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Abstract. In this paper, we explore the problem of estimating lower and upper
densities from imprecisely defined families of parametric kernels. Such estima-
tions allow to rely on a single bandwidth value, and we show that it provides good
results on classification tasks when extending the naive Bayesian classifier
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1 Introduction

Estimating probability densities is a key task in many problems: signal filtering, clas-
sification, risk and uncertainty analysis, . . . When the densities are known to belong to
some parametric family, one can use efficient estimators of the parameters, yet when it is
not the case, non-parametric methods such as kernel-based estimation must be used [3].

To perform this estimation, we need a kernel shape and a kernel bandwidth. It is
commonly recognized that the resulting estimation will often not be sensitive to the
kernel shape, but can be highly sensitive to the choice of the bandwidth [4]. A too low
bandwidth will capture very local variations, while a too high bandwidth will provide a
too smooth density. This is particularly true when the number of samples is low.

Except for specific cases, finding an optimal bandwidth for a finite sample of val-
ues is not doable. It may therefore be interesting to let the bandwidth vary in a pre-
determined interval, obtaining upper and lower values of the estimated density. Such
bounds can then be used in robustness analysis, ensuring that the inferences do not de-
pend too much on the bandwidth value. For example, Destercke and Strauss [2] consider
so-called cloudy kernels (pairs of possibility distributions) to perform signal filtering.

In this paper, we study how lower and upper density bounds can be obtained from
imprecise bandwidth defined for a given family of kernels. The approach is described
Section 2, and Section 3 deals with the practical problem of computing those bounds
for specific kernels. We apply in Section 4 our findings to the naive Bayesian classifier,
obtaining a non-parametric credal naive classifier that can deal with continuous data.

2 From precise to imprecise kernel density estimation

A common problem when observing a sample x1, . . . ,xN of a random variable X ∈ R is
to estimate its density function f : R+ → R. When f can be assumed to follow some
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parametric model, estimating it comes down to estimate its parameters.There are cases,
though, where f cannot be satisfactorily approximated by a simple parametric family.

In such cases, non-parametric kernel density estimation can be used to estimate
density values without making a priori assumptions about its shape. Given a scaled
kernel K with bandwidth h1, the estimated density at point x is

f̂h(x) =
1

Nh

N

∑
i=1

K
(

x− x(i)
h

)
.

It is well known that the exact shape of K has in general a small influence on the end-
result, while different choices of bandwidth h may lead to very different results.

This is why it could be interesting to develop tools that allow one to consider sets of
bandwidth at once, thus providing a way to perform a global sensitivity analysis. The
basic idea is the following: given an interval H = [h,h] of possible values, how can we
determine, for a point x, the upper and lower bounds of the corresponding density, i.e.,

f̂
H
(x) = inf

h∈H
f̂h(x) and f̂ H(x) = sup

h∈H
f̂h(x). (1)

Finding the solutions to these equations is non-trivial in general, as the functions to
optimize are usually non-convex in h. In practice, we should try to find kernels for
which efficient algorithmic solutions exist. This is what we do next, for the cases of
triangular and Epanechnikov kernels, recalled in Table 1.

Name K Shape

Epanechnikov K(x) = 3
4 (1− x2)I|x|≤1 x

0-1 1

Triangular K(x) = (1−|x|)I|x|≤1 x
0-1 1

Table 1. Triangular and Epanechnikov kernels

3 Particular tractable cases

In this section, we study how solutions for Equations (1) can be found for some specific
kernels, namely the Triangular and Epanechnikov ones, and for a specific value x. Since
we focus on a particular value x, we will consider the re-indexing x(1), . . . ,x(N) of the
sample in an increasing sequence with respect to their distance of x, that is such that

1 A kernel is here a symmetric, non-negative function with
∫
R K(y)dy = 1 and mean 0.
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|x(i)− x| ≤ |x(i+1)− x| for any i = 1, . . . ,N− 1. We will also use the notations D(i) =

|x(i)− x| and E(D(i)) =

(
i
∑

j=1
D( j)

)
/i to simplify further proofs.

3.1 Triangular Kernel

To compute the bounds given by Equations (1) over the interval [h,h], we need to iden-
tify points that will reach this global optimum, and to do this we show that local opti-
mums are easy to obtain within each interval [D(i),D(i+1)]. This is shown below.

Proposition 1. For a triangular kernel K and values of h ∈ [D(i),D(i+1)], we have:

– if D(i+1) < 2E(D(i)) or D(i) > 2E(D(i)),

max
h∈[D(i),D(i+1)]

f̂h(x) = max( f̂D(i+1)(x), f̂D(i)(x))

– if D(i) ≤ 2E(D(i))≤ D(i+1), f̂h(x) has one maximal value in h and

max
h∈[D(i),D(i+1)]

f̂h(x) = f̂2E(D(i))
(x)

and the minimal value is given by

min
h∈[D(i),D(i+1)]

f̂h(x) = min( f̂D(i)(x), f̂D(i+1)(x))

Proof (sketch). If h ∈ [D(i),D(i+1)], we can write

f̂h(x) =
1

Nh

i

∑
j=1

K
(

x− x( j)

h

)
.

as K (x−x( j)/h) will be null for any j ≥ i+ 1, and non-negative for any j < i+ 1. The

derivative in h is ∂ f̂h(x)/∂h =−i/Nh2 + 2∗
i
∑

j=1
D( j)/N∗h3. The following table shows the sign

variation of this function, which is sufficient to obtain the proposition

h < 2E(D(i)) = 2E(D(i)) > 2E(D(i))
∂ f̂h(x)/∂h < 0 = 0 > 0

Next we show that f̂h(x) is continuous in h, hence that going from [h,h] to [h−
ε,h+ ε] will not induce ”jumps” in our results.

Proposition 2. f̂h(x) = 1
Nh ∑

i
j=1 K

(
x−x( j)

h

)
is piecewise continuous

Proof. Let us show the continuity in D(i+1). Consider first h ∈ [D(i);D(i+1)[, we have

lim
h→D(i+1)
h<D(i+1)

f̂h,i(x) =
i

Nh
−

(
i

∑
j=1

D( j))

N ∗h2 =
i

ND(i+1)
−

i
∑
j=1

D( j)

N ∗D2
(i+1)
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with the last equality being obtained by taking h=D(i+1). Now consider h∈ [D(i+1);D(i+2)[

lim
h→D(i+1)
h>D(i+1)

f̂h,i+1(x) =
i+1
Nh
−

i+1
∑
j=1

D( j)

N ∗h2 =
i+1

ND(i+1)
−

i+1
∑
j=1

D( j)

N ∗D2
(i+1)

and we have that these two values are equal.

Algorithm 1: Find f̂ (x), f̂ (x) in H = [h,h]

Input: x(i), D(i) sorted in ascending order, H, x, i = 1

Output: Bounds f̂ (x), f̂ (x)
while i 6= N do

if [a,b] = H ∩ [D(i),D(i+1)] 6= /0 then
f̂ (x)← min( f̂ (x), f̂ (a), f̂ (b)) ;

f̂ (x)← max( f̂ (x), f̂ (a), f̂ (b))

if 2∗E(D(i)) ∈ [a,b] then
f̂ (x)← max( f̂ (x), f̂ (2∗E(D(i))))

i← i+1

3.2 Epanechnikov kernel

Results similar to the previous case can be given for the Epanechnikov case. Due to
page limit restriction, we only provide the main results.

Proposition 3. For an Epanechnikov kernel K and values of h∈ [D(i),D(i+1)], we have:

– if D(i+1) < (3∗E(D2
(i)))

1
2 or D(i) > (3∗E(D2

(i)))
1
2 ,

max
h∈[D(i),D(i+1)]

f̂h(x) = max( f̂D(i+1)(x), f̂D(i)(x))

– if D(i) ≤ (3∗E(D2
(i)))

1
2 ≤ D(i+1), f̂h(x) has one maximal value in h and

max
h∈[D(i),D(i+1)]

f̂h(x) = f̂
(3∗E(D2

(i)))
1
2
(x)

and the minimal value is given by

min
h∈[D(i),D(i+1)]

f̂h(x) = min( f̂D(i)(x), f̂D(i+1)(x))

Proposition 4. f̂h(x) = 1
Nh ∑

i
j=1 K

(
x−x( j)

h

)
is piecewise continuous
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3.3 Illustrative experiments

To illustrate the results provided by imprecise kernels, we perform experiments where
we modify the number of observations and the size of the interval H. To do that, we
generated points from a bimodal mixture of Gaussian X ∼ 0.6N (−1,1)+0.4N (5,1).
To perform our experiments, we started from a reference bandwidth that corresponds to
the optimal one for the normal case h∗ = (1.06 · σ̂ ·N)−

1
5

Increasing sample Figure 1 shows the results of the following experiments: we generate
1500 points and pick a fixed H = [h∗−0.2∗h∗,h∗+0.2∗h∗]. We then randomly shuffle
the samples, and take each time the first n samples to achieve density estimation. From
the picture, we can easily see that the more points we get, the less imprecise we are.
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Curves obtained with 25 points using the triangular kernel. 
 hOpt = 0.792, hMax and hMin in [hOpt - 0.158, hOpt + 0.158]
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Fig. 1. Imprecise estimation with varying sample sizes

Increasing bandwidth we now fix the number of samples to 75, and make estimations
using intervals going from H = [h∗−0.05∗h∗,h∗+0.05∗h∗] to H = [h∗−0.90h∗,h∗+
0.90h∗]. The results are shown in Figure 2, and again we can easily see the increase of
imprecision, as well as the increasing noise as the lower bound of H gets close to 0.

4 Application to Naive credal classification

As an illustration of our approach, we will apply it to the popular naive Bayes classifier,
and will turn in into a credal naive classifier [5] on continuous variables, whereas most
of the previous versions only accepts discrete variables [1]

4.1 Naive credal classification: brief reminder

The Naive Bayes model is a very popular classification model that considers inputs
from a multivariate space X = X1× . . .×X p and outputs in the form of a discrete class
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Fig. 2. Imprecise estimation with varying bandwidths

Y . The Naive Bayes model proposes to estimate the posterior probability p(y|x) of class
y given observation x = (x1, . . . ,xp) by assuming that input variables are independent,
given the class. That is, p(y|x) can be rewritten

p(y|x) = p(x|y)p(y)
∑y∈Y p(x|y)p(y)

=
p(y)∏

p
i=1 p(xi|y)

∑y∈Y p(y)∏
p
i=1 p(xi|y)

. (2)

Given two classes y and y′, checking that p(y|x)≥ p(y′|x) comes down to check that

p(y|x)
p(y′|x)

=
p(y)∏

p
i=1 p(xi|y)

p(y′)∏
p
i=1 p(xi|y′)

(3)

is higher than one. In this case, we say that y is preferred to y′, noted y � y′. When
probabilities become imprecise, this comes down to test whether the infimum value
of Eq. (3) is higher than 1. This becomes, when class prior probabilities are assumed
precise

inf
p(xi|y)∈[p(xi|y),p(xi|y)]

p(y|x)
p(y′|x)

=
p(y)∏

p
i=1 p(xi|y)

p(y′)∏
p
i=1 p(xi|y′)

This may result in a partial order, in which case our prediction consists in taking all the
maximal elements of the resulting order.

4.2 Experimental protocol

In our training, for any pair feature/class, we consider symmetric intervals around the
estimation h∗ = (1.06 · σ̂ ·N)−

1
5 . To avoid zero-probability of p(xi|y) or of p(xi|y)2, we

take p(xi|y) = max(0,0.1∗ p(xi|y)), and we set p(xi|y) = 10−3 if it is null.

2 In some sense, to regularize our model
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The protocol adopted is the following: for each data set, we decide how imprecise
our kernels will be by setting ε and taking H = [h∗− εh∗,h∗+ εh∗], and a split ratio
of training/test. We then perform ten repetitions for each couple (ε ,ratio). The selected
data sets are summarised in Table 2

# a b c d e f g h i j
Names Breats Iris Wine Automobile Seed Glass Forest Dermatology Diabete Segment

Instances 106 150 178 205 210 214 325 366 769 2310
Features 10 4 13 26 7 9 27 34 8 19
Labels 6 3 3 7 3 7 4 6 2 7

Table 2. Selected data sets

As we deal with imprecise results, we have chosen to use well-motivated utility-
discounted accuracies u65 and u80 [6]

u65 =
1
T

T

∑
t=1
−0.6a2

t +1.6at and u80 =
1
T

T

∑
t=1
−1.2a2

t +2.2at

where at = 1yt∈Yt/|Yt |, Yt being the predicted set. In practice, u80 rewards more im-
precise predictions than u65, hence should be more favourable to imprecise methods
in comparisons. Table 3 summarizes the obtained results, showing that our method is
clearly superior in terms of u80 for most configurations, and quite competitive in terms
of u60. Figure 3 shows the accuracy on those instances who were imprecisely predicted
by our approach, on which we can notice that the precise model accuracy drops (e.g.
for data set c, accuracy on those instances is less than 10%, while it is more than 60%
in average), while our approach is almost systematically right.
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Fig. 3. Accuracy of imprecise predictions for ε=0.2 and split ratio = 0.3

5 Conclusion and perspectives

In this paper, we have introduced the idea of using imprecise parametric kernels in order
to estimate density bounds. We have shown that for some kernels, efficient algorithmic
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SR = 50% ε = 20% SR = 50% ε = 20%
# stats ε = 10% ε = 40% SR=30% SR=75% # ε = 10% ε = 40% SR=30% SR=75%

precise 56.4 56.4 56.9 57.0 80.7 80.7 80.1 82.6
a u65 61.4 49.0 55.2 55.9 f 52.7 39.6 45.9 46.3

u80 71.1 61.1 67.5 67.6 64.0 50.6 57.1 57.4
precise 97.1 97.1 96.3 95.8 87.4 87.4 87.2 87.3

b u65 97.3 96.6 96.9 96.1 g 88.5 88.9 88.2 88.4
u80 97.5 97.1 97.3 96.3 89.1 90.9 89.4 89.4

precise 62.7 62.7 61.3 62.9 98.9 98.9 99.1 99.0
c u65 86.2 82.0 84.9 85.9 h 96.9 78.3 92.2 92.8

u80 92.0 88.5 91.0 91.6 98.2 84.7 95.4 95.8
precise 80.0 80.0 79.6 79.8 79.2 79.2 79.7 79.7

d u65 82.8 61.0 74.9 74.0 i 79.7 79.6 80.0 79.5
u80 86.2 71.6 81.5 80.9 81.5 85.7 83.5 83.1

precise 93.1 93.1 93.6 94.0 89.3 89.3 89.2 89.3
e u65 92.4 91.6 92.2 92.2 j 61.7 50.1 56.7 56.3

u80 93.1 93.4 93.7 93.8 71.8 60.9 66.9 66.6

Table 3. Experimental results

procedure can be developed, and that good results can be obtained in classification
problems (at least for the naive credal classifier). Since density estimation plays an
important role in many applications, we expect our approach to be of interest to many
people.

Possible extensions to our paper include the study of more generic forms of kernels
(e.g., polynomials), as well as the extension of the current study to multi-dimensional
kernels and density estimation.
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