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Theoretical Performance of Low Rank Adaptive
Filters in Gaussian Context in the Large

Dimensional Regime
Alice Combernoux, Student Member, IEEE, Frédéric Pascal, Senior Member, IEEE,

Guillaume Ginolhac, Member, IEEE and Marc Lesturgie Senior Member, IEEE

Abstract—This paper addresses the problem of deriving the
asymptotic performance of adaptive Low Rank (LR) filters used
in target detection embedded in a disturbance composed of a
LR Gaussian noise plus a white Gaussian noise. In this context,
we use the Signal to Interference to Noise Ratio (SINR) loss
as performance measure which is a function of the estimated
projector onto the LR noise subspace. However, although the
SINR loss can be determined through Monte-Carlo simulations
or real data, this process remains quite time consuming. Thus,
this paper proposes to predict the SINR loss behavior in order to
not depend on the data anymore and be quicker. To derive this
theoretical result, previous works used a restrictive hypothesis
assuming that the target is orthogonal to the LR noise. In
this paper, we propose to derive this theoretical performance
by relaxing this hypothesis and using Random Matrix Theory
(RMT) tools. These tools will be used to present the convergences
of simple quadratic forms and perform new RMT convergences of
structured quadratic forms and SINR loss in the large dimensional
regime, i.e. the size and the number of the data tend to infinity at
the same rate. We show through simulations the interest of our
approach compared to the previous works when the restrictive
hypothesis is no longer verified.

Index Terms—Low Rank SINR loss, Random Matrix Theory,
Adaptive Filtering, Quadratic Forms convergence, Spiked model

I. INTRODUCTION

In array processing, the covariance matrix R of the data
is widely involved for main applications as filtering [1], [2],
radar/sonar detection [3] or localization [4], [5]. However,
when the disturbance in the data is composed of the sum
of a Low Rank (LR) correlated noise and a White Gaussian
Noise (WGN), the covariance matrix is often replaced by the
projector onto the LR noise subspace Πc [6]–[9]. In practice,
the projector onto the LR noise subspace (and the covariance
matrix) is generally unknown and an estimate is consequently
required to perform the different processing. This estimation
procedure is based on the so-called secondary data assumed
to be independent and to share the same distribution. Then,
the true projector is replaced by the estimated one in order to
obtain an adaptive processing. An important issue is then to
derive the theoretical performance of the adaptive processing
as a function of the number of secondary data K. The
processing based on the covariance matrix has been widely
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studied and led to many theoretical results in filtering [1]
and detection [10]–[13]. For example, for classical adaptive
processing, K = 2m secondary data (where m is the data
size) are required to ensure good performance of the adaptive
filtering, i.e. a 3dB loss of the output Signal to Interference
plus Noise Ratio (SINR) compared to optimal filtering [1].
For LR processing, some results has been obtained especially
in filtering [6], [14]–[16] and localization [17]. Similarly, in
LR filtering, the number K of secondary data required to
ensure good performance of the adaptive filtering is equal to
2r (where r is the rank of the LR noise subspace) [6], [14].

These last results are obtained from the theoretical study
of the SINR loss. More precisely, in [14], [16], the derivation
of the theoretical results is based on the hypothesis that
the steering vector is orthogonal to the LR noise subspace.
Nevertheless, even if the result seems to be close to the
simulated one, when the hypothesis is no longer valid any-
more [18], it is impossible with traditional techniques of [14],
[16] to obtain a theoretical performance as a function of
the distance between the steering vector and the LR noise
subspace. Since, in practice, this dependence is essential to
predict the performance of the adaptive filtering, we propose in
this paper to derive the theoretical SINR loss, for a disturbance
composed of a LR Gaussian noise and a WGN, as a function
of K and the distance between the steering vector and the LR
noise subspace. The proposed approach is based on the study
of the SINR loss structure.

The SINR loss (resp. LR SINR loss) is composed of
a simple Quadratic Form (QF) in the numerator, sH1 R̂−1s2
(resp. sH1 Π̂⊥c s2) and a structured QF in the denominator
sH1 R̂−1RR̂−1s2 (resp. sH1 Π̂⊥c RΠ̂⊥c s2). These recent years,
the simple QFs (numerator) have been broadly studied [19]–
[22] using Random Matrix Theory (RMT) tools contrary to
structured QFs (denominator). RMT tools have also been used
in array processing to improve the MUSIC algorithm [23],
[24] and in matched subspace detection [25], [26] where
the rank r is unknown. The principle is to examine the
spectral behavior of R̂ by RMT to obtain their convergences,
performance and asymptotic distribution when K tends to
infinity and when both the data size m and K tend to infinity
at the same ratio, i.e. m/K → c ∈]0,+∞), for different
models of R̂ of the observed data as in [19], [20], [23], [22]
and [21]. Therefore, inspired by these works, we propose in
this paper to summarize the convergences of the structured
QFs sH1 R̂−1RR̂−1s2 and study those of sH1 Π̂⊥c RΠ̂⊥c s2:
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when 1) K →∞ with a fixed m and when 2) m,K →∞ at
the same ratio under the most appropriated model for our data
and with the rank assumed to be known. From [27], [28], the
spiked model has proved to be the more appropriated one to
our knowledge. This model, introduced by [29] (also studied
in [30], [31] from an eigenvector point of view) considers
that the multiplicity of the eigenvalues corresponding to the
signal (the LR noise in this article) is fixed for all m and
leads to the SPIKE-MUSIC estimator [32] of sH1 Π̂s2. Then,
the new results are validated through numerical simulations.
From these new theoretical convergences, the paper derives
the convergence of the LR SINR loss for LR filters. The new
theoretical SINR losses depend on the number of secondary
data K but also on the distance between the steering vector
and the LR noise subspace. This work is partially related to
those of [33]–[36] and [37] which uses the RMT tools to derive
the theoretical SINR loss or SNR performance in a full rank
context (previously defined as classical).

Finally, this theoretical LR SINR loss is validated in a
jamming application context where the purpose is to detect a
target thanks to a Uniform Linear Antenna (ULA) composed
of m sensors despite the presence of jamming. The response
of the jamming is composed of signals similar to the target
response. This problem is very similar to the well-known
Space Time Adaptive Processing (STAP) introduced in [2].
The results show the interest of our approach with respect to
other theoretical results [6], [14]–[16] in particular when the
target is close to the jammer.

The paper is organized as follows. Section II presents the
received data model, the adaptive filters and the corresponding
SINR losses. Section III summarizes the existing studies
on the simple QFs sH1 R̂s2 and sH1 Π̂s2, and exposes the
covariance matrix model, the spiked model. Section IV gives
the theoretical contribution the paper with the convergences
of the structured QFs sH1 Π̂⊥c BΠ̂⊥c s2 and sH1 Π̂⊥c RΠ̂⊥c s2 and
the convergences of the LR SINR loss. The results are finally
applied on a jamming application in Section V.

Notations: The following conventions are adopted. An
italic letter stands for a scalar quantity, boldface lower-
case (uppercase) characters stand for vectors (matrices) and
(.)H stands for the conjugate transpose. IN is the N ×
N identity matrix, tr(.) denotes the trace operator and
diag(.) denotes the diagonalization operator such as (A)i,i =
(diag(a))i,i = (a)i and (A)i,j = 0 if i 6= j. # {A} denotes
the cardinality of the set A. [[a, b]] is the set defined by{
x ∈ Z : a 6 x 6 b,∀(a, b) ∈ Z2

}
. On×N is a n×N matrix

full of 0. The abbreviations iid and a.s. stem for independent
and identically distributed and almost surely respectively.

II. PROBLEM STATEMENT

The aim of the problem is to filter the received observation
vector x ∈ Cm×1 in order to whiten the noise without
mitigating an eventual complex signal of interest d (typically
a target in radar processing). In this paper, d will be a target
response and is equal to αa(Θ) where α is an unknown
complex deterministic parameter (generally corresponding to
the target amplitude), a(Θ) is the steering vector and Θ

is an unknown deterministic vector containing the different
parameters of the target (e.g. the localization, the velocity,
the Angle of Arrival (AoA), etc.). In the remainder of the
article, in order to simplify the notations, Θ will be omitted
of the steering vector which will simply be denoted as a. If
necessary, the original notation will be taken.

This section will first introduce the data model. Then, the
filters, adaptive filters and the quantity characterizing their
performance, the SINR loss, will be defined.

A. Data model

The observation vector can be written as:

x = d + c + b (1)

where c + b is the noise that has to be whitened. b ∈
Cm×1 ∼ CN (0, σ2Im) is an Additive WGN (AWGN) and
c ∈ Cm×1 is a LR Gaussian noise modeled by a zero-
mean complex Gaussian vector with a normalized covariance
matrix C (tr(C) = m), i.e. c ∼ CN (0,C). Consequently,
the covariance matrix of the noise c + b can be written as
R = C + σ2Im ∈ Cm×m. Moreover, considering a LR
Gaussian noise, one has rank (C) = r � m and hence, the
eigendecomposition of C is:

C =

r∑
i=1

ωiuiu
H
i (2)

where ωi and ui, i ∈ [[1; r]] are the non-zero eigenvalues
and the associated eigenvectors of C respectively, unknown
in practice. This leads to:

R =

m∑
i=1

λiuiu
H
i (3)

where λi and ui, i ∈ [[1,m]] are the eigenvalues and the
associated eigenvectors of R respectively with λ1 = ω1+σ2 >
· · · > λr = ωr + σ2 > λr+1 = · · · = λm = σ2. Then, the
projector onto the LR Gaussian noise subspace Πc and the
projector onto the orthogonal subspace to the LR Gaussian
noise subspace Π⊥c are defined as follows:{

Πc =
∑r

i=1 uiu
H
i

Π⊥c = Im −Πc =
∑m

i=r+1 uiu
H
i

(4)

However, in practice, the covariance matrix R of the noise
is unknown. Consequently, it is traditionally estimated with the
Sample Covariance Matrix (SCM) which is computed from
K iid secondary data xk = ck + bk, k ∈ [[1,K]] with ck ∼
CN (0,C) and bk ∼ CN (0, σ2Im), and can be written as:

R̂ =
1

K

K∑
k=1

xkx
H
k =

m∑
i=1

λ̂iûiû
H
i (5)

where λ̂i and ûi, i ∈ [[1,m]] are the eigenvalues and the
eigenvectors of R̂ respectively with λ̂1 > λ̂2 > · · · > λ̂m.
For simplicity purposes, we set σ2 = 1. Finally, the traditional
projectors estimators based on the SCM are:{

Π̂c =
∑r

i=1 ûiû
H
i

Π̂⊥c = Im − Π̂c =
∑m

i=r+1 ûiû
H
i ,

(6)
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B. Adaptive filters

A filtering preprocessing on the observation vector x
(Eq.(1)) is first done with the filter w in order to whiten the
received signal: p = wHx. The filter maximizing the SINR is
given by:

wopt = R−1a (7)

Since, in practice, the covariance matrix R of the noise is
unknown, the estimated optimal filter or adaptive filter (sub-
optimal) is:

ŵ = R̂−1a (8)

In the case where one would benefit of the LR structure
of the noise, one should use the optimal LR filter, based on
the fact that Π⊥c is the best rank r approximation of R−1,
which is defined by [6]:

wLR = Π⊥c a (9)

Since, in practice, the projector is not known and is estimated
from the SCM, the estimated optimal filter or adaptive filter
(sub-optimal) is:

ŵLR = Π̂⊥c a (10)

C. SINR Loss
Then, we define the SINR Loss. In order to characterize

the performance of the estimated filters, the SINR loss com-
pares the SINR at the output of the filter to the maximum
SINR:

ρ̂ =
SINRout
SINRmax

=
|ŵHd|2

(ŵHRŵ)(dHR−1d)
(11)

=
|aHR̂−1a|2

(aHR̂−1RR̂−1a)(aHR−1a)
(12)

If ŵ = wopt, the SINR loss is maximum and is equal to 1.
When we consider the LR structure of the noise, the theoretical
SINR loss can be written as:

ρLR =
|wH

LRd|2

(wH
LRRwLR)(dHR−1d)

(13)

=
|aHΠ⊥c a|2

(aHΠ⊥c RΠ⊥c a)(aHR−1a)
(14)

Finally, the SINR loss corresponding to the adaptive filter in
Eq.(10) is defined from Eq.(14) as:

ρ̂LR = ρLR|Π⊥c =Π̂⊥c
(15)

Since we are interested in the performance of the filters,
we would like to obtain the theoretical behavior of the SINR
losses. Some asymptotic studies on the SINR loss in LR
Gaussian context have already been done [14], [16]. In [14],
[16], the theoretical result is derived by using the assumption
that the steering vector is orthogonal to the LR noise and, in
this case, [16] obtained an approximation of the expectation
of the SINR loss ρ̂LR. However, this assumption is not always
verified, not highly relevant and is a restrictive hypothesis
in real cases. We consequently propose to relax it and study
the convergence of the SINR loss using RMT tools through
the study of the nominators and denominators. Indeed, one
can already note that the numerators are simple QFs whose

convergences were widely considered in RMT. However, the
denominators contain more elaborated QFs which were not
tackled in RMT in LR context yet and will be the object of
Sec.IV.

III. RANDOM MATRIX THEORY TOOLS

This section is dedicated to the introduction of classical
results from the RMT for the study of the convergence of QFs.
This theory and the convergences are based on the behavior of
the eigenvalues of the SCM when m,K →∞ at the same rate,
i.e. m/K → c ∈ ]0,+∞). In order to simplify the notations,
we will abusively note c = m/K.

The useful tools for the study of the eigenvalues behavior
and the assumptions to the different convergences will be first
presented. Secondly, the section will expose the data model,
the spiked model [22]. Finally, the useful convergences of
simple QFs (sH1 R̂−1s2, sH1 Π̂s2) will be introduced.

A. Preliminaries

The asymptotic behavior of the eigenvalues when
m,K →∞ at the same rate is described through the conver-
gence of their associated empirical Cumulative Distribution
Function (CDF) F̂m(x) or their empirical Probability Density
Function (PDF) f̂m(x)1. The asymptotic PDF fm(x) will
allow us to characterize the studied data model. The empirical
CDF of the sample eigenvalues of R̂ can be defined as:

F̂m(x) =
1

m
#
{
k : λ̂k 6 x

}
(16)

However, in practice, the asymptotic characterization of F̂m(x)
is too hard. Consequently, one prefers to study the convergence
of the Stieltjes transform (ST [·]) of F̂m(x):

b̂m(z) = ST
[
F̂m(x)

]
=

∫
R

1

x− z
dF̂m(x) (17)

=
1

m

m∑
i=1

1

λ̂i − z
=

1

m
tr
[
(R̂− zIm)−1

]
(18)

with z ∈ C+ ≡ {z ∈ C : =[z] > 0} and which almost surely
converges to b̄m(z). It is interesting to note that the PDF can
thus be retrieve from the Stieltjes transform of its CDF:

f̂m(x) = lim
=[z]→0

1

π
=
[
b̂m(z)

]
(19)

with x ∈ R. In other words, the characterization of f̂m(x)
(resp. fm(x)) can be obtained from b̂m(z) (resp. b̄m(z)). Then,
to prove the convergences, we assume the following standard
hypotheses.
(As1) R has uniformly bounded spectral norm ∀m ∈ N∗, i.e.
∀i ∈ [[1,m]], λi <∞.

(As2) The vectors s1, s2 ∈ Cm×1 used in the QFs (here
a(Θ) and x) have uniformly bounded Euclidean norm
∀m ∈ N∗.

(As3) Let Y ∈ Cm×K having iid entries yij ∼ CN (0, 1). The
probability law of Y is invariant by left multiplication by
a deterministic unitary matrix.

1One can show that under (As1,As3) described later, f̂m(x) a.s. converges
towards a nonrandom PDF f(x) with a compact support.
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In that case, the following properties are verified. The eigenval-
ues empirical PDF of 1

K YYH a.s. converges to the Marc̆enko-
Pastur distribution [38] with support [(1 −

√
c)2, (1 +

√
c)2]

and the maximum (resp. minimum) eigenvalue of 1
K YYH a.s.

tends to (1 +
√
c)2 (resp. to (1−

√
c)2).

B. Covariance matrix models and convergence of eigenvalues

We first expose the considered data model and, then, the
eigenvalues behavior of the SCM. The SCM can be written as
R̂ = 1

K XXH with:

X = R1/2Y = (Im + P)1/2Y (20)

and X = [x1, · · · ,xK ]. R1/2 is the m × m Hermitian
positive definite square root of the true covariance matrix.
The matrix P is the rank r perturbation matrix and can be
eigendecomposed as P = UsΩUH

s =
∑r

i=1 ωiUiU
H
i with:

Ω =

ω1IK1

. . .
ωrIKr

 (21)

where Us = [U1 · · ·Ur] and r + 1 is the number of distinct
eigenvalues of R. Moreover, Ui ∈ Cm×Ki where Ki is the
multiplicity of ωi. Ki is fixed ∀i ∈ [[1, r]] and does not increase
with m, i.e. Ki/m −→

m,K→∞
0+, ∀i∈ [[1, r]]. For simplicity and in

order to fit with our data model, Ki will be set to 1 for all
i∈ [[1, r]]. Consequently, we have rank(Ω) =

∑
i∈[[1,r]]Ki = r

and Kr+1 = m− r.
Hence, the covariance matrix in Eq.(3) can be rewritten

as:

R =

r+1∑
i=1

λiUiU
H
i =Ur+1U

H
r+1+

r∑
i=1

λiuiu
H
i (22)

where λi and Ui are the eigenvalues and the associated
subspaces of R respectively, with λ1 = 1 + ω1 > · · · >
λr = 1+ωr > λr+1 = 1 and Ur+1 = [ur+1 · · ·um]. In other
words, the model specifies that only a few eigenvalues of the
LR noise component c are non-unit (and do not contribute to
the noise b unit-eigenvalues associated to λr+1) and fixed.

This model leads to a specific asymptotic eigenvalues PDF
of R as detailed hereafter. The convergence of the eigenvalues
is addressed through the convergence of the Stieltjes transform
of the eigenvalues CDF. The asymptotic eigenvalue behavior of
R̂ for the spiked model was introduced by Johnstone [29] and
its eigenvalue behavior was studied in [39]. In order to derive
it, [39] exploited the specific expression given in Eq.(20).
Then, [22] introduced the final assumption (separation con-
dition) under which the following convergences are given.

(As4.S) The eigenvalues of P satisfy the separation condition,
i.e. |ωi| >

√
c for all i ∈ [[1, r]].

Thus, under (As1-As3, As4.S), we have:

f̂m(x) −→
m,K→∞

m/K→c<∞

f(x) (23)

where f(x) is the Marc̆enko-Pastur law:

f(x) =



(
1− 1

c

)
, if x = 0 and c > 1

1

2πcx

√
(λ− − x)(x− λ+),

if x ∈]λ−, λ+[

0, otherwise

(24)

with λ− = (1 −
√
c)2 and λ+ = (1 +

√
c)2. However, it is

essential to note that, for all i ∈ [[1, r]]:

λ̂j∈Mi

a.s.−→
m,K→∞

m/K→c<∞

τi = 1 + ωi + c
1 + ωi

ωi
(25)

where Mi is the set indexes corresponding to the j-th
eigenvalue of R (for example Mr+1 = {r + 1, · · · ,m}
for λr+1). Two representations of f̂m(x) for two different
c and a sufficient large m are shown on Fig. 1 when the
eigenvalues of R are 1, 2, 3, and 7. The eigenvalues have the
same multiplicity and the eigenvalue 1 corresponds the noise
eigenvalue. One can observe that (As4.S) is verified if and
only if τr > λ+. In other words, all the sample eigenvalues
corresponding to the non-unit eigenvalues of R converge to a
value τi which is outside the support of the Marc̆enko-Pastur
law (“asymptotic” PDF of the “unit” sample eigenvalues). As
an illustration, one can notice that, in Fig. 1, for f̂m(x) plotted
for c = 0.1, the separation condition is verified (ω1 = 6,
ω2 = 2 and ω3 = 1 are greater than

√
c = 0.316) and the three

non-unit eigenvalues are represented on the PDF and outside
the support of the Marc̆enko-Pastur law by their respective
limits τ1 = 7.116, τ2 = 3.15 and τ3 = 2.2. On the contrary, for
f̂m(x) plotted for c = 1.5, only the two greatest eigenvalues
are represented on the PDF by their respective limits τ1 = 8.75
and τ2 = 5.25 while the separation condition is not verified
for the eigenvalue λ3 = 2 (ω3 = 1 <

√
c = 1.223). In this

case, the sample eigenvalues corresponding to the eigenvalue
λ3 = 2 belongs to the Marc̆enko-Pastur law.

C. Convergence of simple quadratic forms

Here, we compare the convergence of two simple QFs in
two convergence regimes: when K →∞ with a fixed m and
when m,K →∞ at the same rate.

We first present the useful convergences of simple QFs
function of R̂. It is well known that, due to the strong law
of large numbers, when K →∞ with a fixed m, R̂ → R
a.s. [40]. Thus,

sH1 R̂−1s2
a.s.−→

K→∞
m<∞

sH1 R−1s2 (26)

Moreover, when m,K →∞ at the same rate [19], [41]:

sH1 R̂−1s2
a.s.−→

m,K→∞
m/K→c<∞

(1− c)−1 sH1 R−1s2 (27)

The useful convergences of simple QFs function of Π̂⊥c
are hereafter presented. As R̂→ R a.s. when K →∞ with a
fixed m, Π̂⊥c → Π⊥c a.s. [19] in the same convergence regime.
Thus:

sH1 Π̂⊥c s2
a.s.−→

K→∞
m<∞

sH1 Π⊥c s2 (28)
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Fig. 1. PDF of the eigenvalues of the SCM with the spiked model when the
eigenvalues of R are 1, 2, 3, and 7 with the same multiplicity, where 1 is the
noise eigenvalue.

For the convergences in the large dimensional regime
(m,K →∞ at the same rate), they are presented under (As1-
As3) and the separation condition As4.S. [22] showed that,
∀i ∈ [[1, r]]:

sH1 ÛiÛ
H
i s2

a.s.−→
m,K→∞

m/K→c<∞

1− cω−2i

1 + cω−1i

sH1 UiU
H
i s2 (29)

where ωi = λi− 1 and λi is the i-th distinct eigenvalue of R.

Let χi =
1− cω−2i

1 + cω−1i

. Thus, using the following relationship,

Π̂⊥c = Im −
r∑

i=1

ûiû
H
i (30)

one can deduce that with the spiked model and in the large
dimensional regime:

sH1 Π̂⊥c s2
a.s.−→

m,K→∞
m/K→c<∞

sH1 Π̄⊥c,Ss2 (31)

with Π̄⊥c,S =
∑m

i=1 ψiuiu
H
i and

ψi =

{
1, if i > r

1− χi, if i 6 r
(32)

To summarize, sH1 R̂−1s2 is consistent when K →∞ with
a fixed m and its limits in the large dimensional regime
is proportional to the theoretical QF sH1 R−1s2. However,
although sH1 Π̂⊥c s2 is consistent when K → ∞ with a fixed
m, it is no more consistent under the regime of interest i.e.
when both m,K → ∞ at the same rate. More precisely, the
limit of sH1 Π̂⊥c s2 in the large dimensional regime is not purely
proportional to the theoretical QF sH1 Π⊥c s2 but a completely
different QF.

IV. NEW CONVERGENCE RESULTS

A. Convergence of LR structured quadratic forms

In this section, the convergence of the structured QF
function of Π̂⊥c is analyzed and results in Proposition 1.

Proposition 1: Let B be a m×m deterministic complex
matrix with a uniformly bounded spectral norm for all m.
Then, under (As1-As3, As4.S) and the spiked model,

sH1 Π̂⊥c BΠ̂⊥c s2
a.s.−→

m,K→∞
m/K→c<∞

sH1 Π̄⊥c,SBΠ̄⊥c,Ss2 (33)

where Π̄⊥c,S =
∑m

i=1 ψiuiu
H
i with ψi defined by Eq.(32).

�

Proof: See Appendix.

Moreover, one can remark that if B = R, where R is
the covariance matrix as defined in Eq.(5), the following
convergence holds:

sH1 Π̂⊥c RΠ̂⊥c s2
a.s.−→

m,K→∞
m/K→c<∞

sH1 Π̄⊥c,SRΠ̄⊥c,Ss2 (34)

A visualization of the convergence of Eq.(33) in terms of Mean
Squared Error (MSE) can be found in Fig. 2 when m,K →∞
at a fixed ratio. It is compared to the MSE corresponding to
the following convergence when K →∞ with a fixed m:

sH1 Π̂⊥c BΠ̂⊥c s2
a.s.−→

K→∞
m<∞

sH1 Π⊥c BΠ⊥c s2 (35)

Fig. 2. MSE over 103 iterations corresponding to Eq.(33) and Eq.(35) when
the eigenvalues of R are 1, 21, 31, and 71 with the multiplicity m − 3, 1,
1 and 1 respectively, c = 0.1, s1 = s2 are steering vectors of the LR noise
component c and B = R.

B. Convergence of SINR losses

Now, we provide the convergences of the estimated SINR
losses using the convergences previously presented and the
following convergence. We recall that, as R̂ → R a.s. when
K →∞ with a fixed m, one has:

sH1 R̂−1RR̂−1s2
a.s.−→

K→∞
m<∞

sH1 R−1s2 (36)
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Hence, when K → ∞ with a fixed m and using Eq.(26),
Eq.(36) and the continuous mapping theorem [40]:

ρ̂
a.s.−→

K→∞
m<∞

|aHR−1a|2

(aHR−1a)(aHR−1a)
= 1 (37)

And, under (As1-As3), when m,K → ∞ at the same rate,
from [33], [35], [36], we have:

ρ̂
a.s.−→

m,K→∞
m/K→c<∞

(1− c)|aHR−1a|2

(aHR−1a)(aHR−1a)
= 1− c (38)

To summarize, sH1 R̂−1s2 is consistent when K →∞ with
a fixed m and its limits in the large dimensional regime
is proportional to the theoretical QF sH1 R−1s2. Thus, the
estimated SINR loss ρ̂ is consistent when K → ∞ with
m fixed and its limits in the large dimensional regime is
proportional to ρ. Consequently, RMT cannot help us to
improve the estimation of the theoretical SINR loss as a
function of r.

For the SINR loss corresponding to the adaptive LR filters,
when K →∞ with a fixed m, using Eq.(28), Eq.(35) and the
continuous mapping theorem, we have:

ρ̂LR
a.s.−→

K→∞
m<∞

ρLR (39)

where ρLR is defined by Eq.(14). When m,K → ∞ at the
same rate, we obtain the following convergence:

ρ̂LR
a.s.−→

m,K→∞
m/K→c<∞

ρ̄
(S)
LR = ρLR|Π⊥c =Π̄⊥c,S

6= ρLR (40)

where Eq.(31), Proposition 1 and the continuous mapping
theorem were used to prove Eq.(40). One can observe that,
although the traditional estimator of ρLR is consistent when
K → ∞ with a fixed m, it is no more consistent when
m,K →∞ at the same rate. It is also important to underline
that the new convergence result leads to a more precise approx-
imation of ρ̂LR than previous works [14], [16]. Indeed, [14],
[16] propose an approximation dependent on K and r. In this
article, the proposed approximation depends on K (and of
course on c) and r as well as on the parameter Θ, which
allows us to have a performance measure function of the
“distance” between the signal of interest and the jamming
(typically {uH

i a(Θ) = gi(Θjamming,Θ)}i∈[[1,r]] ∈ [−1, 1]).

V. SIMULATIONS

A. Parameters

As an illustration of the interest of the RMT utilization in
filtering, the jamming application is chosen. The purpose of
this application is to detect a target thanks to a ULA composed
of m sensors despite the presence of jamming. The response
of the jamming, c is composed of signals similar to the target
response. In this section, except for the convergences when
m,K → ∞ at the same rate c, we choose m = 100 in
order to have a large number for the data dimension. Even
if, in some basic array processing applications, this number
could seem significant, it actually became standard in many
applications such as STAP [2], MIMO applications [42], [43],

MIMO-STAP [42], etc. Here, Θ = θ where θ is the AoA.
The jamming is composed of three synthetic targets with AoA
−20◦, 0◦ and 20◦ and wavelength l0 = 0.667m. Thus, the
jamming (LR noise) has a rank r = 3. Then, the AWGN b
power is σ2 = 1. Finally, the theoretical covariance matrix of
the total noise can be written as R = JNR

tr(Λ)UΛUH + σ2Im
with Λ = diag([6, 2, 1]) and where JNR is the jamming to
noise ratio. JNR

tr(Λ) is set at 10dB except for Fig. 4.
In order to validate the spiked model as covariance matrix

model, we visualize a zoom of the experimental PDF of
the eigenvalues of our data without target in Fig. 3 over
5×104 Monte-Carlo iterations. We observe a Marc̆enko-Pastur
law around 1 (eigenvalues of the white noise) and Gaussian
distributions for the eigenvalues of the jamming, which is
consistent to the CLT for the spiked model proved in [22]. The
spiked model is consequently relevant for our data model.

Moreover, in order to verify that the spiked model

Fig. 3. Zoom of the experimental PDF of jamming plus noise data with
c = 0.2 and JNR

tr(Λ)
= 10dB. Due to the zoom, the highest eigenvalue 71 is

out of the figure.

is realistic in terms of separation condition, Fig. 4 shows
(ωr −

√
c) as a function of JNR

tr(Λ) in dB. We recall that, in
order to satisfy the separation condition, one should have
ωr −

√
c > 0. Consequently, we gladly observe that it is

satisfied for JNR
tr(Λ) > 6.2dB for the majority of c even if

c > 17. Indeed, in practice, if the JNR
tr(Λ) is lower than 6.2dB,

the jamming will not have any effects on the performance.
Consequently, the chosen parameters are realistic even if
K = 2r (implying c ' 16.7).

B. Performance of filters

We now observe the performance of filters through the
SINR loss. We are first interested in the validation of the
convergence of ρ̂LR in Eq.(40) as m,K → ∞ at the same
rate. This convergence is validated and presented in Fig. 5 in
terms of MSE over 103 realizations with c = 3 for an AoA of
the target (θ = 50◦) and an AoA of the jamming (θ = 20◦).

Fig. 6 shows the visualization of Eq.(14) (blue line
with stars), Eq.(15) (blue dashed line), the right side of
the convergence in Eq.(40) (green line with circles) and the
approximation E[ρ̂LR] ' 1 − r

K introduced by [14] (black
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Fig. 4. Separation condition (ωr −
√
c) of the spiked model for the lowest

non-unit eigenvalue as a function of the ratio JNR
tr(Λ)

in dB.

Fig. 5. MSE corresponding to Eq.(39) and Eq.(40) when m,K → ∞ at a
fixed ratio c = 3 and JNR

tr(Λ)
= 10dB.

line) as a function of K when the target is near from the
jamming, i.e. θ = 20.5◦. We observe that the spiked model
and the RMT helps us to obtain a better estimation of E[ρ̂LR]

than the estimation E[ρ̂LR] ' 1 − r
K as the curve of ρ̄(S)LR

has the same behavior as the curve of ρ̂LR. Then, similarly,
the same equations are visualized as a function of θ in Fig. 7
with K = 2r. We observe that, unlike the estimation 1−r/K,
the RMT with the spiked model permits us to obtain a better
estimation of E[ρ̂LR] as a function of θ and consequently a
better approximation of its behavior. Thus, it permits to predict
the parameter θ value corresponding to the performance break
(here around 21.1◦).

VI. CONCLUSION

In this paper, we proposed new results in random matrix
theory with a specific covariance matrix model fitted to our
data model: the spiked model. Based on this, we studied the
convergence of the traditional estimator of the SINR loss in its
low rank version when the number of secondary data K →∞
with a fixed data dimension m and when m,K → ∞ at

Fig. 6. Visualization of Eq.(14) (red line with squares), Eq.(15) (blue dashed
line), the right side of the convergence in Eq.(40) (green line with circles)
and the traditional estimation of E[ρ̂LR] (black line) as a function of K (over
103 realizations) with JNR

tr(Λ)
= 10dB, m = 100 and θ = 20.5◦.

Fig. 7. Visualization of Eq.(14) (red line with squares), Eq.(15) (blue dashed
line), the right side of the convergence in Eq.(40) (green line with circles)
and the traditional estimation of E[ρ̂LR] (black line) as a function of θ (over
103 realizations) with JNR

tr(Λ)
= 10dB, m = 100 and K = 2r.

the same rate c = m/K as random matrix theory cannot
help us with its full rank version to obtain performance
function of c and the distance between the target and the
jammers. We observed the low rank version is consistent
when K → ∞ with a fixed m but is not consistent when
m,K → ∞ at the same rate c. Finally, we applied these
results to a jamming application. We first observed that the
experimental probability density function of the eigenvalues
of the covariance matrix of jamming data is relevant with the
probability density function of the eigenvalues corresponding
to the spiked model. Then, we validated the convergence of the
SINR loss in its low rank version. We observed that random
matrix theory and more precisely the spiked model better
evaluate the asymptotic performance of the low rank SINR
loss corresponding to the adaptive low rank filter, especially
when the steering vector parameter is close to the jamming
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one. Thus, contrary to previous works, it allows us to predict
the filter performance when the signal of interest is close to
the low rank noise. Consequently, this new result permits to
predict the steering vector parameter value corresponding to
the performance break.

VII. APPENDIX

The proof is decomposed as follows. We first develop the
structured QF as a sum of simple QFs and base structured
QF (Subsec. VII-A). In a second time, we formulate the
base structured QF as a complex integral (Subsec. VII-B)
and split it into several integrals (Subsec. VII-C). Then, we
determine the deterministic complex integral equivalent of the
base structured QF (Subsec. VII-D) and its formal expression
(Subsec. VII-E). Finally, we use this result to determine the
convergence of the structured QF in the large dimensional
regime (Subsec. VII-F). The regime of convergences in the
Appendix, if not precised, is m,K →∞ at a fixed ratio c.

A. Development of the structured QF
Let s1 and s2 be two deterministic complex vectors and

B be a m ×m deterministic complex matrix with uniformly
bounded spectral norm for all m. In order to obtain the
convergence of the structured QF sH1 Π̂⊥c BΠ̂⊥c s2, one can
rewrite, using the notations of Eq.(22) and the spiked model,
Π̂⊥c = Π̂r+1 = Ûr+1Û

H
r+1 = Im −

∑r
i=1 Π̂i where

Ûr+1 = [ûr+1, · · · , ûm], Π̂i = ûiû
H
i , ∀i ∈ [[1, r]] and ûi

are the eigenvectors of the SCM. We recall that r is fixed for
all m, i.e. r/m → 0+ and the notation Us = [u1, · · · ,ur].
Thus, one can develop the structured QF as :

sH1 Π̂⊥c BΠ̂⊥c s2 =sH1

(
Im −

r∑
i=1

Π̂i

)
B

(
Im −

r∑
i=1

Π̂i

)
s2 (41)

=sH1 Bs2−sH1
r∑
i=1

Π̂iBs2−sH1 B

r∑
i=1

Π̂is2

+sH1

r∑
i=1

Π̂iB

r∑
i=1

Π̂is2 (42)

=sH1 Bs2−
r∑
i=1

(
sH1 Π̂iBs2 + sH1 BΠ̂is2

)
+

r∑
j1=1

sH1 Π̂j1BΠ̂j1s2+
r∑

j1,j2=1
j1 6=j2

sH1 Π̂j1BΠ̂j2s2(43)

B. Formulation of the base structured QF as a complex
integral

Remarking that Eq.(43) is a sum of simple QFs and base
structured QFs, we first focus on the convergence of the base
structured QF η̂(j1, j2) = sH1 Π̂j1BΠ̂j2s2, {j1, j2} ∈ [[1, r]]2.
Let us now formulate the base structured QF as a complex
integral.

Proposition 2: Let B be a m×m deterministic complex
matrix with a uniformly bounded spectral norm for all m.
Then, under (As1-As3, As4.S) and the spiked model, ∀j1, j2 ∈
[[1, r]], if η̂(j1, j2) = sH1 Π̂j1BΠ̂j2s2:

η̂(j1, j2) =
1

(2iπ)2

∮
C−j1

∮
C−j2

sH1

(
R̂− z1Im

)−1

×B
(
R̂− z2Im

)−1

s2dz1dz2 (44)

�

Proof: If j1 6= j2, it can be easily shown that η̂(j1, j2) can
be expressed as the following Cauchy integral in two complex
variables [44]:

A=
1

(2iπ)2

∮
C−j1

∮
C−j2

sH1 (R̂− z1Im)−1B(R̂− z2Im)−1s2dz1dz2

(45)

where C−j in a negatively oriented contour encompassing the
eigenvalues of R̂ corresponding to the j-th eigenvalue of R
and z1 and z2 are independent variables.

Then, if j1 = j2 = j ∈ [[1, r]], one has:

sH1 Π̂jBΠ̂js2 =
1

2iπ

∮
C−j

sH1

m∑
n=1

ûnû
H
n Bûnû

H
n

λ̂n − z
s2dz (46)

However, the remaining of the proof is based on the fact that
the resolvent G(z) of the SCM can be found in the complex
integral, which is not the case in the previous equation.
Consequently, even if Eq.(46) is equivalent to Eq.(44), it will
be easier to use Eq.(44). As a consequence, ∀j1, j2 ∈ [[1, r]]:

η̂(j1, j2) =
1

(2iπ)2

∮
C−j1

∮
C−j2

sH1

(
R̂− z1Im

)−1

×B
(
R̂− z2Im

)−1

s2dz1dz2 (47)

C. Development of the complex integral

Next, one want to split the previous line integral into
several line integrals where some of them will tend to 0. Thus,
from [22], with k ∈ {1, 2}, one can write:

(R̂− zkIm)−1 = (Im + P)−1/2 [Q(zk)− zkQ(zk)Us

×Ĥ(zk)−1Ω(Ir + Ω)−1UH
s Q(zk)

]
×(Im + P)−1/2 (48)

with

Q(zk) = ( 1
K

YYH − zkIm)−1 (49)

Ĥ(zk) = Ir + zkΩ(Ir + Ω)−1UH
s Q(zk)Us (50)

Then, replacing (R̂ − zkIm)−1 by Eq.(48) in Eq.(44) and
developing the obtained result, one obtains:

η̂(j1, j2) = D1 −D2 −D3 +D4 (51)

η̂(j1, j2) =
1

(2iπ)2

∮
C−j1

∮
C−j2

sH1 E(z1)BE(z2)s2dz1dz2

− 1

(2iπ)2

∮
C−j1

∮
C−j2

[
êH1 (z1)Ĥ(z1)−1Ω(Ir + Ω)−1

×UH
s Q(z1)(Im + P)−1/2B

]
E(z2)s2dz1dz2

− 1

(2iπ)2

∮
C−j1

∮
C−j2

sH1 E(z1)
[
B(Im + P)−1/2z2

× Q(z2)UsĤ(z2)−1ê2(z2)
]
dz1dz2

+
1

(2iπ)2

∮
C−j1

∮
C−j2

êH1 (z1)Ĥ(z1)−1Ĉ(z1, z2)

×Ĥ(z2)−1ê2(z2)dz1dz2 (52)
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with

E(z) = (Im + P)−1/2Q(z)(Im + P)−1/2 (53)

êH1 (z) = sH1 (Im + P)−1/2zQ(z)Us (54)

Ĉ(z1, z2) = Ω(Ir + Ω)−1UH
s Q(z1)(Im + P)−1/2B

×(Im + P)−1/2z2Q(z2)Us (55)

ê2(z) = Ω(Ir + Ω)−1UH
s Q(z)(Im + P)−1/2s2 (56)

D. Determination of the deterministic complex integral equiv-
alent

The convergence of the terms D1 to D4 has now to be
studied. Some of them will tend to 0 and the remainder of the
terms will tend to a deterministic integral equivalent.

Proposition 3: Let B be a m×m deterministic complex
matrix with a uniformly bounded spectral norm for all m.
Then, under (As1-As3, As4.S) and the spiked model, ∀j1, j2 ∈
[[1, r]], η̂(j1, j2)− η(j1, j2)

a.s.−→ 0 with

η(j1, j2) =
1

(2iπ)2

∮
γ−j1

∮
γ−j2

eH1 (z1)H(z1)−1C(z1, z2)

×H(z2)−1e2(z2)dz1dz2 (57)

where γ−j is a deterministic negatively oriented circle only
enclosing τj (cf. Eq.(25)) and

H(z) = Ir + zb̄m(z)Ω(Ir + Ω)−1 (58)

eH1 (z) = zb̄m(z)sH1 (Im + P)−1/2Us (59)

C(z1, z2) = z2b̄m(z1)b̄m(z2)Ω(Ir + Ω)−1UH
s (Im + P)−1/2

×B(Im + P)−1/2Us (60)

e2(z) = b̄m(z)Ω(Ir + Ω)−1UH
s (Im + P)−1/2s2 (61)

�

Proof: The function E(z) in D1, D2 and D3 can be
rewritten as:

E(z) = (Im + P)−1/2
m∑

n=1

v̂nv̂
H
n

ζ̂n − z
(Im + P)−1/2 (62)

where ζ̂n and v̂n are the eigenvalues and the eigenvectors
of YYH/K respectively. Thus, E(z1) (resp. E(z2)) has a
single simple pole ζ̂n. As a consequence, ∀j1, j2 ∈ [[1, r]],
C−j1 (resp. C−j2 ) does not encompass E(z1) (resp. E(z2)) under
(As3, As4.S). Thus, D1 = D2 = D3 = 0 and:

η̂(j1, j2) =
1

(2iπ)2

∮
C−j1

∮
C−j2

êH
1 (z1)Ĥ(z1)−1Ĉ(z1, z2)

×Ĥ(z2)−1ê2(z2)dz1dz2 (63)

We will then determine a deterministic equivalent of
Eq.(63), i.e. its convergence in the large dimensional regime.
From lemma 5 of [32] and [22],

Ĥ(z)
a.s.−→

m,K→∞
m/K→c<∞

H(z) = Ir + zb̄m(z)Ω(Ir + Ω)−1 (64)

êH1 (z)
a.s.−→

m,K→∞
m/K→c<∞

eH1 (z) = zb̄m(z)sH1 (Im + P)−1/2Us (65)

ê2(z)
a.s.−→

m,K→∞
m/K→c<∞

e2(z) = b̄m(z)Ω(Ir + Ω)−1UH
s (Im + P)−1/2s2 (66)

Then, the most difficult part concerns the convergence of

Ĉ(z1, z2) = z2Ω(Ir + Ω)−1UH
s Q(z1)(Im + P)−1/2B

×(Im + P)−1/2Q(z2)Us (67)

= z2Ω(Ir + Ω)−1UH
s Q(z1)DQ(z2)Us (68)

which contains the matrix m × m complex Q(z1)DQ(z2).
As the convergence cannot be addressed through classical
methods as in [32], we focus on the asymptotic equivalence
of matrices. Indeed, it can be proven using Gaussian meth-
ods [45], [46] that

Q(z1)DQ(z2)←→ b̄m(z1)b̄m(z2)D (69)

where←→ means the asymptotic equivalence of two matrices
in the large dimensional regime. However, the proof is a result
in itself and therefore is out of scope of this paper. For this
reason, it is omitted here. Consequently, considering Eq.(69),

Ĉ(z1, z2)
a.s.−→

m,K→∞
m/K→c<∞

C(z1, z2) = z2b̄m(z1)b̄m(z2)Ω(Ir + Ω)−1UH
s

×(Im + P)−1/2B(Im + P)−1/2Us(70)

As a result, η̂(j1, j2)− η(j1, j2)
a.s.−→ 0 with

η(j1, j2) =
1

(2iπ)2

∮
γ−j1

∮
γ−j2

eH1 (z1)H(z1)−1C(z1, z2)

×H(z2)−1e2(z2)dz1dz2 (71)

where γ−j is a deterministic negatively oriented circle only
enclosing τj (cf. Eq.(25)).

E. Determination of the expression of the deterministic equiv-
alent

Let us now find the expression of the deterministic equiva-
lent η(j1, j2) as a function of the eigenvalues and eigenvectors
of the covariance matrix R.

Proposition 4: Let B be a m×m deterministic complex
matrix with a uniformly bounded spectral norm for all m.
Then, under (As1-As3, As4.S) and the spiked model,

η(j1, j2) = χj1χj2s
H
1 Πj1BΠj2s2 (72)

with χj =
1−cω−2

j

1+cω−1
j

and {j1, j2} ∈ [[1, r]]2.
�

Proof: We first decompose Eq.(71) as:

η(j1, j2) =
1

2iπ

∮
γ−j1

g(z1)dz1B
1

2iπ

∮
γ−j1

g̃(z2)dz2 (73)

with

g(z) = b̄m(z)eH1 (z)H(z)−1Ω(Ir + Ω)−1UH
s (Im + P)−1/2 (74)

g̃(z) = zb̄m(z)(Im + P)−1/2UsH(z)−1e2(z) (75)

to distinguish the contributions associated to z1 and z2.
After an eigendecomposition of Eqs.(74) and (75) and, us-
ing [22], one obtains:

g(z1) = sH1

r∑
l=1

ωlΠl
(1+ωl)

2

z1 b̄
2
m(z1)

1+z1 b̄m(z1)
ωl

1+ωl

(76)

g̃(z2) =

r∑
l=1

ωlΠl
(1+ωl)

2

z2 b̄
2
m(z2)

1+z2 b̄m(z2)
ωl

1+ωl

s2 (77)

As a result, from the properties of b̄m(z) and residue calculus
(see [22] for further details), one obtains:

η(j1, j2) = ξ(τj1)ξ(τj2)sH1 Πj1BΠj2s2 (78)

with

ξ(τj) =
(1 + h(τj))b̄m(τj)

h′(τj)
(79)
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Finally, the last step consists in expressing ξ(τj) as a
function of ωj . Using Corollary 2 from [22], one expresses
ξ(τj) as:

ξ(τj) = χj =
1− cω−2

j

1 + cω−1
j

(80)

As a consequence,

η̂(j1, j2)
a.s.−→

m,K→∞
m/K→c<∞

η(j1, j2) = χj1χj2s
H
1 Πj1BΠj2s2 (81)

with {j1, j2} ∈ [[1, r]]2.

F. Convergence of the structured QF
From the development of the structured QF, we recall that

the convergences of the simple QFs sH1 Π̂iBs2 and sH1 BΠ̂is2,
∀i ∈ [[1, r]] can be easily determined from [22]:

sH1 Π̂iBs2
a.s−→

m,K→∞
m/K→c<∞

χis
H
1 ΠiBs2 (82)

sH1 BΠ̂is2
a.s−→

m,K→∞
m/K→c<∞

χis
H
1 BΠis2 (83)

where χi is defined as in Section III.C.
Then, also using Eq.(81) in Eq.(43), one easily obtains:

sH1 Π̂⊥c BΠ̂⊥c s2
a.s.−→

m,K→∞
m/K→c<∞

sH1

[
Im −

r∑
i=1

χiΠi

]
B

[
Im −

r∑
i=1

χiΠi

]
s2 (84)

sH1 Π̂⊥c BΠ̂⊥c s2
a.s.−→

m,K→∞
m/K→c<∞

sH1 Π̄⊥c,SBΠ̄⊥c,Ss2 (85)

with Π̄⊥c,S =
∑m

i=1 ψiuiu
H
i and

ψi =

{
1, if i > r

1− χi, if i 6 r
(86)
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