε ⊂ A3
C = Spec(C[x, y, z]) be the smooth complex affine surface with equation

xy = z2 + ε, where ε = ±1,
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endowed with the real structure σ defined as the composition of the involution (x, y, z) 7→ (y, x, z) with the
complex conjugation. The effective Gm,C-action µ on Sε given by t · (x, y, z) = (tx, t−1y, z) defines an
S1-action on (Sε, σ) whose real quotient morphism coincides with the projection

π = prz : (Sε, σ)→ (C, τ) = (Spec(C[z], σA1
R
).

A corresponding real DPD-pair is for instance (D,h) = (0, z2 + ε) where 0 denotes the trivial Weil divisor.
The morphism (x, y, z) 7→ (−x,−y,−z) defines a fixed point free real action of Z2 on (Sε, σ) commuting

with the S1-action. The quotient surface Sε = Sε/Z2 is smooth and σ descends to a real structure σ on it.
The morphism π descends to a real morphism π : (Sε, σ) → (C, τ) = (Spec(C[z2]), σA1

R
) which coincides

with the real quotient morphism of the induced S1-action on Sε.
1) If ε = 1, then since z2 + 1 = (z − i)(z + i) = fτ∗f , it follows from Theorem 14 1) and Lemma

10 that π : (S1, σ) → (C, τ) restricts to the trivial S1-torsor over the principal real affine open subset
(Ch = Spec(C[z]z2+1), τ |Ch

) of C. In particular, for every real point c of (C, τ), (π−1(c), σ|π−1(c)) is
isomorphic to S1 on which S1-acts by translations.

Since the real point 0 ∈ (C, τ) is a fixed point of the Z2-action onC, the fiber of π : (S1, σ)→ (C, τ) over
the real point 0 ∈ (C, τ) has multiplicity two. When endowed with its reduced structure, it is isomorphic to
the quotient of Spec(C[x, y]/(xy− 1)) by the involution (x, y) 7→ (−x,−y), hence to A1

∗ = Spec(C[w±1]),
where w = x2. The real structure is given by the composition of the involution w 7→ w−1 with the complex
conjugation, and the group Gm,C acts on it by t · w = t2w. So (π−1(0)red, σ|π−1(0)red) is isomorphic to S1

on which S1 acts with stabilizer µ2.
2) If ε = −1, then, in contrast with the previous case, there is no rational function f ∈ C(z) such that

z2 − 1 = fτ∗f . Consequently, there is no real open subset of (C, τ) over which π : (S−1, σ) → (C, τ)
restricts to the trivial S1-torsor. For a real point c of (C, τ), h = z2−1 takes negative value at c if c ∈]−1, 1[
and positive value if c ∈]−∞,−1[∪]1,+∞[. The fiber (π−1(c), σ|π−1(c)) is thus isomorphic to the nontrivial
S1-torsor Ŝ1 of Example 11 in the first case, and to the trivial S1-torsor S1 in the second case.

The fiber of π over the point ±1 is isomorphic to Spec(C[x, y]/(xy)) and thus consists of two affine lines
O

+
= Spec(C[x]) and O

−
= Spec(C[y]) exchanged by the real structure σ, intersecting at the real point

p = (0, 0, 0) of (S−1, σ). The curves O± = O
± \ {p} ∼= A1

C \ {0} endowed with the induced Gm,C-actions
are trivial Gm,C-torsors and p is an S1-fixed point.

As in the previous case, since the real point 0 ∈ (C, τ) is a fixed point of the Z2-action on C, the fiber
of π : (S−1, σ) → (C, τ) over the real point 0 ∈ (C, τ) has multiplicity two. When endowed with its
reduced structure, it is isomorphic to the quotient of Spec(C[x, y]/(xy + 1)) by the involution (x, y) 7→
(−x,−y) hence to A1

∗ = Spec(C[w±1]), where w = x2. The induced real structure is the composition of the
involution w 7→ w−1 with the complex conjugation. The induced Gm,C-action is given by t ·w = t2w. Thus
(π−1(0)red, σ|π−1(0)red) is isomorphic to S1 on which S1-acts with stabilizer µ2.

Lemma 18. Let (S, σ) be a smooth real affine surface with an effective S1-action µ : Gm,C × S → S
determined by a regular real DPD-pair (D,h) on a smooth real affine curve (C, τ), and let π : (S, σ) →
(C, τ) be the corresponding real quotient morphism. Then for every real point c of (C, τ) there exists a
principal real affine open neighborhood (U, τ |U ) of c and a regular real DPD-pair (D′, h′) on (U, τ |U ) with
the following properties:

1) D′|U\{c} is the trivial divisor, D′(c) ∈ [0, 1[ and h′ ∈ Γ(U,OU ) ∩ Γ(U \ {c},O∗U\{c}).
2) The surface (π−1(U), σ|π−1(U)) is S1-equivariantly isomorphic to that determined by the real DPD-

pair (D′, h′) on (U, τ |U ).
In particular, π|π−1(U\{c}) : (π−1(U \ {c}), σ|π−1(U\{c}))→ (U \ {c}, τ |U\{c}) is an S1-torsor.

Proof. Recall that by the construction described in § 2.1.1, we have

Γ(S,OS) = A0[D+, D] =
⊕
m<0

Γ(C,OC(−mD−))⊕ Γ(C,OC)⊕
⊕
m>0

Γ(C,OC(mD+))



RATIONAL REAL ALGEBRAIC MODELS OF COMPACT DIFFERENTIAL SURFACES WITH CIRCLE ACTIONS 11

where A0 = Γ(C,OC), D+ = D and D− = τ∗D − div(h). Let U = Cg be a real principal affine open
neighborhood of c for some real regular function g on (C, τ), and let (S|U , σ|U ) = (π−1(U), σ|π−1(U)) be
endowed with the induced S1-action. The graded coordinate ring of S|U is isomorphic to the homogeneous
localization

Γ(S,OS)(g)
∼=
⊕
m<0

Γ(U,OC(−mD−))⊕ Γ(U,OU )⊕
⊕
m>0

Γ(U,OC(mD+))

of Γ(S,OS) with respect to g ∈ Γ(C,OC). It follows that (S|U , σ|U ) is S1-equivariantly isomorphic to the
real affine surface determined by the real DPD-pair (D|U , h|U ) on the smooth real affine curve (U, τ |U ). For
a small enough such real affine neighborhoodU of c, we haveD(c′) = 0 for every c′ ∈ U \{c} and h ∈ Γ(U \
{c},O∗U\{c}). In particular, D|U\{c} is a principal Cartier divisor such that D|U\{c} + τ |∗U\{c}D|U\{c} =

div(h|U\{c}), which implies by Lemma 10 that π : (S|U\{c}, σ|U\{c})→ (U \ {c}, τ |U\{c}) is an S1-torsor.
Shrinking U further if necessary, we can ensure in addition that c = div(f) for some real regular function on
(U, τ |U ). Letting δ = bD(c)c be the round-down of the rational number D(c), it follows from Theorem 14
1) that (S|U , σ|U ) is S1-equivariantly isomorphic to the surface determined by the regular real DPD-pair

(D′, h′) = (D|U − div(fδ), (f−δτ∗f−δ)h),

on (U, τ |U ). By construction, we have D′ = (D(c) − δ){c} where D(c) − δ ∈ [0, 1[ and h′ ∈ Γ(U \
{c},O∗U\{c}). Since (D′, h′) is a real DPD-pair,

ordc(h
′) ≥ D′(c) + τ∗(D′)(c) = 2D′(c) ≥ 0,

which implies that h′ ∈ Γ(U,OU ) ∩ Γ(U \ {c},O∗U\{c}). �

Definition 19. Let (S, σ) be a smooth real affine surface with an effective S1-action µ : Gm,C × S → S. A
Gm,C-orbit Z is called principal if Z endowed with the Gm,C-action induced by µ is the trivial Gm,C-torsor.
It is called exceptional otherwise. If Z is in addition irreducible and σ-invariant, we say that (Z, σ|Z) is a
principal S1-orbit if Z is a principal Gm,C-orbit, and an exceptional S1-orbit otherwise.

Theorem 20. Let (S, σ) be a smooth real affine surface with an effective S1-action µ : Gm,C × S → S
determined by a regular real DPD-pair (D,h) on a smooth real affine curve (C, τ). Let π : (S, σ)→ (C, τ)
be the corresponding real quotient morphism and let c be a real point of (C, τ). Then exactly one of the
following three possibilities occurs:

a) D(c) ∈ Z and ordc(h) = 2D(c). In this case, there exists a real affine open neighborhood
(U, τ |U ) of c such that π|π−1(U) : (π−1(U), σ|π−1(U)) → (U, τ |U ) is an S1-torsor. The fiber
(π−1(c), σ|π−1(c)) is an S1-torsor over (c, σSpec(R)) which is either isomorphic to S1 if π−1(c) con-
tains a real point of (S, σ), or to the nontrivial S1-torsor Ŝ1 of Example 11 otherwise.

b) D(c) ∈ 1
2Z\Z and ordc(h) = 2D(c). In this case, (π−1(c), σ|π−1(c)) is a multiple fiber of multiplic-

ity 2, whose reduction is an exceptional S1-orbit, isomorphic to S1 on which S1 acts with stabilizer
µ2.

c) D(c) ∈ Z and ordc(h) = 2D(c) + 1. In this case, the fiber π−1(c) is reduced, consisting of the
closures of two principal Gm,C orbitsO+ andO− exchanged by the real structure σ, whose closures
O
±

in S are affine lines intersecting transversally at an S1-fixed real point p of (S, σ).

Furthermore, in cases b) and c), for every real affine open neighborhood (U, τ |U ) of c ∈ C, the restriction

π|π−1(U\{c}) : (π−1(U \ {c}), σ|π−1(U\{c}))→ (U \ {c}, τ |U\{c})

is a nontrivial S1-torsor.

Proof. By Lemma 18, there exists a real affine open neighborhood (U, τ |U ) of c such that c = div(f)
for some real regular function f on (U, τ |U ) and such that (S|U , σ|U ) is S1-equivariantly isomorphic over
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(U, τ |U ) to the real affine surface determined by a regular real DPD-pair (D′, h′) such that D′ = D′(c)c
where D′(c) ∈ [0, 1[ and h′ ∈ Γ(U,OU ) ∩ Γ(U \ {c},O∗U\{c}). Since D′(c) + τ∗D′(c) ≤ ordc(h

′) by
definition of a real DPD-pair, this leads to the following dichotomy:

I) If 2D′(c) = ordc(h
′) then since D′(c) ∈ [0, 1[ and ordc(h

′) is an integer, we have either D′(c) = 0
and ordc(h

′) = 0 or D′(c) = 1
2 and ordc(h

′) = 1. In first case, D′ is the trivial divisor, and so is τ∗D′.
Furthermore, since h′ does not vanish on U , π|π−1(U) : (S|U , σ|U ) = (π−1(U), σ|π−1(U))→ (U, τ |U ) is an
S1-torsor by Lemma 10. By Theorem 14 1) and Example 11, (π−1(c), σ|π−1(c)) is isomorphic either to S1 if
hc(c) ∈ R>0, or to Ŝ1 otherwise. This yields case a).

In the second case, we haveD′ = 1
2{c} and it follows from [9, Theorem 18 (a)] that π−1(c) = 2Z whereZ

is an exceptional Gm,C-orbit isomorphic to a punctured affine line on which Gm,C acts with stabilizer µ2. The
real curve (Z, σ|Z) endowed with the restriction of µ is thus isomorphic either to S1 if it contains a real point
or to Ŝ1 otherwise, on which S1 acts with stabilizer µ2. We claim that the case where (Z, σ|Z) is isomorphic
to Ŝ1 does not occur. Indeed, the real structure τ |U on U lifts in a unique way to a real structure τ̃ on
Ũ = Spec(Γ(U,OU )[X]/(X2−f)) such that τ̃∗X = X , for which the morphism ψ : (Ũ , τ̃)→ (U, τ |U ) the
induced morphism ψ : (Ũ , τ̃) → (U, τ |U ) is a real double cover totally ramified over c and étale elsewhere.
The normalization over the fiber product S ×U Ũ is a smooth real affine surface (S̃, σ̃) and the action of the
Galois group Z2 of the cover ψ : (Ũ , τ̃)→ (U, τ |U ) lifts to a free real Z2-action on (S̃, σ̃) for which we have
(S|U , σ|U ) ∼= (S̃, σ̃)/Z2, the quotient morphism Ψ : (S̃, σ̃)→ (S|U , σ|U ) ∼= (S̃, σ̃)/Z2 being étale. The S1-
action µ on S lifts to an effective S1-action µ̃ on (S̃, σ̃), whose real quotient morphism π̃ : (S̃, σ̃) → (Ũ , τ̃)

is equal to the composition of the normalization morphism ν : S̃ → S×U Ũ with the projection prŨ . Letting
c̃ = ψ−1(c), π̃−1(c̃) is reduced and (π̃−1(c̃), σ̃|π̃−1(c̃)) is an S1-torsor over (c̃, σSpec(R)). By Example 11, it
is isomorphic to A1

C \ {0} = Spec(C[u±1]) endowed with a real structure given as the composition of the
complex conjugation either with the involution u 7→ u−1 or with the involution u 7→ −u−1. Furthermore,
the Z2-action on S̃ restricts to a Gm,C-equivariant free Z2-action on π̃−1(c̃) ∼= Spec(C[u±1]) compatible
with the real structure σ̃|π̃−1(c̃). The latter is thus necessarily given by u 7→ −u, and the quotient morphism
Ψ restricts on (π̃−1(c̃), σ̃|π̃−1(c̃)) to an étale double cover (π̃−1(c), σ̃|π̃−1(c̃)) → (Z, σ|Z). We conclude
that Z ∼= Spec(C[w±1]), where w = u2 and that σ|Z is the real structure given as the composition of the
involution w 7→ w−1 with the complex conjugation, which shows that (Z, σ|Z) is isomorphic to S1. Finally,
since ordc(h

′) = 1, there cannot exist any rational function on U such that h′ = gτ∗g. It follows that for
every real affine open neighborhood (V, τ |V ) of c contained in (U, τ |U ), the restriction of π over V \ {c} is
a nontrivial S1-torsor. This yields case b).

II) Otherwise, if 2D′(c)− ordc(h) < 0, then since by hypothesis (D,h) whence (D′, h′) is a regular real
DPD-pair, the rational numbersD′(c) andD′(τ(c))−ordc(h

′) = D′(c)−ordc(h
′) form a regular pair. Since

D′(c) ∈ [0, 1[ and ordc(h
′) > 2D′(c) is an integer, the only possibility is that D′(c) = 0 and ordc(h

′) = 1.
By [9, Theorem 18 (b)], the fiber π−1(c) is then reduced consisting of the closure of two principal Gm,C-
orbitsO+ andO− whose closuresO

±
in S are affine lines intersecting transversally at a Gm,C-fixed point p ∈

π−1(c). The defining ideals ofO
+

andO
−

in the graded coordinate ring Γ(S|U ,OS)⊗Γ(U,OU )(Γ(U,OU )/f)

of the scheme theoretic fiber π−1(c) are the positive and negative part respectively. Since by Lemma 7, σ∗

exchanges the positive and negative parts of the grading of Γ(S|U ,OS), it follows that σ exchanges O
+

and
O
−

, hence that p is a σ-invariant point. As in the previous case, the fact that ordc(h
′) = 1 implies that for

every real affine open neighborhood (V, τ |V ) of c contained in (U, τ |U ), the restriction of π over V \ {c} is
a nontrivial S1-torsor. This yields case c). �

Since the only proper algebraic subgroups of Gm,C are cyclic groups, the exceptional orbits of a Gm,C-
action are either Gm,C-fixed points or closed curves isomorphic to the punctured affine line A1

C \ {0} on
which Gm,C acts with stabilizer isomorphic to a cyclic group µm of order m ≥ 2. While there exist smooth
complex affine surfaces S endowed with hyperbolic Gm,C-actions admitting 1-dimensional exceptional orbits
with stabilizers µm for every m ≥ 2, for instance (A1

C \ {0}) × A1
C = Spec(C[x±1, y]) endowed with the
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Gm,C-action t · (x, y) = (tmx, t−1y), the possible types of exceptional S1-orbits on smooth real affine
surfaces with effective S1-actions are much more restricted:

Corollary 21. The exceptional S1-orbits on a smooth real affine surface (S, σ) with an effective S1-action
are either real S1-fixed points or closed curves isomorphic to S1 on which S1 acts with stabilizer µ2.

Proof. Let π : (S, σ) → (C, τ) be the real quotient morphism for the given S1-action. The image by π of a
real exceptional S1-orbit (Z, σ|Z) is a τ -invariant proper closed subset of C, which is irreducible since Z is
irreducible. So π(Z) is a real point c of (C, τ). Since Z is an exceptional Gm,C-orbit, the assertion follows
from Theorem 20, cases b) and c). �

The following proposition records the possible structures of fibers of the real quotient morphism π :
(S, σ)→ (C, τ) over pairs of non-real complex points q and τ(q) of C. Its proof, which is similar to that of
Theorem 20, is left to the reader.

Proposition 22. Let (S, σ) be the smooth real affine surface with effective S1-action µ : Gm,C × S → S
determined by a regular real DPD-pair (D,h) on a smooth real affine curve (C, τ). Let π : (S, σ)→ (C, τ)
be its real quotient morphism, and let q and τ(q) be a pair of non-real complex points of C exchanged by the
real structure τ . Then exactly one of the following possibilities occurs:

(1) D(q) +D(τ(q)) = ordq(h) = ordτ(q)(h) and:
a) Either D(q) and D(τ(q)) both belong to Z and then π−1(q) and π−1(τ(q)) are principal

Gm,C-orbits. Furthermore, there exists a real affine open neighborhood (U, τ |U ) of q ∪ τ(q) such
that π|π−1(U) : (π−1(U), σ|π−1(U))→ (U, τ |U ) is an S1-torsor.

b) Or D(q) and D(τ(q)) both belong to Q \Z and then π−1(q) and π−1(τ(q)) = σ(π−1(q)) are
1-dimensional exceptional Gm,C-orbits of multiplicitym ≥ 2 on which Gm,C acts with stabilizer µm.

(2) D(q) + D(τ(q)) < ordq(h) = ordτ(q)(h). Then π−1(q)red = O
+

q ∪ O
−
q , where O+

q and O−q are

1-dimensional Gm,C-orbits whose closures O
±
q in S are affine lines intersecting transversally at a

Gm,C-fixed point p. Furthermore, the fiber π−1(τ(q))red = σ(π−1(q)red) is equal to

π−1(τ(q))red = O
+

τ(q) ∪O
−
τ(q) = σ(O

−
q ) ∪ σ(O

+

q ).

Example 23. Let (Sε, σ), where ε = ±1, be the smooth real affine surface with equation xy = ε(z2 + 1) in
A3

C = Spec(C[x, y, z]) endowed with the real structure given by the composition of the involution (x, y, z) 7→
(y, x, z) with the complex conjugation. The Gm,C-action µ on S given by t · (x, y, z) = (tx, t−1y, z) defines
a real action of S1 on (Sε, σ). The categorical quotient for the Gm,C-action is the affine line C = Spec(A0),
where A0 = C[xy, z]/(xy − ε(z2 + 1)) ∼= C[z], and the quotient morphism π : Sε → C is a real morphism
for the real structures σ and τ = σA1

R
on Sε and C respectively. The decomposition of the coordinate ring Aε

of Sε into semi-invariant subspaces if given by

Aε =
⊕
m∈Z

Aε,m =
⊕
m<0

A0 · y−m ⊕A0 ⊕
⊕
m>0

A0 · xm

=
⊕
m<0

A0 · (xy)−mxm ⊕A0 ⊕
⊕
m>0

A0 · xm

=
⊕
m<0

A0 · (ε(z2 + 1))−msm ⊕A0 ⊕
⊕
m>0

A0 · sm

where s = x. A corresponding real DPD-pair on (C, τ) is thus given by (D,h) = (0, xσ∗x) = (0, ε(z2+1)).
Noting that 1 + z2 = (1 + iz)(1− iz) = fτ∗f , we deduce from Theorem 14 1) that (Sε, σ) is also given by
the real DPD-pair (D′, h′) = (D − div(f), ε) = (1 · {i}, ε).

It then follows from Lemma 10 and Example 11 that the restriction of π : (Sε, σ) → (C, τ) over the
real affine open subset U = C \ {±i} is either the trivial S1-torsor (U, τ |U ) × S1 if ε = 1, or the S1-torsor
(U, τ |U ) × Ŝ1 if ε = −1. On the other hand, π−1({±i}) ∼= Spec(C[x, y]/(xy)) is the union of two copies
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O
+

±i = {x = z ∓ i = 0} and O
−
±i = {y = z ∓ i = 0} of the complex affine line intersecting at the point

{x = y = z ∓ i = 0}, and since σ∗x = y, we have σ(O
±
±i) = O

∓
∓i.

3. RATIONAL REAL ALGEBRAIC MODELS OF COMPACT DIFFERENTIAL SURFACES WITH CIRCLE
ACTIONS

This section is devoted to the proof of Theorem 1. We first construct explicit rational projective and affine
real algebraic models of compact real manifolds of dimension 2 without boundary endowed with effective
differentiable S1-actions. Then we show that each rational quasi-projective real algebraic model of such a
manifold is S1-equivariantly birationally diffeomorphic to one of these models.

3.1. Rational affine models with compact real loci. It is a classical result (see e.g. [2, I.3.a]) that a compact
connected real manifold of dimension 2 without boundary endowed with an effective differentiable S1-action
is equivariantly diffeomorphic to one of the following manifolds: the torus T = S1 × S1, the sphere S2,
the projective plane RP2 and the Klein bottle K. We now describe smooth rational projective and affine real
algebraic models with S1-actions of these compact differential surfaces.

3.1.1. Equivariant rational models of the torus. The group S1 acts on the torus T = S1×S1 by translations
on the second factor. All the orbits are principal, and the orbit space is equal to S1.

A rational projective model of T is the complexification (P1
C × P1

C, σP1
R×P1

R
) of P1

R × P1
R on which S1

acts on the second factor via the projective representation induced by the representation S1 → SO2(R) in
Definition 6. The action of S1 on (P1

C = Proj(C[u, v]), σP1
R
) induced by the representation S1 → SO2(R)

has a pair of non-real fixed points [1 : i] and [1 : −i] exchanged by the real structure σP1
R
. Their complement

is isomorphic to the trivial S1-torsor. The affine open subset

S1 = (P1
C × P1

C, σP1
R×P1

R
) \ {[1 : ±i]× P1

C ∪ P1
C × [1 : ±i]}

is σP1
R×P1

R
-invariant and S1-invariant. Furthermore, letting σ1 be the restriction of σP1

R×P1
R

to S1, the inclusion
(S1, σ1) ↪→ (P1

C × P1
C, σP1

R×P1
R
) is an S1-equivariant birational diffeomorphism. It follows that (S1, σ1) is a

rational affine model of T , equivariantly isomorphic the product (Q1,C, σQ1
)× S1 of S1 with the complexifi-

cation of the smooth affine quadric curve Q1 ⊂ Spec(R[u, v]) with equation u2 + v2 = 1, on which S1 acts
by translations on the second factor.

The projection

π1 = prQ1,C
: (S1, σ1) = (Q1,C, σQ1

)× S1 → (C1, τ1) = (Q1,C, σQ1
)

is the trivial S1-torsor. A corresponding real DPD-pair on (C1, τ1) is (D1, h1) = (0, 1), where 0 denotes the
trivial Weil divisor. The image by π1 of the real locus of (S1, σ1) is equal to the real locus S1 of (C1, τ1).

3.1.2. Equivariant rational models of the sphere. The group S1 acts on the unit sphere S2 in R3 by rotations
around a fixed axis. All the orbits are principal, except for the two fixed points where the axis meets the
sphere, and the orbit space is a closed interval, each of its ends corresponding to a non-principal orbit.

A rational projective model is given by the complexification of the smooth quadric

Q = {u2 + v2 + z2 − w2 = 0} ⊂ P3
R = ProjR(R[u, v, z, w])

endowed with the restriction of the S1-action on (P3
C, σP3

R
) defined by the projective representation induced

by the direct sum of the representation S1 → SO2(R) with the trivial 2-dimensional representation.
The S1-invariant real hyperplane sectionH = {w = 0} of (QC, σQ) has empty real locus. Its complement

is S1-equivariantly isomorphic to the complexification (S2, σ2) = (S2
C, σS2) of the smooth affine quadric S2

in Spec(R[u, v, z]) defined by the equation u2 +v2 +z2 = 1, on which S1 acts by the restriction of the direct
sum of the representation S1 → SO2(R) with the trivial 1-dimensional representation. By construction, the
inclusion (S2, σ2) ↪→ (QC, σQ) is an S1-equivariant birational diffeomorphism.

The real quotient morphism of the S1-action on (S2, σ2) is the projection

π2 = prz : (S2, σ2)→ (C2, τ2) = (A1
C = Spec(C[z], σA1

R
)
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and a corresponding real DPD-pair on (C2, τ2) is (D2, h2) = (0, 1 − z2), where 0 denotes the trivial Weil
divisor. The image by π2 of the real locus of (S2, σ2) is the segment [−1, 1] of the real locus R of (A1

C, σA1
R
).

The restriction of π2 over the principal real afine open subset (A1
C \ {±1}, σA1

R
|A1

C\{±1}) is a nontrivial S1-
torsor. The fibers of π2 over the real points±1 of (C2, τ2) are of type c) in Theorem 20. Their respective real
loci consist of a unique point p± = (0, 0,±1), which is an S1-fixed point.

p+p−

1−1

FIGURE 1. Projection of the real locus S2 of (S2, σ2) onto the interval [−1, 1]. The dashed
lines represent the closuresO

±
of the two principal Gm,C-orbits in π−1

2 (±1) exchanged by
σ2 and intersecting at the unique S1-fixed point p± ⊂ π−1

2 (±1).

3.1.3. Equivariant rational models of the projective plane. The group S1 acts on RP2, viewed as the pro-
jective compactification of R2 by adding a “line at infinity” RP1 ∼= S1, by the extension of the linear action
of S1 = SO(2) on R2 to an action on RP2 leaving the line at infinity invariant. All the orbits are principal,
except for two of them: one is a fixed point corresponding to the origin of R2 and the other is the line at in
infinity, equivariantly isomorphic to S1 on which S1 act with stabilizer µ2. An S1-invariant tubular neigh-
borhood of this second non principal orbit is isomorphic to the quotient (S1×R)/(z, u) ∼ (−z,−u), that is,
to an open Moebius band B, endowed with the induced S1-action. The orbit space of this S1-action on RP2

is a closed interval, each of its ends corresponding to a non-principal orbit.
A rational projective model is the complexification (P2

C = Proj(C[u, v, z]), σP2
R
) of P2

R endowed with
the S1-action defined by the projective representation induced by the direct sum of the representation S1 →
SO2(R) with the trivial 1-dimensional representation. The smooth conic ∆ in P2

C with equation u2 + v2 +
z2 = 0 is σP2

R
-invariant and S1-invariant and has empty real locus. Its complement S3 = P2

C \ ∆ endowed
with the restriction σ3 of σP2

R
and the induced S1-action is thus an affine model of RP2. By construction, the

inclusion (S3, σ3) ↪→ (P2
C, σP2

R
) is an S1-equivariant birational diffeomorphism.

Another rational projective model of RP2 with S1-action is obtained by blowing-up the smooth quadric

QC = {u2 + v2 + z2 − w2 = 0} ⊂ P3
C,

endowed with the real structure σQ and the S1-action defined in subsection 3.1.2, at the real S1-fixed point
p− = [0 : 0 : −1 : 1]. Letting α : (Q̃C, σQ̃) → (QC, σQ) be the blow-up morphism, with exceptional
divisor E− ∼= (P1

C, σP1
R
), the S1-action on (QC, σQ) lifts to an action on (Q̃C, σQ̃) for which the real locus of

(Q̃C, σQ̃) endowed with the induced S1-action is equivariantly diffeomorphic to the S1-equivariant connected
sum RP2]S1S2 ' RP2 endowed with the S1-action defined above. The proper transforms in (Q̃C, σQ̃) of
the curves `− = {u + iv = z + w = 0} and `− = {u − iv = z + w = 0} in (QC, σQ) are a pair of
non-real disjoint smooth rational curves with self-intersection −1, exchanged by the real structure σQ̃. Their
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union is an S1-invariant real closed subset F− of (Q̃C, σQ̃) and the contraction of F− is an S1-equivariant
birational diffeomorphism α′ : (Q̃C, σQ̃) → (P2

C, σP2
R
) which maps the proper transform H̃ ⊂ Q̃C of the

curve H = {w = 0} ⊂ QC onto the smooth conic ∆ ⊂ P2
C (see Figure 2).

P2
C Q̃C QC

p−

H

`−

`−
H̃

`−

`−

E−
∆

E−
α′←− α−→

FIGURE 2. A real birational map between (P2
C, σP2

R
) and (QC, σQ).

We obtain a diagram

(S3, σ3) ∼= (P2
C \∆, σP2

R
) (Q̃C \ (H̃ ∪ F−), σQ̃)

α′oo α // (QC \H,σQ) ∼= (S2, σ2)

in which the left hand side induced morphism α′ is an S1-equivariant real isomorphism. The right hand side
morphism α realizes (Q̃C \ (H̃ ∪F−), σQ̃) as the S1-equivariant real affine modification of (S2, σ2) obtained

by blowing-up p− and removing the proper transforms of the closures O
±

of the two principal Gm,C-orbits
in π−1

2 (−1) exchanged by σ2 and intersecting at p− (see Figure 1).

A real DPD-presentation of (S3, σ3) can be determined as follows. The smooth real quadric (QC, σQ)
is isomorphic to the Galois double cover of (P2

C, σP2
R
) branched along the real conic ∆. The commutative

diagram

S2 = QC \ {w = 0} //

��

QC

[u:v:z:w] 7→[u:v:z]

��
S3 = P2

C \∆ // P2
C

then identifies S3 with the quotient of S2
∼= {u2 + v2 + z2 = 1} ⊂ A3

C by the antipodal involution
(u, v, z) 7→ (−u,−v,−z). This involution commutes with the real structure σ2 on S2 and the quotient
morphism (S2, σ2) → (S3, σ3) ∼= (S2, σ2)/Z2 is a real morphism, which is equivariant for the S1-actions
on (S2, σ2) and (S3, σ3). The real quotient morphism π2 : (S2, σ2) → (C2, τ2) thus descends to a real
morphism

π3 : (S3, σ3) ∼= (S2, σ2)/Z2 → (C3, τ3) = (C2, τ2)/Z2
∼= (A1

C = Spec(C[Z], σA1
R
),

where Z = 2z2 − 1, which is the real quotient morphism of the induced S1-action on (S3, σ3). With this
choice of coordinate, a direct calculation shows that a real DPD-pair on (C3, τ3) corresponding to (S3, σ3) is
(D3, h3) = (1

2{−1}, 1− Z2).
The image by π3 of the real locus RP2 of (S3, σ3) is the segment [−1, 1] of the real locus R of (C3, τ3).

The restriction of π3 over the principal real affine open subset (A1
C \ {±1}, σA1

R
|A1

C\{±1}) of (C3, τ3) is a
nontrivial S1-torsor. The fibers of π3 over the real points −1 and 1 of (C3, τ3) are respectively of type b) and
c) in Theorem 20. Their real loci consist respectively of a copy of S1 on which S1 acts with stabilizer µ2 and
a unique point p, which is a fixed point of the induced S1-action on the real locus of (S3, σ3).
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pS1

1−1

FIGURE 3. Projection of the real locus RP2 of (S3, σ3) = (S2
C, σS2)/Z2 onto the interval

[−1, 1]. The dashed lines represent the closures O
±

of the two principal Gm,C-orbits in
π−1

3 (1) exchanged by σ3 and intersecting at the unique real S1-fixed point p ⊂ π−1
3 (1).

3.1.4. Equivariant rational models of the Klein bottle. The Klein bottle K with its S1-action is the S1-
equivariant connected sum RP2]S1RP2 of two copies of RP2 endowed with the S1-action defined in the
previous subsection. Namely, RP2]S1RP2 is obtained by removing on each copy of RP2 an S1-invariant
open disc containing the unique S1-fixed point and gluing together the resulting boundary circles in an S1-
equivariant way. Equivalenty, RP2]S1RP2 is obtained by the S1-equivariant gluing of two closed Moebius
bands

B = (S1 × [−1, 1])/(z, u) ∼ (−z,−u)

with the S1-action as in the previous subsection along their boundary circles. The resulting S1-action on K
has two non principal orbits isomorphic to S1 with stabilizer µ2, and with S1-invariant tubular neighborhoods
diffeomorphic to open Moebius bands. The orbit space is again closed interval, each of its ends corresponding
to a non-principal orbit.

FIGURE 4. Two Moebius bands glued along their boundaries.

A projective rational model of K is obtained as follows: let (P2
C = Proj(C[u, v, z]), σP2

R
) be endowed

with the S1-action defined by the projective representation induced by the direct sum of the representation
S1 → SO2(R) with the trivial 1-dimensional representation. The blow-up of (P2

C, σP2
R
) at the real S1-fixed

point [0 : 0 : 1] is the real Hirzebruch surface (F1,C = P(OP1
R
⊕ OP1

R
(−1)), σF1

) in which the exceptional
divisor E ∼= (P1

C, σP1
R
) is the section with self-intersection −1 of the P1-bundle structure. The S1-action

on (P2
C, σP2

R
) lifts to an action on (F1,C, σF1

) and the real locus of (F1,C, σF1
) endowed with the induced

S1-action is diffeomorphic to K ' RP2]S1RP2 endowed with the S1-action defined above.
An affine model of K is in turn obtained from (F1,C, σF1

) by removing the union of the proper transform
of the conic ∆ =

{
u2 + v2 + z2 = 0

}
⊂ P2

C and of the proper transforms of the pair of non-real lines

` = {u+ iv = 0} and σP2
R
(`) = {u− iv = 0}
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of (P2
C, σP2

R
) passing through [0 : 0 : 1]. Indeed, ∆∪`∪σP2

R
(`) is a real S1-invariant closed subset of (P2

C, σP2
R
)

with [0 : 0 : 1] as a unique real point, whose proper transform B in (F1,C, σF1
) is an ample S1-invariant curve

with empty real locus. So (S4, σ4) = (F1,C \ B, σF1 |F1,C\B) endowed with the induced S1-action is a real
affine surface whose real locus is diffeomorphic to K. By construction, the inclusion (S4, σ4) ↪→ (F1,C, σF1)
is an S1-equivariant birational diffeomorphism.

A alternative projective model ofK is obtained from the quadric (QC, σQ) of subsection 3.1.2 by blowing-
up the two real S1-fixed points p± = [0 : 0 : ±1 : 1] with respective exceptional divisors E± ∼= (P1

C, σP1
R
).

Letting β : (Q̂C, σQ̂) → (QC, σQ) be the real blow-up morphism, the S1-action on (QC, σQ) lifts to an
action on (Q̂C, σQ̂) for which the real locus of (Q̂C, σQ̂) endowed with the induced S1-action is equivariantly
diffeomorphic to the connected sum RP2]S1S2]S1RP2 ' RP2]S1RP2, hence to the Klein bottleK endowed
with the S1-action defined above. As in the previous subsection, the proper transforms in (Q̂C, σQ̂) of the
curves `− = {u + iv = z + w = 0} and `− = {u − iv = z + w = 0} in (QC, σQ) are a pair of non-real
disjoint smooth rational curves with self-intersection −1, exchanged by the real structure σQ̂. Their union is
an S1-invariant real closed subset F− of (Q̂C, σQ̂) and the contraction of F− is an S1-equivariant birational
diffeomorphism β′ : (Q̂C, σQ̂) → (F1,C, σF1

) which maps the proper transform Ĥ ⊂ Q̂C of the curve
H = {w = 0} ⊂ QC onto the proper transform in (F1,C, σF1

) of the conic ∆ = {u2 + v2 + z2 = 0} ⊂ P2
C.

The proper transforms in (Q̂C, σQ̂) of the curves `+ = {u+iv = z−w = 0} and `+ = {u−iv = z−w = 0}
in (QC, σQ) are also a pair of non-real disjoint smooth rational curves with self-intersection −1, exchanged
by the real structure σQ̂. Their union is an S1-invariant real closed subset F+ of (Q̂C, σQ̂) whose image by
β′ : (Q̂C, σQ̂) → (F1,C, σF1

) is equal to the union of the proper transforms in (F1,C, σF1
) of the lines ` and

σP2
R
(`) of (P2

C, σP2
R
) (see Figure 5).

F1,C Q̂C QC

p−

p+

H

`−

`−

`+

`+
Ĥ

`−

`−

E−

`+

`+ E+

∆ E− E+

`+ = `

`+ = σP2
R
(`)

β′←− β−→

FIGURE 5. A real birational map between (F1,C, σF1) and (QC, σQ).

We obtain a diagram

(S4, σ4) = (F1,C \B, σF1) (Q̂C \ (Ĥ ∪ F− ∪ F+), σQ̂)
β′oo β // (QC \H,σQ) ∼= (S2, σ2)

in which the left hand side induced morphism β′ is an S1-equivariant real isomorphism. The right hand side
morphism β realizes the real affine surface (Q̂C \ (Ĥ ∪F− ∪F+), σQ̂) as the S1-equivariant real affine mod-
ification of (S2, σ2) obtained by blowing-up p− and p+ and removing the proper transforms of the closures
O
±
±1 of the two principal Gm,C-orbits in π−1

2 (±1) exchanged by σ2 and intersecting at p± (see Figure 1).

The S1-equivariant affine modification β : (S4, σ4) → (S2, σ2) can be made explicit as follows. Let
(Q2, σ

′
2) be the smooth surface in Spec(C[x, y, z]) with equation xy = 1 − z2, endowed with the real

structure defined as the composition of the involution (x, y, z) 7→ (y, x, z) with the complex conjugation.
The isomorphism

Q2 → S2 ⊂ Spec(C[u, v, z]), (x, y, z) 7→ (
x+ y

2
,
x− y

2i
, z)
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induces an real isomorphism (Q2, σ
′
2) ∼= (S2, σ2) which is equivariant for the S1-action on (Q2, σ

′
2) given

by the hyperbolic Gm,C-action µ(t, (x, y, z)) = (tx, t−1y, z). Via this isomorphism, the S1-equivariant
real affine modification of (S2, σ2) described geometrically above coincides with the affine modification of
(Q2, σ

′
2) with center at the real S1-invariant closed subscheme with defining ideal I = (x, y)2 and with real

S1-invariant principal divisor div(xy). It follows that (S4, σ4) is S1-equivariantly isomorphic to the complex
affine surface in Spec(C[x±1, y, z]) defined by the equation xy2 = 1 − z2 , endowed with the real structure
given by the composition of the involution (x, y, z) 7→ (x−1, xy, z) with the complex conjugation, equipped
the S1-action given by the hyperbolic Gm,C-action µ(t, (x, y, z)) = (t2x, t−1y, z).

We deduce from this description that the real quotient morphism of (S4, σ4) is the projection

π4 = prz : (S4, σ4)→ (C4, τ4) = (A1
C = Spec(C[z], σA1

R
)

and that a real DPD-pair on (C4, τ4) corresponding to (S4, σ4) is (D4, h4) = (1
2{−1}+ 1

2{1}, 1− z
2). The

image by π4 of the real locus of (S4, σ4) is the segment [−1, 1] of the real locus R of (C4, τ4). The restriction
of π4 over the principal real affine open subset (A1

C \{±1}, σA1
R
|A1

C\{±1}) of (C4, τ4) is a nontrivial S1-torsor.
The fibers of π4 over the real points ±1 of (C4, τ4) are of type b) in Theorem 20. Their real loci consist of a
copy of S1 on which S1 acts with stabilizer µ2.

S1S1

1−1

FIGURE 6. Projection of the real locus K of (S4, σ4) onto the interval [−1, 1].

3.2. Uniqueness of models up to equivariant birational diffeomorphism. This subsection is devoted to
the proof of the following result which implies Theorem 1:

Proposition 24. Every smooth rational quasi-projective real surface with an effective S1-action and whose
real locus is a compact connected manifold of dimension 2 without boundary is S1-equivariantly birationally
diffeomorphic to one of the affine models constructed in subsection 3.1, summarized in Table 7 below.

Real locus S1 × S1 S2 RP2 K
Rational Mmodel S1 = Q1,C × S1

C S2 = S2
C S3 = S2

C/Z2 S4 = {xy2 = 1− z2}
Real categorical quotient (Q1,C, σQ1) (A1

C, σA1
R
) (A1

C, σA1
R
) (A1

C, σA1
R
)

Image of real locus S1 [−1, 1] [−1, 1] [−1, 1]

Real DPD-pair (D,h) (0, 1) (0, 1− z2) ( 1
2{−1}, 1− z2) (

1

2
{−1}+

1

2
{1}, 1− z2)

FIGURE 7. Rational affine models of compact surfaces with S1-actions. The notation
(Q1,C, σQ1) refers to the underlying real algebraic variety of S1, that is, the complexifica-
tion of the smooth affine curve in A2

R = Spec(R[u, v]) with equation u2 + v2 = 1.
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The scheme of the proof is the following. In Lemma 25 below, we first establish that every smooth rational
quasi-projective model with S1-action of the torus T , or the sphere S2, or the plane RP2 or the Klein bottle
K is S1-equivariantly birationally diffemorphic to an affine one. Then in Lemma 26, we split the study of
the affine case into two subcases according to the nature of the image of the real locus by the real quotient
morphism. These subcases are finally studied separately in subsections 3.2.1 and 3.2.2.

Lemma 25. Let (X,Σ) be a smooth rational real quasi-projective surface with an effective S1-action and
whose real locus is a compact connected manifold of dimension 2 without boundary. Then (X,Σ) is S1-
equivariantly birationally diffeomorphic to a smooth rational real affine surface (S, σ) with S1-action.

Proof. By Sumuhiro equivariant completion theorem [15] and equivariant desingularization results for nor-
mal surfaces with Gm,C-actions [12], there exists a smooth real projective surface (X,Σ) with S1-action and
an S1-equivariant open embedding (X,Σ) ↪→ (X,Σ). Since (X,Σ) is rational, so is (X,Σ). By a result of
Comessatti [5, p. 257], the real locus of (X,Σ) is a connected compact smooth surface without boundary,
either non-orientable, or orientable and diffeomorphic to T or S2. Since the real locus of (X,Σ) is itself
connected and compact, it follows that the real loci of (X,Σ) and (X,Σ) coincide, so that (X,Σ) ↪→ (X,Σ)
is a birational diffeomorphism. By [15, Theorem 1.6], there exists a very ample S1-linearized invertible
sheaf L on (X,Σ). This yields in particular a representation of S1 into the group of linear automorphism
of H0(X,L). The underlying representation of Gm,C splits as a direct sum of n1 ≥ 1 non trivial diagonal
representations of the form

t · (xi, yi) = (tmixi, t
−miyi), mi ∈ Z>0, i = 0, . . . , n1 − 1

on which the real structure is given by the composition of the involution (xi, yi) 7→ (yi, xi) with the complex
conjugation, and n2 ≥ 0 trivial 1-dimensional representations. The Gm,C-equivariant closed embedding

X ↪→ P(H0(X,L)) ∼= Proj(C[x0, y0, . . . xn1−1, yn1−1, z1, . . . , zn2
])

then becomes a real S1-equivariant closed embedding for the real structure Σ on X and the real structure on
P(H0(X,L)) defined as the composition of the involution

(x0, y0, . . . xn1−1, yn1−1, z1, . . . , zn2
) 7→ (y0, x0, . . . yn1−1, xn1−1, z1, . . . , zn2

)

with the complex conjugation. The quadric Q ⊂ P(H0(X,L)) with equation
∑n1−1
i=0 xiyi +

∑n2

j=1 z
2
j = 0

is a real ample S1-invariant divisor on P(H0(X,L)) with empty real locus. Since the real locus of (X,Σ) is
not empty, X is not contained in Q. It follows that (S, σ) = (X \Q,Σ|X\Q) is a smooth rational real affine
surface with S1-action. By construction, the open inclusion (S, σ) ↪→ (X,Σ) is an S1-equivariant birational
diffeomorphism. �

The following lemma divides in turn the study of the affine case into two sub-cases:

Lemma 26. Let (S, σ) be a smooth rational real affine surface with an effective S1-action and whose real
locus is a connected compact surface without boundary. Let π : (S, σ) → (C, τ) be the real quotient
morphism for the S1-action. Then the following alternative holds:

a) (C, τ) is a real affine open subset of (Q1,C, σQ1
) and its real locus is equal to that of (Q1,C, σQ1

).
b) (C, τ) is a real affine open subset of the real affine line (A1

C, σA1
R
) and its real locus is a closed interval.

Proof. The curve C is rational because S is rational. Since the real locus of (S, σ) is nonempty, connected
and compact, its image by π : (S, σ) → (C, τ) is a nonempty connected compact subset of the real locus of
(C, τ). The smooth real projective model of (C, τ) is thus isomorphic to the real projective line (P1

C, σP1
R
). If

P1
C \ C contains a real point of (P1

C, σP1
R
), then C is isomorphic to a real affine open subset of the real affine

line. Being connected and compact, its real locus is then a closed interval. Otherwise, since the inclusion
(C, τ) ↪→ (P1

C, σP1
R
) is a real morphism and C is affine, P1

C \C is not empty and consists of pairs of non-real
points of P1

C which are exchanged by the real structure σP1
R
. Since the complement of a pair of such points q

and σP1
R
(q) is isomorphic to the real affine quadric (Q1,C, σQ1), it follows that (C, τ) is isomorphic to a real

affine open subset of (Q1,C, σQ1
), and since the real locus of P1

C \C is empty, it follows that the real locus of
(C, τ) is equal to that of (Q1,C, σQ1). �
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3.2.1. First case: (C, τ) is a real affine open subset of (Q1,C, σQ1
) with real locus equal to S1.

Proposition 27. Let (S, σ) be a smooth rational real affine surface with an effective S1-action and whose
real locus is a connected compact surface without boundary. Let π : (S, σ) → (C, τ) be the real quotient
morphism and assume that (C, τ) is a real affine open subset of (Q1,C, σQ1

) whose real locus is equal to that
of (Q1,C, σQ1

). Then (S, σ) is S1-equivariantly birationally diffeomorphic to (Q1,C, σQ1
)× S1 on which S1

acts by translations on the second factor.

Proof. Let (D,h) be a regular real DPD-pair on (C, τ) corresponding to (S, σ). Since h is a τ -invariant
rational function on C, it is also a σQ1

-invariant rational function on Q1,C. We claim that by changing h
for some rational function of the form fτ∗fh, where f is a rational function on Q1,C, and changing D
accordingly by D + div(f |C), we can assume that h is the restriction to (C, τ) of a real regular function
on (Q1,C, σQ1) whose zero locus on Q1,C consists of real points only. Indeed, since h is σQ1 -invariant, its
poles on Q1 are either real points of (Q1,C, σQ1) or pairs of non-real points exchanged by σQ1 . So up to
changing h for fτ∗fh and D for D + div(f |C) for a suitable regular function f on Q1,C, we can assume
from the very beginning that h is the restriction of a real regular function on (Q1,C, σQ1

). Let q = (z1, z2)
and σQ1

(q) = (z1, z2) = q be a pair of non-real points of Q1,C at which h vanishes. The restrictions to Q1,C
of the regular functions

Fq = (v − z2)− i(u− z1) and Fq = (v − z2) + i(u− z1)

on A2
C = Spec(C[u, v]) are regular functions fq and fq on Q1,C such that div(fq) = q and div(fq) = q.

Furthermore, since σ∗Q1
fq = fq it follows that for δ = ordq(h) = ordq(h), f−δq σ∗Q1

f−δq h is a real regular
function on (Q1,C, σQ1

) which does not vanish at q and q. The pair

(D′, h′) = (D − δdiv(fq|C), f−δq σ∗Q1
f−δq h)

is then a regular real DPD-pair on (C, τ) which defines a smooth real affine surface S1-equivariantly iso-
morphic to (S, σ) by Theorem 14 1). The desired regular real DPD-pair is then obtained by applying this
construction to the finitely many pairs of non-real points of (Q1,C, σQ1

) exchanged by σQ1
at which h van-

ishes.
The set of non-real points q of (C, τ) such that either D(q) 6= 0 or D(τ(q)) 6= 0 is a finite real subset

Z of (C, τ). Its complement (U, τ |U ) is a real affine open subset of (C, τ) and the restriction (D|U , h|U )
of (D,h) is a regular real DPD-pair defining a smooth real affine surface S1-equivariantly isomorphic to
(π−1(U), σ|π−1(U)). Since Z consists of non-real point of (C, τ) only, the inclusion of (π−1(U), σ|π−1(U))

in (S, σ) is an S1-equivariant birational diffeomorphism. Replacing (C, τ) and (D,h) by (U, τ |U ) and
(D|U , h|U ), we can therefore assume that D(q) = ordq(h) = 0 for every non-real point q of C. Now
let D̃ be the Weil Q-divisor on Q1,C defined by D̃(c) = D(c) if c ∈ C and D̃(c) = 0 otherwise, and
let h̃ = h. Since (C, τ) ⊂ (Q1,C, σQ1

) is a real affine open subset with the same real locus as (Q1,C, σQ1
),

Q1,C\C consists of finitely many pairs {q, σQ1(q)} of non-real points ofQ1,C exchanged by the real structure
σQ1 . For every such pair of points, we have by construction

ordq(h̃) = ordq(h) = D̃(q) + D̃(σQ1
(q)) = D̃(q) + σ∗Q1

(D̃)(q)

and similarly for σQ1
(q). This implies that (D̃, h̃) is a real DPD-pair on (Q1,C, σQ1

) which is regular since
(D,h) is regular. Let (S̃, σ̃) be the corresponding smooth real affine surface with S1-action and let π̃ :

(S̃, σ̃) → (Q1,C, σQ1
) be its real quotient morphism. We then have a cartesian square of real algebraic

varieties

(S, σ)
ϕ //

π

��

(S̃, σ̃)

π̃

��
(C, τ) // (Q1,C, σQ1)
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in which the top horizontal morphism ϕ is an S1-equivariant open embedding of (S, σ) as the complement of
the fibers of π̃ over the points ofQ1,C \C. SinceQ1,C \C consists of pairs of non-real points ofQ1,C, the real
loci of (S, σ) and (S̃, σ̃) coincide, which implies that ϕ : (S, σ)→ (S̃, σ̃) is a birational diffeomorphism.

By construction, (D̃, h̃) is a regular real DPD-pair on (Q1,C, σQ1
) such that the support of D̃ consists

of real points of (Q1,C, σQ1
) and such that h̃ is a regular function whose zero locus consists of real points

only. Furthermore, the image by π̃ : (S̃, σ̃) → (Q1,C, σQ1
) of the real locus of (S̃, σ̃) is equal to that of

(Q1,C, σQ1). By Lemma 28 below, (S̃, σ̃) is S1-equivariantly isomorphic to (Q1,C, σQ1) × S1 on which S1

acts by translations on the second factor. This completes the proof. �

In the proof of Proposition 27 above, we use the following auxiliary characterization of (Q1,C, σQ1
)× S1

up to S1-equivariant real isomorphisms:

Lemma 28. Let (D,h) be a regular real DPD-pair on (Q1,C, σQ1
) such that the support of D consists

of real points of (Q1,C, σQ1) and such that h is a real regular function whose zero locus consists of real
points of (Q1,C, σQ1

) only. Let (S, σ) be the corresponding smooth real affine surface with S1-action and let
π : (S, σ)→ (Q1,C, σQ1

) be its real quotient morphism. Then the following are equivalent:
i) The image by π of the real locus of (S, σ) is equal to the real locus of (Q1,C, σQ1

).
ii) The surface (S, σ) is S1-equivariantly isomorphic to (Q1,C, σQ1)×S1 on which S1 acts by translations

on the second factor.

Proof. The implication ii)⇒i) is clear. We now proceed to the proof of i)⇒ii). For every real point c =
(c1, c2) of (Q1,C, σQ1), the restrictions to Q1,C of the regular functions

Fc = (v − c2)− i(u− c1) and F c = (v − c2) + i(u− c2)

on A2
C = Spec(C[u, v]) are regular functions fc and f c on Q1,C such that div(fc) = div(f c) = c. Further-

more, we have σ∗Q1
fc = f c so that div(fcσ

∗
Q1
fc) = 2c. Arguing as in the proof of Lemma 18, we obtain

that (S, σ) is S1-equivariantly isomorphic to the surface determined by a regular real DPD-pair (D′, h′) on
(Q1,C, σQ1

) such that Supp(D′) is contained in the real locus of (Q1,C, σQ1
), h′ is regular and vanishes at

real points only, and such that for every real point c of (Q1,C, σQ1
) exactly one of the following possibilities

occurs:
a) D′(c) = 0 and ordc(h

′) = 0
b) D′(c) = 1

2 and ordc(h
′) = 1

c) D′(c) = 0 and ordc(h
′) = 1.

Consider the restriction h′|S1 : S1 → R of the real regular function h′ to the real locus S1 of (Q1,C, σQ1
).

If c0 is a real point of (Q1,C, σQ1
) of type b) or c) then h′|S1 is a continuous function on S1 whose sign

changes at c0. It follows that there exists a real point c of (Q1,C, σQ1) such that D′(c) = 0 and h′(c) < 0.
But then, it follows from the proof of Theorem 20 1) that (π−1(c), σ|π−1(c)) is S1-equivariantly isomorphic
to the nontrivial S1-torsor Ŝ1 which has empty real locus. This is impossible since by hypothesis the real
locus of (S, σ) surjects onto that of (Q1,C, σQ1

). Thus D′(c) = ordc(h
′) = 0 for every real point c of

(Q1,C, σQ1
). This implies in turn D′ has empty support and that h′ is a nowhere vanishing real regular

function on (Q1,C, σQ1
). It follows that h′ is constant, with positive value λ ∈ R∗+ at every point since the

real locus of (S, σ) surjects onto that of (Q1,C, σQ1
). Writing λ = ατ∗α = α2 for some real number α, we

deduce from Theorem 14 1) that the surface (S, σ) is S1-equivariantly isomorphic to that defined by the real
DPD-pair (D′, 1) = (0, 1) on (Q1,C, σQ,1). By subsection 3.1.1, the latter is S1-equivariantly isomorphic to
(Q1,C, σQ1

)× S1 on which S1 acts by translations on the second factor. �

3.2.2. Second case: (C, τ) is a real affine open subset of the real affine line.

Proposition 29. Let (S, σ) be a smooth rational real affine surface with an effective S1-action and whose
real locus is a connected compact surface without boundary. Let π : (S, σ) → (C, τ) be its real quotient
morphism and assume that (C, τ) is a real affine open subset of (A1

C, σA1
R
). Then (S, σ) is S1-equivariantly

birationally diffeomorphic to one of the affine surfaces (S2, σ2), (S3, σ3) and (S4, σ4) in Table 7.
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Proof. Let A1
C = Spec(C[z]) and let (D,h) be a regular real DPD-pair on (C, τ) ⊆ (A1

C, σA1
R
) corresponding

to (S, σ). The image by π of the real locus of (S, σ) is closed interval J of the real locus R of (A1
C, σA1

R
).

By Theorem 14 1), (S, σ) is S1-equivariantly isomorphic to the surface determined by a real DPD-pair of the
form

(D + div(f |C), (fτ∗f)|Ch)

on (C, τ), where f is any element of C(z). By choosing f ∈ C(z) suitably, we can assume from the very
beginning that h ∈ C(z) is a real polynomial whose zero locus on A1

C is contained in J . Then arguing as in
the proof of Proposition 27, we get that (S, σ) is S1-equivariantly birationally diffeomorphic to the smooth
real affine surface (π−1(U), σ|π−1(U)) determined by the real DPD pair (D|U , h|U ) on the open complement
(U, τ |U ) in C of the set of non-real points q of (C, τ) such that either D(q) 6= 0 or D(τ(q)) 6= 0. Then
(π−1(U), σ|π−1(U)) is in turn S1-equivariantly birationally diffeomorphic to the smooth real affine surface
(S̃, σ̃) determined by the regular real DPD-pair (D̃, h̃) = (D̃, h) on (A1

C, σA1
R
), where D̃ is the Weil Q-divisor

defined by D̃(c) = D(c) if c ∈ J and D̃(c) = 0 otherwise.
By composing the real quotient morphism π̃ : (S̃, σ̃)→ (A1

C, σA1
R
) by a real automorphism of (A1

C, σA1
R
),

we can assume without loss of generality that J is equal to the interval [−1, 1]. For every real point c of J ,
fc = z − c is a real regular function fc on (A1

C, σA1
R
) such that c = div(fc). Arguing as in the proof of

Lemma 18, we obtain that (S̃, σ̃) is S1-equivariantly isomorphic to the surface (Ŝ, σ̂) determined by a real
DPD-pair (D̂, ĥ) on (A1

C, σA1
R
) such that Supp(D̂) is contained in J , ĥ is a regular function whose zero locus

is contained in J and such that that for every c ∈ J exactly one of the following possibilities occurs:
a) D̂(c) = 0 and ordc(ĥ) = 0

b) D̂(c) = 1
2 and ordc(ĥ) = 1

c) D̂(c) = 0 and ordc(ĥ) = 1.
By composing the real quotient morphism π̂ : (Ŝ, σ̂) → (A1

C, σA1
R
) by the real automorphism z 7→ −z

of (A1
C, σA1

R
), we can further assume without loss of generality that D̂(−1) ≥ D̂(1). By Theorem 20, for a

real point c of (A1
C, σA1

R
), the real locus of (π̂−1(c), σ̂|π̂−1(c)) is empty if and only if D̂(c) = ordc(ĥ) = 0

and ĥ(c) < 0. It follows that D̂(c) = ordc(ĥ) = 0 and ĥ(c) < 0 for every real point c of (A1
C, σA1

R
) outside

of J . On the other hand, the real locus of (π̂−1(c), σ̂|π̂−1(c)) being nonempty for every real point c ∈ J by
assumption, we have ĥ(c) ≥ 0 for every c ∈ J . It follows that ĥ ∈ R[z] ⊂ C[z] is a nonzero real polynomial
with only simple real roots, whose restriction to the real locus R of (A1

C, σA1
R
) is negative outside J and non-

negative on J . This implies that ĥ = λ(1− z2) for some λ ∈ R∗+ which can be further chosen equal to 1 by
Theorem 14 1). It follows in turn that D̂(c) = 0 for every real point c of (A1

C, σA1
R
) other than −1 and 1, and

since ord±1ĥ = 1 and D̂(−1) ≥ D̂(1), the only remaining possibilities are the following:
(i) D̂(−1) = D̂(1) = 0

(ii) D̂(−1) = 1
2 and D̂(1) = 0

(iii) D̂(−1) = D̂(1) = 1
2 .

These pairs (D̂, ĥ) correspond respectively to the model (S2, σ2) of S2, (S3, σ3) of RP2 and (S4, σ4) of
K in Table 7. This completes the proof. �
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