Density Estimation with Imprecise Kernels: Application to Classification
Résumé
In this paper, we explore the problem of estimating lower and upper densities from imprecisely defined families of parametric kernels. Such estimations allow to rely on a single bandwidth value, and we show that it provides good results on classification tasks when extending the naive Bayesian classifier
Domaines
Intelligence artificielle [cs.AI]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...