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. For that purpose, we consider a shape optimization problem in which we minimize the ratio δ(Ω)/λ 2 0 (Ω) both in the class of compact connected sets and in the class of convex sets.

Introduction

In the last thirty years quantitative isoperimetric inequalities have received much attention in the litterature. The purpose is to quantify the distance that a subset of R n , Ω, has from an n-dimensional ball B of the same measure in terms of the so called isoperimetric deficit δ(Ω):

δ(Ω) = P (Ω) -P (B) P (B) (1) 
(here and later | • | indicates the n-dimensional Lebesgue measure). Several kinds of distances have been proposed to establish quantitative isoperimetric inequalities of the type

[dist(Ω, B)] k ≤ C δ(Ω). (2) 
In 1989, Fuglede [START_REF] Fuglede | Stability in the isoperimetric problem for convex or nearly spherical domains in R n[END_REF] used the Hausdorff distance of a set Ω from the ball of same volume centered at the barycentre x G of Ω. We recall that the barycenter of a set Ω is defined as x G = 1 |Ω| ˆΩ x dx . He called it the uniform spherical deviation. He proved a series of inequalities for convex sets and nearly spherical sets, that is, star-shaped sets with respect to their barycentre (which may be taken to be 0) written as

{y ∈ R n : y = tx(1 + u(x)), x ∈ S n-1 , t ∈ [0, 1]},
where u : S n-1 → R is a positive Lipschitz function, with u L ∞ ≤ 3 20n and ∇u L ∞ ≤ 1 2 . In [START_REF] Fusco | On a Bonnesen type inequality involving the spherical deviation[END_REF], the authors proved the same kind of inequalities as [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for a more general family of sets, and considering as distance the minimum of the Hausdorff distances of a set from all the balls of R n with fixed volume.

[GIRARE la frase] L. E. Fraenkel proposed a different kind of method to count the distance from a ball (now called Fraenkel asymmetry λ(•)), to enlarge the family of sets for which a quantitative isoperimetric inequality hold:

λ(Ω) = inf y∈R n |Ω∆B y | |Ω| (3) 
where B y is the ball of center y and such that |B y | = |Ω| and ∆ is the symmetric difference of sets. This distance can be seen as an L 1 distance between Ω and any ball B y , centered at y ∈ R n , with the same measure as Ω. On the contrary, the Hausdorff distance is in some sense an L ∞ distance between sets. Many mathematicians studied quantitative isoperimetric inequalities with the Fraenkel asymmetry, establishing sharp inequalities (see for example [START_REF] Hall | On asymmetry and capacity[END_REF], [START_REF] Hall | A quantitative isoperimetric inequality in n-dimensional space[END_REF], [START_REF] Giorgi | Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, (Italian)[END_REF], [START_REF] Campi | Isoperimetric deficit and convex plane sets of maximum translative discrepancy[END_REF], [START_REF] Alvino | A sharp isoperimetric inequality in the plane[END_REF], [START_REF] Figalli | A mass transportation approach to quantitative isoperimetric inequalities[END_REF], [START_REF] Fusco | The sharp quantitative isoperimetric inequality[END_REF], [START_REF] Cicalese | A selection principle for the sharp quantitative isoperimetric inequality[END_REF], [START_REF] Fusco | The quantitative isoperimetric inequality and related topics[END_REF], [START_REF] Dambrine | Stability in shape optimization with second variation[END_REF]) and existence of an optimal set for the related shape optimization problem (see [START_REF] Cicalese | Best constants for the isoperimetric inequality in quantitative form[END_REF] and [START_REF] Bianchini | On the quantitative isoperimetric inequality in the plane[END_REF]).

In the spirit of the Fraenkel asymmetry, Fuglede proposed in [START_REF] Fuglede | Lower estimate of the isoperimetric deficit of convex domains in R n in terms of asymmetry[END_REF] the barycentric asymmetry:

λ 0 (Ω) = |Ω∆B x G | |Ω|
where B x G is the ball centered at the barycentre x G of Ω and such that |Ω| = |B x G |. Notice that λ 0 (Ω) is obviously easier to compute than λ(Ω). Fuglede proved that there exists a positive constant (depending only on the dimension n) such that δ(Ω) ≥ C(n) λ 2 0 (Ω), for any convex subsets Ω of R n .

In this paper we propose two kinds of generalizations of Fuglede's results [START_REF] Fuglede | Lower estimate of the isoperimetric deficit of convex domains in R n in terms of asymmetry[END_REF], in dimension n = 2, by considering the shape optimization problem min G 0 (Ω), where

G 0 (Ω) = δ(Ω) λ 2 0 (Ω) , (5) 
in two different families of sets.

(1) We prove that there exists a strictly positive constant C such that the inequality G 0 (Ω) ≥ C holds for compact connected sets (see Section 3). Notice that, as already observed by Fuglede, the connectedness assumption is necessary in order to have a well posed problem (cf. Remark 3.4). [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] The existence of a minimizer of the shape functional G 0 is proved in the class of convex sets (see Section 4). We also study the regularity of the optimal set in Section 5 and we write different kinds of optimality conditions. Some observations about the existence and the shape of an optimal set for the minimization of G 0 in the plane are here presented.

-In this paper we do not prove the existence of an optimal set for the minimization of G 0 within the class of compact connected sets (see Remark 3.3). However we formulate a conjecture about the shape of a possible optimal set. -We conjecture that the optimal set for G 0 within the class of convex sets is the stadium S, found in [START_REF] Alvino | A sharp isoperimetric inequality in the plane[END_REF] as the optimal set for the minimization of

G(Ω) := δ(Ω) λ 2 (Ω) ; (6) 
in Section 5 we give some arguments in this direction. -In [START_REF] Bianchini | On the quantitative isoperimetric inequality in the plane[END_REF] our aim was to compute the infimum of G(Ω). We underline that, since λ(Ω) ≤ λ 0 (Ω), the infimum of G 0 , would entail an estimate from below of the infimum of G(Ω). We note that for a given set Ω, λ 0 (Ω) is much simpler to compute than λ(Ω). As observed by Fuglede [START_REF] Fuglede | Lower estimate of the isoperimetric deficit of convex domains in R n in terms of asymmetry[END_REF], an estimate from below of the infimum of G(Ω) is given in Lemma 2.1 of [START_REF] Hall | On asymmetry and capacity[END_REF]: one has G(Ω) ≥ 0.02 for every Ω ⊂ R 2 ; see also [START_REF] Figalli | A mass transportation approach to quantitative isoperimetric inequalities[END_REF] for an estimate in any dimension. In [START_REF] Li | An analytic proof of the planar quantitative isoperimetric inequality[END_REF] the authors found that G(Ω) ≥ 0.0625 for every Ω in the plane. However, better estimates should be possible. In [START_REF] Cicalese | A selection principle for the sharp quantitative isoperimetric inequality[END_REF], [START_REF] Bianchini | On the quantitative isoperimetric inequality in the plane[END_REF] the conjectured optimal set for G(Ω) is described: a kind of mask with two axes of symmetry and two optimal disks for the Fraenkel asymmetry, whose boundary is composed by arcs of circle with three different radii. If this conjecture is proved, it would provide the following sharp estimate: G(Ω) ≥ 0.3931.

Preliminaries

Given a subset E of R 2 , we denote by E c its complementary set and by co(E) its convex hull. C indicates the set of open convex bounded subsets of R 2 . For ε > 0 we denote by

E ε the ε-enlargement of E, that is, E ε = {x ∈ R 2 : dist(x, E) ≤ ε}
where dist is the Euclidean distance. Diam(E) denotes the diameter of E, that is

Diam(E) = sup x,y∈E |x -y|.
For Ω ⊂ R 2 measurable and bounded, δ(Ω) indicates the isoperimetric deficit as defined in [START_REF] Alvino | A sharp isoperimetric inequality in the plane[END_REF], where P (Ω) is the perimeter in the Minkowski sense, that is:

P (Ω) = lim ε→0 + |Ω ε | -|Ω| ε .
We will explain later in Remark 3.4 why this notion of perimeter is adapted to our problem and why the classical perimeter in the sense of De Giorgi, denoted by P DG (Ω) in the sequel, is not suitable here (we refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Henrot | Shape variation and optimization. A geometrical analysis[END_REF] for definitions). While considering the Fraenkel asymmetry (3) for a set Ω, we refer to a ball B x as to an optimal ball

if |B x | = Ω and λ(Ω) = |Ω∆B x |/|Ω|.
We are interested in investigating the shape functionals G 0 , G defined in ( 5), [START_REF] Cicalese | A selection principle for the sharp quantitative isoperimetric inequality[END_REF], respectively. Let D be a fixed closed disk, we indicate by K(D) the set of all compact connected subsets of D, while K indicates the class of connected compact subsets of R 2 . We recall that the Hausdorff distance between two sets K 1 and K 2 in K is defined by

d H (K 1 , K 2 ) := max sup x∈K1 dist(x, K 2 ), sup x∈K2 dist(x, K 1 ) .
We recall the classical Blaschke's Theorem (cfr. Theorem 2.2.3 in [START_REF] Henrot | Shape variation and optimization. A geometrical analysis[END_REF]): Theorem 2.1. Let {K n } be a sequence in K(D). Then there exists a subsequence which converges in the Hausdorff metric to a set K ∈ K(D).

Theorem 2.2. Let {K n } be a sequence of compact convex sets converging in the Hausdorff metric to a set K. Then K is compact and convex.

We will also use the following semicontinuity result, analogous to the Golab Theorem for the Minkowski perimeter in the plane, proved by Henrot and Zucco in [START_REF] Henrot | Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle[END_REF]:

Theorem 2.3. Let {K n } ⊂ R 2 be a sequence contained in K(D) converging to a set K ∈ K(D) in the Hausdorff metric. Then P (K) ≤ lim inf n→∞ P (K n ).
We will also use the following consequences of the Hausdorff convergence of sets (see Proposition 2.2.21 of [START_REF] Henrot | Shape variation and optimization. A geometrical analysis[END_REF]). Here χ K denotes the characteristic function of a set K.

Proposition 2.4. Let K n , K in K(D). If K n → K in the Hausdorff metric, then (1) 
|K n \ K| → 0 (2) χ K ≥ lim sup n→∞ χ Kn a.e. ( 3 
) If χ Kn → χ in L 1 (Ω) (or even weak-star in (L 1 , L ∞ )), then χ ≤ χ K .
We also recall a compactness result about the L 1 convergence of sets, that is, the L 1 convergence of characteristic functions of sets. See [START_REF] Henrot | Shape variation and optimization. A geometrical analysis[END_REF] for the proof. Proposition 2.5. Let K n be a sequence of sets contained in an open set with finite measure, such that P DG (K n ) + |K n | is uniformly bounded. Then there exists a set K such that χ Kn → χ K in L 1 , up to a subsequence.

Remark 2.6. The perimeters P DG and P of a set satisfy the inequality P DG (K) ≤ P (K) if K ⊂ R 2 is a compact connected set, as remarked in [START_REF] Henrot | Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle[END_REF].

In [START_REF] Bianchini | On the quantitative isoperimetric inequality in the plane[END_REF] we found the infimum value of G for sequences converging to a ball. We used the notion of De Giorgi perimeter to define the isoperimetric deficit. In view of the above relation between the two notions of perimeters P DG , P one has the following result.

Theorem 2.7. Let {Ω ε } ε>0 be a sequence of planar sets converging to a ball B in the sense that

|B∆Ω ε | → 0 as ε → 0. Then inf lim inf ε→0 δ(Ω ε ) λ 2 (Ω ε ) ≥ π 8(4 -π)
.

We will use the following result about the minimization of G within the class convex sets, proved in [START_REF] Alvino | A sharp isoperimetric inequality in the plane[END_REF].

Theorem 2.8. There exists an optimal set for the minimization problem inf K∈C G(K), where C is the family of convex planar sets. The infimum is attained by an explicitely described stadium S and min K∈C G(K) = G(S) ≈ 0.406. Remark 2.9. In the sequel we will use the set D given by two balls, each one of area π 2 , connected by a segment of length 2, whose direction passes through their centers. We will call it dumbbell. We observe that its Minkowski perimeter counts twice the length of the segment and therefore

G 0 (D) = δ(D) λ 2 0 (D) = √ 2 -1 4 + 1 2π ≈ 0.26 < δ(S) λ 2 0 (S) = G 0 (S) ≈ 0.406 ,
where S is the stadium of the above theorem.

In the following we will use nearly spherical sets, studied by Fuglede in [START_REF] Fuglede | Stability in the isoperimetric problem for convex or nearly spherical domains in R n[END_REF], that is star-shaped sets E parametrized as

E = {y ∈ R 2 : y = tx(1 + u(x)), x ∈ S 1 , t ∈ [0, 1]}, (7) 
with u : S 1 → (0, +∞) a Lipschitz function. Moreover, we will assume that the barycenter is at the origin and that |E| = π. Let B be the unit ball centered at 0. Then, it is straightforward to check:

|E∆B| = 1 2 ˆ2π 0 |(1 + u) 2 -1| , H 1 (∂E) = ˆ2π 0 (1 + u) 2 + |u | 2 , ˆ2π 0 cos θ(1 + u) 3 = 0 = ˆ2π 0 sin θ(1 + u) 3 , ˆ2π 0 (1 + u) 2 = 2π .
We will use the following result by Fuglede (Lemma 2.2 in [START_REF] Fuglede | Stability in the isoperimetric problem for convex or nearly spherical domains in R n[END_REF]):

Theorem 2.10. Let K n be a sequence of convex compact sets of area π, converging in the Hausdorff metric to the unit ball B. Assume K n to be parametrized in the form

K n = {y ∈ R 2 : y = tx(1 + u n (x)), x ∈ S 1 , t ∈ [0, 1]},
where u n is a Lipschitz function. The following estimate holds:

u n L ∞ ≤ 2 1 + u n L ∞ 1 -u n L ∞ u n 1 2 L ∞ .
In [START_REF] Croce | A Poincaré type inequality with three constraints[END_REF] the following result has been proved. It will be useful in the shape optimization problem within the class of convex sets.

Theorem 2.11. Let m be defined by

m = inf u∈L ˆ2π 0 [(u ) 2 -u 2 ]dθ ˆ2π 0 |u|dθ 2
where L is the space of H 1 (0, 2π) functions satisfying the constraints:

(L1) ˆ2π 0 u dθ = 0 (L2) ˆ2π 0 u cos(θ) dθ = 0 = ˆ2π 0 sin(θ)u dθ (L3) u(0) = u(2π). Then m = 1 2(4 -π) . 3. Minimization of δ(Ω) λ 2 0 (Ω)
within the class of compact connected sets

In this section, we consider compact connected sets K ∈ K of positive measure (in order the shape functionals δ and λ 0 be well-defined). We are going to prove the following result. Theorem 3.1. There exists C > 0 such that for any planar compact connected set K ∈ K it holds

λ 2 0 (K) ≤ Cδ(K).
In the proof we will use the following simple lemma, which involves the notion of d L 1 (E, F ) of sets E, F ∈ K, defined as the L 1 distance of their characteristic functions. Lemma 3.2. Let B 1 and B 2 be two balls such that their area equals π and the distance between their centers equals a ≤ 2. Then

d L 1 (B 1 , B 2 ) = 4 arcsin a 2 + 2a 1 - a 2 4 .
Moreover, for small values of a it holds

d L 1 (B 1 , B 2 ) = 4a + o(a).
Proof. Up to a rotation we can assume that B 1 = B (0,0) and B 2 = B (a,0) , where B (a,0) denote the ball of area π centered at (a, 0), 0 ≤ a ≤ 2. Let τ = arcsin(a/2). The quantity d L 1 (B (0,0) , B (a,0) ) is equal to 4 times the area of the domain E whose boundary is composed by the following three arcs:

(1) (a + cos t, sin t), t ∈ (0, α), α = π 2 + τ ; (2) (cos t, sin t), t ∈ (0, β), β = π 2 -τ ; (3) (t, 0), t ∈ (1, 1 + a).
Hence by Green's theorem

d L 1 (B 1 , B 2 ) = 4|E| = 1 2 ˆπ 2 +τ 0 (a + cos τ ) cos τ + sin 2 t dτ - 1 2 ˆπ 2 -τ 0 1 + 0 dτ = τ + a 2 cos τ,
and we are done. Moreover as a tends to 0 it follows

d L 1 (B 1 , B 2 ) = 4a + o(a)..
We are now going to prove Theorem 3.1, showing that for a minimizing sequence K n , lim inf n→∞ G 0 (K n ) > 0. We will distinguish the cases where K n converges to a ball or to a set different from a ball.

Proof of Theorem 3.1. Let K n be a minimizing sequence in K, that is,

G 0 (K n ) = δ(K n ) λ 2 0 (K n ) → inf E∈K G 0 (E) = inf E∈K δ(E) λ 2 0 (E)
.

Without loss of generality, we can assume that all the sets K n have area π. By Theorem 2.8 one has

G 0 (K n ) ≤ G 0 (S) = G(S) ≈ 0.406 ,
where S denotes the stadium introduced in Theorem 2.8. Since λ 0 (E) ≤ 2 for any set E, we get

P (K n ) ≤ 16.6 . (8) 
Therefore the sets K n are all contained in a fixed ball, since they are connected and their perimeter is uniformly bounded. Theorem 2.1 gives us the existence of a connected compact set K towards which K n converges in the Hausdorff metric. There exists a set K such that χ Kn → χ K in L 1 and | K| = π, by Proposition 2.5 and Remark 2.6. We are going to prove that K = K (we note that the only Hausdorff convergence does not guarantee that |K| = π).

By point (3) in Proposition 2.4 applied to K c n et K c , we have χ K ≤ χ K , (9) 
since

χ Kn → χ K in L 1 . Therefore |K| ≥ π = | K| . ( 10 
) Since K n → K in the Hausdorff metric, K is contained into the ε-enlargement K ε n of K n .
By the definition of the Minkowski perimeter, we have, for every small ε > 0,

|K| ≤ |K ε n | = |K n | + εP (K n ) + o(ε) = π + εP (K n ) + o(ε) . (11) 
Since P (K n ) are uniformly bounded, inequality [START_REF] Fuglede | Stability in the isoperimetric problem for convex or nearly spherical domains in R n[END_REF] yields |K| ≤ π. This inequality and (10) imply |K| = π. We deduce that K = K a.e. from [START_REF] Giorgi | Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita, (Italian)[END_REF].

Since K n → K in L 1 , as n → ∞, we have λ 0 (K n ) → λ 0 (K)
. Indeed, by the triangle inequality,

π|λ 0 (K n ) -λ 0 (K)| ≤ d L 1 (K n , K) + d L 1 (B, B n ) .
The first term in the right hand side tends to 0, as n → ∞ by the L 1 convergence of K n to K. The second one tends to 0 by Lemma 3.2, since

x Gn 1 -x G 1 ≤ 1 π ˆKn\K |x 1 |dx 1 dx 2 ,
and the last term tends to 0, since the diameter of K n is uniformly bounded and |K n \K| → 0, as n → ∞.

The same holds for the second coordinate. Now, only two possibilities may occur: either λ 0 (K) > 0 or λ 0 (K) = 0.

(1) In the first case, since K n is a minimizing sequence and inf

E∈K δ(E) λ 2 0 (E) > 0, one has 0 < P (K) ≤ lim inf n→∞ P (K n ) by Theorem 2.3. Therefore lim inf n→∞ δ(K n ) λ 2 0 (K n ) ≥ δ(K) λ 2 0 (K) > 0 .
(2) In the second case we can assume that λ(

K n ) = 2ε n → 0, with ε n → 0 as n → ∞, since λ 0 (K n ) ≥ λ(K n ). By Theorem 2.7 one has δ(K n ) ≥ 0.45 • 4ε 2 n .
We are now going to prove that there exists an absolute positive constant A such that

|λ(K n ) -λ 0 (K n )| ≤ 4A π ε n . ( 12 
) Therefore δ(K n ) λ 2 0 (K n ) ≥ δ(K n ) λ(K n ) + 4A π ε n 2 ≥ 1.8 2 + 4A π 2 , (13) 
which implies that

lim inf n→∞ δ(K n ) λ 2 0 (K n ) > 0 .
To prove [START_REF] Fuglede | Lower estimate of the isoperimetric deficit of convex domains in R n in terms of asymmetry[END_REF] it is sufficient to find a positive constant A such that

G n -F n ≤ Aε n ( 14 
)
where

G n = (x Gn 1 , x Gn 2 )
is the barycentre of K n and F n is the centre of an optimal ball for λ(K n ). Indeed, by the triangle inequality,

d L 1 (K n , B Gn ) ≤ d L 1 (K n , B Fn ) + d L 1 (B Gn , B Fn ) ,
where B Fn is an optimal ball for K n with respect to the Fraenkel asymmetry. This inequality together with [START_REF] Fusco | On a Bonnesen type inequality involving the spherical deviation[END_REF] and Lemma 3.2 imply [START_REF] Fuglede | Lower estimate of the isoperimetric deficit of convex domains in R n in terms of asymmetry[END_REF]. We want to prove [START_REF] Fusco | On a Bonnesen type inequality involving the spherical deviation[END_REF], which will end the proof of this case. We can always assume that an optimal ball for the Fraenkel asymmetry is centered in 0, that is, F n = 0. We are now going to estimate x Gn

1 = 1 π ˆKn x 1 dx 1 dx 2 . Writing the last integral on (K n \ B) ∪ B \ (B \ K n ) and recalling that 1 π ˆB x 1 dx 1 dx 2 = 0, we get |x Gn 1 | = 1 π ˆKn\B x 1 dx 1 dx 2 - ˆB\Kn x 1 dx 1 dx 2 ≤ 1 π ˆKn\B |x 1 | dx 1 dx 2 + 1 π ˆB\Kn |x 1 | dx 1 dx 2 .
We observe that diam(

K n \ B) ≤ diam(K n ). Now, diam(K n ) → 2. Indeed by definition of Hausdorff convergence, K n ⊂ B ε and B ⊂ K ε n . Therefore diam(K n ) ≤ 2 + 2ε and 2 ≤ diam(K n ) + 2ε.
Using this property to estimate the first of the last two terms, we get

|x Gn 1 | ≤ 2ε n π + ε n π = 3 π ε n ,
where we have used that

|K n \ B| = |B \ K n | = ε n , since λ(K n ) = 2ε n .
The same estimate can be obtained for |x Gn 2 |. Therefore

G n -F n = G n -0 ≤ Aε n = 3 √ 2 π ε n (15) 
and ( 14) is proved.

Remark 3.3. We conjecture that the infimum of G 0 in the class of the connected sets is attained by the dumbbell described in Remark 2.9.

In the case where the minimizing sequence K n converges to the ball, we get the following estimate from below of lim inf n→∞ G 0 (K n ) (see [START_REF] Fusco | The quantitative isoperimetric inequality and related topics[END_REF] with

A = 3 √ 2 π given in (15)): lim inf n→∞ G 0 (K n ) ≥ 0.13 .
Notice that this estimate is lower than the value of G 0 computed on the dumbbell (see Remark 2.9); this is the reason why the existence of an optimal set for this problem is still an open problem. We remark that the technique introduced in [START_REF] Bianchini | On the quantitative isoperimetric inequality in the plane[END_REF], cannot be applied to the functional G 0 in the class K of connected compact sets in order to exclude sequences converging to a ball. Remark 3.4. As mentioned by Fuglede (we refer to [START_REF] Fusco | The quantitative isoperimetric inequality and related topics[END_REF]), the assumption that Ω is connected cannot be removed. Indeed one can construct the following sequence of non-connected sets Ω n , given by the union of the disk centered in (2, 0), of radius R n = 1 -1 n , and the disk centered in -2(n-1) 2 2n-1 , 0 , of radius

r n = 2n-1 n 2 . It is easy to check that |Ω n | = π, the barycentre of Ω n is the origin, δ(Ω n ) = R n +r n -1 → 0 as n → ∞ and λ 0 (Ω n ) = 2. Thus lim n→∞ G 0 (Ω n ) = 0.
This example shows why the classical De Giorgi perimeter is not suitable for the barycentric asymmetry λ 0 . Indeed, the set Ωn obtained by connecting the above two balls by a long segment has the same De Giorgi perimeter as the perimeter of Ω n , since the De Giorgi perimeter of the long segment is null. Thus lim n→∞ G 0 ( Ωn ) = 0. On the contrary, for the Minkowski perimeter, δ(Ω n ) → +∞, since the length of the long segment counts twice.

Remark 3.5. The notion of Minkowski perimeter has a central role in the second part of the above proof, in inequality [START_REF] Fuglede | Stability in the isoperimetric problem for convex or nearly spherical domains in R n[END_REF], to prove that |K| = π.

4. Minimisation of δ(Ω) λ 2 0 (Ω)
within the class of compact convex sets

In this section we prove the following result :

Theorem 4.1. There exists an optimal set for inf

Ω∈C G 0 (Ω).
We recall that C is the family of convex planar sets.

Proof. Let K n be a minimizing sequence of convex compact sets so that

lim inf G 0 (K n ) = inf Ω⊂C G 0 (Ω).
It follows a uniform bound on δ(Kn) λ 2 0 (Kn) and hence using the definition of λ 0 we have that δ(K n ) is uniformly bounded. Therefore the sets K n are all contained in a fixed ball, since they are convex and they perimeter is uniformly bounded.

Theorems 2.1 and 2.2 entail the existence of a convex compact set towards which K n converges in the Hausdorff metric. Now, as in the proof of the previous theorem, two possibilities may occur:

(1) K n converges to a ball B in the Hausdorff metric;

(2) K n converges to a set K different from a ball in the Hausdorff metric. In the next theorem we are going to analyse the first case, proving that lim inf G 0 > G 0 (S) = 0.406 where S is the stadium of Theorem 2.8. This means that a minimizing sequence cannot converge to a ball. Therefore the only possibility for a minimizing sequence is the second one. In this case we can prove that K is a minimizer by using an analogous argument to that of the proof of case (2) of Theorem 3.1. Let E be a nearly spherical set with barycenter in 0, and assume E to be written in polar coordinates with respect to 0 as in [START_REF] Cicalese | Best constants for the isoperimetric inequality in quantitative form[END_REF]. Hence if E is a convex set, then the functional G 0 (E) can be written as a function J(u) of the parameter u and, according to the computations in Section 2, we obtain:

J(u) = π 2 ˆ2π 0 (1 + u) 2 + u (θ) 2 -1 dθ 1 2 ˆ2π 0 |(1 + u) 2 -1|dθ 2 . ( 16 
)
We are interested in minimizing the functional J(u) with respect to u ∈ N L, that is, u ∈ H 1 (0, 2π), satisfying the constraints of fixed area and barycentre in 0:

(NL1) 1 2π ˆ2π 0 (1 + u) 2 dθ = 1; (NL2) ˆ2π 0 cos(θ)[1 + u(θ)] 3 dθ = 0 = ˆ2π 0 sin(θ)[1 + u(θ)] 3 dθ; (NL3) u(0) = u(2π).
This leads to a complicated problem in the calculus of variations, thus, the strategy consists in replacing this problem by a simpler one which can be seen as a sort of linearization. In order to do this, we define

m = inf u∈L ˆ2π 0 [(u ) 2 -u 2 ]dθ ˆ2π 0 |u|dθ 2 ( 17 
)
where L is the space of H 1 (0, 2π) functions satisfying the constraints:

(L1)

ˆ2π 0 u dθ = 0; (L2) ˆ2π 0 u cos(θ) dθ = 0 = ˆ2π 0 sin(θ)u dθ; (L3) u(0) = u(2π).
Proposition 4.3. Let 0 < ε < 1/24. Consider J : N L → R defined in [START_REF] Hall | On asymmetry and capacity[END_REF] and let

m ε := inf{J(u), u L ∞ = ε, u ∈ N L}. (18) 
It holds lim inf

ε→0 m ε ≥ π 4 m. (19) 
Proof. The proof follows the following steps:

(1) we estimate the infimum value fo the optimization problem [START_REF] Harrell | On the maximization of a class of functionals on convex regions and the characterization of the farthest convex set[END_REF] by considering an auxiliary problem (problem (24)), whose infimum yields a smaller value; (2) we prove that the auxiliary problem has a minimizer u ε ;

(3) we prove that v ε = uε ε (which belongs to the unit sphere of L ∞ ) is bounded in H 1 and converges uniformly to some function v 0 ; (4) passing to the limit as ε → 0, we prove that v 0 is a test function for the optimization problem [START_REF] Hall | A quantitative isoperimetric inequality in n-dimensional space[END_REF] whence the desired inequality holds. In the sequel of the proof C will denote an absolute constant independent of ε.

Step 1. Since ˆ2π 0 (2u + u 2 ) = 0 by (NL1), the minimization of J(u) is equivalent to the minimization (with the same constraints) of

J 1 (u) = π 2 ˆ2π 0 (1 + u) 2 + u 2 -1 dθ - ˆ2π 0 (u + u 2 /2)dθ 1 2 ˆ2π 0 |(1 + u) 2 -1|dθ 2 .
We are going to estimate the numerator of J 1 ; more precisely we are going to prove that ˆ2π

0 1 + 2u + u 2 + u 2 -1 -(u + u 2 /2) dθ ≥ 1 2 ˆ2π 0 u 2 -u 2 - 1 4 u 4 -uu 2 dθ + Cε 3 , (20) 
for some constant C. Assume that ε < 1/24 and

u L ∞ ≤ 3 √ ε ( 21 
)
(this is possible by the estimate u L ∞ ≤ ε and Theorem 2.10). We first observe that for |ρ| ≤ 1 2 ,

1 + ρ ≥ 1 + ρ 2 - ρ 2 8 + ρ 3 16 - ρ 4 8 . (22) 
By [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF], one has the estimate |2u

+ u 2 + u 2 | ≤ 2ε + ε 2 + 9ε ≤ 12ε ≤ 1 2 .
We can apply [START_REF] Lamboley | Regularity and singularities of optimal convex shapes in the plane[END_REF] 

to 2u + u 2 + u 2 to infer (1 + u) 2 + u 2 -1 ≥ u + 1 2 u 2 - 1 8 u 4 - 1 2 uu 2 + Cε 3 .
Therefore (20) holds. We are going to estimate the denominator of

J 1 . Since |2u + u 2 | ≤ (2 + ε)|u| one has that 1 2 ˆ2π 0 |(1 + u) 2 -1| 2 ≤ 1 + ε 2 2 ˆ2π 0 |u| 2 .
Therefore, under the constraints (NL1), (NL2), (NL3) one has J(u) = J 1 (u) ≥ J 2 (u), where

J 2 (u) = π 2 1 2 ˆ2π 0 u 2 -u 2 - 1 4 u 4 -uu 2 + Cε 3 1 + ε 2 2 ˆ2π 0 |u| 2 . ( 23 
)
Defining

m ε := inf{J 2 (u), u L ∞ = ε, u ∈ N L} , (24) 
we have m ε ≥ m ε .

Step 2. We prove that problem (24) has a minimizer u ε for every fixed ε > 0. Let u ε n be a minimizing sequence for J 2 . We know that u ε n L ∞ = ε and (u ε n ) L ∞ ≤ 3 √ ε for every n (by ( 21)). Therefore u ε n → u ε weakly in W 1,∞ (0, 2π) and uniformly in (0, 2π), as n → ∞. To pass to the limit, as n → ∞, in J 2 (u ε n ), we need to study the integral in the numerator of J 2 . We will use a standard argument in the calculus of variations. Notice that for small |s| and |ξ| (recall that

|s| ≤ ε ≤ 1 24 and |ξ| ≤ 3 √ ε ), the function j(s, ξ) = ξ 2 (1 -s) -s 2 -1 4 ξ 4 is convex with respect to ξ. This gives j(s, ξ) ≥ j(s, η) + ∇ ξ j(s, η) • (ξ -η) , where ∇ ξ j(s, ξ) = 2ξ(1 -s) -ξ 3 . Therefore ˆ2π 0 j(u ε n , (u ε n ) ) ≥ ˆ2π 0 j(u ε n , u ε ) + ˆ2π 0 ∇ ξ j(u ε n , u ε ) • ((u ε n ) -u ε ). ( 25 
)
The uniform convergence of u ε n to u ε implies that j(u ε n , u ε ) converges in L 1 (0, 2π) to j(u ε , u ε ), as n → ∞. Moreover (u ε n ) -u ε converges weakly to 0 in L ∞ (0, 2π) and ∇ ξ j(u ε n , u ε ) L ∞ is bounded uniformly in n and ε. Passing to the lim inf in (25), we get lim inf

n→+∞ ˆ2π 0 j(u ε n , (u ε n ) ) ≥ ˆ2π 0 j(u ε , u ε ) ,
which gives an estimate for the numerator of J 2 (u). We deduce the existence of a minimizer u ε for J 2 .

Step 3. Let us consider the renormalising sequence v ε = uε ε . We are going to prove some estimates on v ε which allows to compute the limit of v ε , as ε → 0. The estimates on v ε will be established thanks to the test function w ε , defined here below.

Let a ε = π/4 -επ/6 and b ε = 3π/4 -επ/6. Let w ε be the function, piecewise affine, π-periodic, defined by

w ε (t) =            ε t a ε t ∈ [0, a ε ] , -2ε t -a ε b ε -a ε + ε t ∈ [a ε , b ε ] , -ε π -t π -b ε t ∈ [b ε , π] .
It is easy to see that w ε satisfies w ε L ∞ = ε and condition (NL3). It also satisfies (NL2), since (1 + w ε ) 3 is π-periodic and therefore orthogonal to sine and cosine. We are going to check (NL1), that is,

2 ˆπ 0 w ε + ˆπ 0 w ε2 = 0.
Elementary calculations provide:

ˆπ 0 w ε = 1 2 a ε ε - 1 2 (π -b ε )ε, ˆπ 0 w ε2 = π ε 2 3 .
Therefore (NL1) is satisfied as soon as a ε + b ε -π = -ε/3 which holds true by the definition of a ε and b ε . We also remark that ˆ2π

0 w ε 2 ≤ Cε 2 , ˆ2π 0 w ε2 ≤ Cε 2 , ˆ2π 0 w ε 4 ≤ Cε 4 , ˆ2π 0 w ε w ε 2 ≤ Cε 3 and ˆ2π 0 |w ε | = επ ≥ ε 2 .
These estimates imply that J 2 (w ε ) ≤ C for every ε.

Therefore J 2 (u ε ) ≤ J 2 (w ε ) ≤ C which yields to ˆ2π 0 (u ε ) 2 ≤ ˆ2π 0 u 2 ε + 1 4 (u ε ) 4 + u ε (u ε ) 2 dθ + Cε 3 + C ˆ2π 0 |u ε | 2 .
We deduce that

ˆ2π 0 (u ε ) 2 ≤ Cε 2 .
From the definition of v ε we have v ε L ∞ = 1, moreover by the above estimate we get ˆ2π

0 v ε 2 ≤ C, (26) 
and hence the sequence v ε is bounded in H 1 (0, 2π) and, as ε → 0, v ε converges weakly in H 1 (0, 2π) and uniformly to some function v 0 , up to subsequences. Using [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF] we deduce that v ε L ∞ ≤ 3 √ ε , and then using (26), we have ˆ2π

0 v ε 4 ≤ 9 ε ˆ2π 0 v ε 2 ≤ C ε . Moreover ˆ2π 0 v ε v ε 2 ≤ ˆ2π 0 v ε 2 ≤ C by (26) and v ε L ∞ = 1.
Step 4. We now prove that the function v 0 found in Step 3 is a test function for the optimization problem [START_REF] Hall | A quantitative isoperimetric inequality in n-dimensional space[END_REF]. This will allow us to prove the statement of this Proposition. We observe that, by (24) and the definition of v ε , we have

m ε = π 2 1 2 ˆ2π 0 v ε 2 -v 2 ε - ε 2 4 v ε 4 -εv ε v ε 2 + Cε 1 + ε 2 2 ˆ2π 0 |v ε | 2 . ( 27 
)
Passing to the limit in (27), we get

lim inf ε→0 m ε ≥ π 2 1 2 ˆ2π 0 v 0 2 -v 2 0 ˆ2π 0 |v 0 | 2 .
On the other hand, passing to the limit in (NL1) and (NL2), we see that v 0 satisfies (L1) and (L2) and therefore is an admissible test function for the optimization problem [START_REF] Hall | A quantitative isoperimetric inequality in n-dimensional space[END_REF]. For example, (NL1) is equivalent to

ˆ2π 0 (u 2 ε + 2u ε ) = 0. This implies that 0 ≤ ˆ2π 0 u 2 ε = -2 ˆ2π 0 u ε ≤ Cε 2 by the estimate u ε L ∞ ≤ ε. Therefore, by the definition of v ε , one has ˆ2π 0 v ε → 0, as ε → 0, which gives ˆ2π 0 v 0 = 0. The inequality lim inf ε→0 m ε ≥ lim inf ε→0 m ε ≥ π 4 m follows.
We can now prove Theorem 4.2.

Proof. As we already observed, we can write K n in polar coordinates (see (??)); this implies that

lim inf n→∞ G 0 (K n ) = lim inf ε→0 m ε ≥ π 4 m
where m, m ε are defined by ( 17), [START_REF] Harrell | On the maximization of a class of functionals on convex regions and the characterization of the farthest convex set[END_REF], respectively. . By Proposition 4.3 it is sufficient to prove the estimate π 4 m > 0.41 .

Notice that by Theorem 2.11, it holds m = 1 2(4 -π)

. This implies that π 4 m ≈ 0.457, and the desired estimate holds.

Remark 4.4. Although Fuglede [START_REF] Fuglede | Stability in the isoperimetric problem for convex or nearly spherical domains in R n[END_REF] was interested in the uniform spherical deviation, that is, the Hausdorff distance of a set E from the ball of same measure centered at the barycenter of E, one can easily deduce from his results the inequality δ(E) ≥ C(n)λ 2 0 (E) for nearly spherical sets (see Theorem 3.1 in [START_REF] Fusco | The quantitative isoperimetric inequality and related topics[END_REF]), where C(n) is a constant depending on the dimension. In particular the following estimate can be proved in the plane:

δ(E) ≥ 1 16 λ 0 (E) 2 .
However this estimate is not sufficient to exclude sequences converging to the ball. Our first attempt to prove Theorem 4.2 was the following. For the denominator of J one has

1 2 ˆ2π 0 |(1 + u(θ)) 2 -1|dθ 2 ≤ 1 2 ˆ2π 0 |u(θ)|(2 + ε)dθ 2 = 1 + ε 2 2 u 2 L 1 . For the numerator ˆ2π 0 (1 + u) 2 + u (θ) 2 dθ -1 dθ ≥ ˆ2π 0 u + u 2 + (u ) 2 2 - [4u 2 + 4u 3 + 4uu + u 4 + u 4 + 2u 2 u 2 ] 2 8 + 8u 3 16 dθ ≥ ˆ2π 0 (u ) 2 2 - u 2 2 dθ + o(2) ≥ c -1 2 ˆ2π 0 u 2 dθ + o(2)
where c = 4 is such that ˆ2π

0 (u ) 2 dθ ≥ c ˆ2π 0 u 2 dθ . Therefore lim inf ε→0 J(u) ≥ 3π 4 ˆ2π 0 u 2 dθ ˆ2π 0 |u|dθ 2 ≥ 3 8 = 0.375
by Hölder inequality. Again, this estimate is not sufficient to exclude sequences converging to the ball.

5.

On the regularity and on the shape of the optimal convex set

In this section we prove that an optimal set for the minimization of G 0 within the class of planar convex sets has C 1,1 boundary. About its shape, we conjecture that the stadium S which minimizes G (see Theorem 2.8) also minimizes the functional G 0 . In particular we show that within the class of stadia, S is the only one satisfying the optimality conditions, presented in Theorem 5.4. Unfortunately we are not able to prove that S is an optimizer within the class all convex sets.

The proof of the regularity of the optimal set makes the use of the first order optimality condition in the same spirit of [START_REF] Lamboley | Regularity and singularities of optimal convex shapes in the plane[END_REF].

Let us first recall how to write these optimality conditions, in the case of convexity constraint, when representing the boundary of the convex set with the gauge function. We recall that the gauge function v is defined through the polar representation of the boundary of the convex set as v(θ) = 1/r(θ), where (r(θ) cos θ, r(θ) sin θ) is a boundary point. Thus we consider the optimization problem

min j(v), v ∈ H 1 (0, 2π), v + v ≥ 0, ˆ2π 0 dθ v 2 (θ) = m 0 (29) 
(see Proposition 2.3.3 of [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF]), where j(v) represents an analytic functional related to a shape functional.

Proposition 5.1. Assume that v 0 solves (29) where j : H 1 (0, 2π) → R is C 2 . Then there exist ξ 0 non-negative, µ ∈ R such that ξ 0 = 0 on the support of (v 0 + v 0 ) and

dj(v 0 ; ϕ) =< ξ + ξ , ϕ > -µ dm(v 0 ; ϕ)
for every ϕ ∈ H 1 (0, 2π), where dj(v; ϕ) indicates the derivative of j(v) along the deformation ϕ and dm(v 0 ; ϕ) is the corresponding derivative of m(v) := ´2π 0 dθ v 2 (θ) . In this section, we prove the following regularity result: For the proof, we first express the optimality condition of Proposition 5.1 in our context: Proposition 5.3. Let r, θ be the polar coordinates. Let v(θ) = 1 r(θ) be the gauge function used to describe the boundary of a set E. The optimal set satisfies the following condition: there exists ξ ∈ H 1 such that ξ ≥ 0 for every θ ∈ [0, 2π] and ξ(θ) = 0 at every θ corresponding to strictly convex boundary points of E and there exist μ0 , μ1 , μ2 ∈ R such that

- 1 2πλ 2 0 v + v (v 2 + v 2 ) 3 2 - 2δ πλ 3 0 sign(v 2 -1) v 3 = ξ + ξ - μ0 v 3 -3 μ1 cos θ + μ2 sin θ 2v 4 . ( 30 
)
Proof. We are going to apply Proposition 5.1. To do that, we need to compute the derivative of the functional G 0 and those of the constraints; we will consider the analytic expressions given by J(v), with constraint v ∈ N L. With abuse of notation we write J(v) to consider the functional J(v) rewritten in terms of the gauge function v, as considered in [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF].

(1) The derivative of J(v) along the deformation ϕ is

dJ(v; ϕ) = 1 2πλ 2 0 dP (v; ϕ) -2 δ λ 3 0 dλ 0 (v; ϕ),
where the derivative of P is

dP (v; ϕ) = - ˆv + v (v 2 + v 2 ) 3 2
ϕ .

The derivative of πλ 0 is the derivative of

ˆ{v<1} χ Ω\B + ˆ{v>1} χ B\Ω which gives π dλ 0 (v; ϕ) = 1 2 ˆ{v<1} -2ϕ v 3 + 1 2 ˆ{v>1} 2ϕ v 3 .
(2) The constraints (NL) rewritten in terms of v are

1 2 ˆdθ v 2 (θ) = π, 1 2 
ˆ2π 0 cos θ v 3 (θ) = 0 1 2 ˆ2π 0 sin θ v 3 (θ) = 0.
By derivating each left-hand sides of the above conditions, and introducing the corresponding Lagrange multipliers µ 0 , µ 1 , µ 2 , we obtain respectively:

- ˆμ 0 v 3 , -3 ˆμ 1 cos θ 2v 4 , - 3 
ˆμ 2 sin θ 2v 4 , so that the desired result follows by Proposition 5.1.

We are now able to prove Theorem 5.2:

Proof. We are going to use the notations of the above proposition. Notice that on the strictly convex parts of the boundary, ξ = 0 and v satisfies a second order ordinary differential equation:

(1) in the exterior of the unit ball v < 1, and so v is continuous by equation (29). By a classical bootstrap argument v is C ∞ ; (2) in the exterior of the unit ball v > 1, and so v is continuous by equation (29). By a bootstrap argument v is C ∞ ; (3) on the boundary of the unit ball v = 1, v is bounded, but not continuous. Thus v is W 2,∞ there. This and the above proposition imply that on strictly convex parts on ∂B, v is C 1,1 . Now, let us prove that Ω is C 1 . If this was not the case, we would have a corner for some θ 0 . This implies that the gauge function is such that v + v contains a Dirac mass, with a positive weight at θ 0 . Thus, the H 1 function ξ appearing in the optimality condition (30) also satisfies that the quantity ξ + ξ contains a Dirac mass at θ 0 . Now, since ξ(θ 0 ) = 0 and ξ ≥ 0, the weight of this Dirac mass must be non-negative, in contradiction with the minus sign appearing in the left-hand side of (30) in front of v + v.

We are left with the conjunctions between a strictly convex part of the boundary and a non strictly convex part. For that, it is sufficient to remark that any C 2 (R + )(C ∞ (R + )) function, which is zero at x = 0, can be extended by 0 on R, getting a C 1,1 (R) function. This ends the proof that an optimal set is C 1,1 .

We are going to write the optimality conditions on strictly convex parts in a different way. In particular, this will give the explicit expression of the Lagrange multipliers in (30). We can assume that all the considered sets have area equal to π. Theorem 5.4. Let Ω be an optimal set minimizing the functional G 0 and assume its barycenter is at the origin. Let B be the unit ball centered at the origin. Let

∂Ω IN = ∂Ω ∩ B, ∂Ω OU T = ∂Ω ∩ B c , ∂B IN = ∂B ∩ Ω, ∂B OU T = ∂B ∩ Ω c . Then at every strictly convex boundary point (x, y) of Ω the curvature C(x, y) satisfies: C(x, y) = 1 -3δ + 4δ 2πλ 0 |∂B OU T | -|∂B IN | ± 4δ λ 0 + μ1 x + μ2 y , (31) 
(+ at the exterior of B and -in the interior of B) where

μ1 = 4δ πλ 0 ˆ∂B OU T cos tdt - ˆ∂B IN cos tdt , μ2 = 4δ πλ 0 ˆ∂B OU T sin tdt - ˆ∂B IN sin tdt .
Proof. We are going to perform shape variations on the strictly convex parts of ∂Ω. The proof is divided into several steps. Let V be a perturbation, that is a smooth map V : R 2 → R 2 . We denote by V • n the scalar product of V with the outer unit normal vector n to ∂Ω.

(1) Let Ω t = (I + tV )(Ω). Then

|Ω t | = π + t ˆ∂Ω V • n + o(t) .
(2) The barycenter constraint implies that

ˆΩt x dxdy = 0 + t ˆ∂Ω xV • n + o(t). Since by definition x t = 1 |Ω t | ˆΩt
x dxdy, by the above formulas one has

x t = t π ˆ∂Ω x V • n + o(t) .
A similar formula holds for y t :

y t = t π ˆ∂Ω y V • n + o(t) .
(3) Let B t = (I + tW )(B), where

W (x, y) = (a, b) + α(x, y) , with (a, b) = 1 π ˆ∂Ω xV • n, ˆ∂Ω yV • n , α = 1 2π ˆ∂Ω V • n .
(4) The difference between |Ω t ∆B t | and |Ω∆B| is given by two terms:

|Ω t ∆B t | -|Ω∆B| = ± t ˆ∂B W • n ± t ˆ∂Ω V • n :
for the first term of the right hand side + is on ∂B OU T and -is on ∂B IN ; for the last term of the right hand side, + is ∂Ω OU T and -on ∂Ω IN . In the next part of the proof we will write |Ω t ∆B t | = |Ω∆B| + tR. (5) We have

λ 0 (Ω t ) = |Ω t ∆B t | |Ω t | = |Ω∆B| + tR |Ω| + t ´∂Ω V • n = λ 0 (Ω) • 1 + t R |Ω∆B| 1 + t π ´∂Ω V • n = λ 0 (Ω) + t R π - λ 0 π ˆ∂Ω V • n . dλ 0 (Ω, V ) = 1 π ± ˆ∂B W • n ± ˆ∂Ω V • n -λ 0 ˆ∂Ω V • n ,
that is,

dλ 0 (Ω, V ) = 1 π ˆ∂B OU T W • n - ˆ∂B IN W • n + ˆ∂Ω OU T V • n - ˆ∂Ω IN V • n -λ 0 ˆ∂Ω V • n .
(6) If r t is the radius of the ball having the same area as Ω t , then

r t = π + t ´∂Ω V • n π = 1 + t ´∂Ω V • n 2π .
This gives

δ(Ω t ) = P (Ω t ) 2πr t -1 = P (Ω t ) 2π + t ´∂Ω V • n -1 = P (Ω) + t ´∂Ω C V • n 2π + t ´∂Ω V • n -1 ,
where C indicates the curvature of the boundary. With the same computations as for λ 0 δ(Ω t ) = δ(Ω)

+ t ´∂Ω C V • n 2π -t P (Ω) ´∂Ω V • n 4π 2 and so dδ(Ω, V ) = ˆ∂Ω C 2π - (δ + 1)2π 4π 2 V • n = ˆ∂Ω C -δ -1 2π V • n .
The optimality condition for G 0 : dδ λ 2 0 -2δ λ 3 0 dλ 0 = 0, can be written as Remark 5.5. If S denotes the stadium of Theorem 2.8, we can prove that S is the only stadium satisfying the optimality conditions (31).

ˆ∂Ω (C -δ -1)V • n = 4δ λ 0 ˆ∂B OU T W • n - ˆ∂B IN W • n + ˆ∂Ω OU T V • n - ˆ∂Ω IN V • n -λ 0 ˆ∂Ω V • n .
To see that, let us consider a stadium centered at 0, given by the union of a rectangle of dimensions 2r × 2l with r ≤ 1 and two half discs of radius r. Let θ be the angle such that r = sin θ. Assuming without loss of generality that the area is π, one has l = π -π sin 2 θ 4 sin θ .

The perimeter equals 4l + 2πr = π sin θ + π sin θ which implies

δ(θ) = 1 2 sin θ + sin θ 2 -1 ,
while we can compute λ 0 as λ 0 (θ) = 2 π (π -2θ -sin(2θ)) .

On one hand, an optimal stadium is a critical point of the function θ → δ(θ)/λ 2 0 (θ). This leads to solve the nonlinear equation 8 sin θ(1 -sin θ) 2 -cos θ(π -2θ -sin(2θ)) = 0. (32) It is a simple exercise to prove that this equation has a unique solution, providing the stadium S which corresponds to the value θ ∼ 0.5750. On the other hand, writing condition (31) for a stadium yields, with the same notations, to the equation

4 sin θ - 3 2 sin 2 (θ) - 5 2 + 2 (1 -sin θ) 2 (π -2θ) π -2θ -sin(2θ) = 0. ( 33 
)
It is easy to check that equation (33) has a unique solution in (0, π/2) and this solves equation (32) too.

Therefore there is only one stadium satisfies (31); this stadium is S, since λ 0 and λ are equal on any symmetric set. Now, to prove that the stadium is indeed the minimizer, it certainly requires to prove first that the Lagrange multilplier μ1 and μ2 are both zero, then a precise analysis should provide the result.

Theorem 4 . 2 .

 42 Let K n be a sequence of convex compact sets converging to a ball in the Hausdorff metric. Then lim inf n→∞ G 0 (K n ) ≥ 0.41.

Theorem 5 . 2 .

 52 A minimizer of G 0 within the class of convex compact sets of the plane has C 1,1 boundary. Moreover the strictly convex parts of the boundary (except the intersection with the circle of the barycentric disk) are of class C ∞ .

  Now, W • n = a cos θ + b sin θ + α (since (x, y) • n = 1 on ∂B), so W • n = cos θ ˆ∂Ω xV • n + sin θ ˆ∂Ω yV • n + 1 2π ˆ∂Ω V • n which gives C = δ + 1 -4δ + 4δ 2πλ 0 |∂B OU T | -|∂B IN | ± 4δ λ 0 + μ1 x + μ2 y .
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