Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data
Résumé
We study existence and stability of solutions of (E 1) −∆u + µ |x| 2 u + g(u) = ν in Ω, u = 0 on ∂Ω, where Ω is a bounded, smooth domain of R N , N ≥ 2, containing the origin, µ ≥ − (N −2) 2 4 is a constant, g is a nondecreasing function satisfying some integral growth assumption and ν is a Radon measure on Ω. We show that the situation differs according ν is diffuse or concentrated at the origin. When g is a power we introduce a capacity framework to find necessary and sufficient condition for solvability.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...