Theoretical Performance of Low Rank Adaptive Filters in the Large Dimensional Regime - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Aerospace and Electronic Systems Année : 2019

Theoretical Performance of Low Rank Adaptive Filters in the Large Dimensional Regime

Résumé

This paper proposes a new approximation of the theoretical Signal to Interference plus Noise Ratio (SINR) loss of the Low-Rank (LR) adaptive filter built on the eigenvalue decomposition of the sample covariance matrix. This new result is based on an analysis in the large dimensional regime, i.e. when the size and the number of data tend to infinity at the same rate. Compared to previous works, this new derivation allows to measure the quality of the adaptive filter near the LR contribution. Moreover, we propose a new LR adaptive filter and we also derive its SINR loss approximation in a large dimensional regime. We validate these results on a jamming application and test their robustness in a Multiple Input Multiple Output Space Time Adaptive Processing (MIMO-STAP) application where the data size is large
Fichier principal
Vignette du fichier
RevueSNRloss_Alice.pdf (1.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02083430 , version 1 (26-02-2020)

Identifiants

Citer

Alice Combernoux, Frédéric Pascal, Guillaume Ginolhac, Marc Lesturgie. Theoretical Performance of Low Rank Adaptive Filters in the Large Dimensional Regime. IEEE Transactions on Aerospace and Electronic Systems, 2019, 27 (6), pp.3347 - 3364. ⟨10.1109/TAES.2019.2906418⟩. ⟨hal-02083430⟩
126 Consultations
117 Téléchargements

Altmetric

Partager

More