Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data

Résumé

We study existence and stability of solutions of (E 1) −∆u + µ |x| 2 u + g(u) = ν in Ω, u = 0 on ∂Ω, where Ω is a bounded, smooth domain of R N , N ≥ 2, containing the origin, µ ≥ − (N −2) 2 4 is a constant, g is a nondecreasing function satisfying some integral growth assumption and ν is a Radon measure on Ω. We show that the situation differs according ν is diffuse or concentrated at the origin. When g is a power we introduce a capacity framework to find necessary and sufficient condition for solvability.
Fichier principal
Vignette du fichier
Hardy Radon 13.pdf (369.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02013601 , version 1 (11-02-2019)
hal-02013601 , version 2 (02-04-2019)

Identifiants

Citer

Laurent Veron, Huyuan Chen. Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data. 2019. ⟨hal-02013601v1⟩

Collections

LMPT
220 Consultations
141 Téléchargements

Altmetric

Partager

More