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We study existence and stability of solutions of

where Ω is a bounded, smooth domain of R N , N ≥ 2, containing the origin, µ ≥ -(N -2) 2 4 is a constant, g is a nondecreasing function satisfying some integral growth assumption and the weak ∆ 2 -condition, and ν is a Radon measure in Ω. We show that the situation differs depending on whether the measure is diffuse or concentrated at the origin. When g is a power we introduce a capacity framework to find necessary and sufficient conditions for solvability.

u → H(u) := -∆u + V (x)u x ∈ R 3 (1.1)
are at the core of the description of many aspects of nuclear physics. The associated energy, the sum of the momentum energy and the potential energy, endows the form

H(u) = 1 2 R 3 |∇u| 2 + V (x)u 2 dx. (1.2) 
In classical physics V (x) = -κ|x| -1 (κ > 0) is the Coulombian potential and H is not bounded from below and there is no ground state. In quantum physics there are reasons arising from its mathematical formulation which leads, at least in the case of the hydrogen atom, to V (x) = -κ|x| -2 (κ > 0) and H is bounded from below provided κ ≥ - 1 4 . Furthermore, a form of the uncertainty principle is Hardy's inequality

R 3 |∇u| 2 dx ≥ 1 4 R 3 u 2 |x| 2 dx for all u ∈ C ∞ 0 (R 3 ). (1.
3)

The meaning of this inequality is that if u is localized close to a point 0 (i.e., the right side term is large), then its momentum has to be large (i.e., the left side term is large), and the power |x| -2 is the consequence of a dimensional analysis (see [START_REF] Folland | The uncertainty principle: a mathematical survey[END_REF], [START_REF] Frank | Sobolev inequalities and uncertainty principles in mathematical physics[END_REF]). Such potential is often called a Leray-Hardy potential. The study of the mathematical properties of generalisations of the operator H in particular in N-dimensional domains generated hundred of publications in the last thirty years. In this article we define the Schrödinger operator L in R N by

L µ := -∆ + µ |x| 2 , (1.4) 
where µ is a real number satisfying

µ ≥ µ 0 := - (N -2) 2 4 . (1.5) 
Note that (N -2) 2 4

achieves the value 1 4 when N = 3. Let Ω ⊂ R N (N ≥ 2) be a bounded, smooth domain containing the origin and g : R → R is a continuous nondecreasing function such that g(0) ≥ 0, we are interested in the nonlinear Poisson equation

L µ u + g(u) = ν in Ω, u = 0 on ∂Ω, (1.6) 
where ν is a Radon measure in Ω. The reason for a measure framework is that the problem is essentially trivial if ν ∈ L 2 (Ω), more complicated if ν ∈ L 1 (Ω) and very rich if ν is a measure. When µ = 0, problem (1.6) reduces to

-∆u + g(u) = ν in Ω, u = 0 on ∂Ω, (1.7) 
which has been extensively studied by numerous authors in the last 30 years. A fundamental contribution is due to Brezis [START_REF] Brezis | Some variational problems of the Thomas-Fermi type. Variational inequalities and complementarity problems[END_REF], Benilan and Brezis [START_REF] Ph | Nonlinear problems related to the Thomas-Fermi equation[END_REF], where ν is bounded and the function g : R → R is nondecreasing, positive on (0, +∞) and satisfies the subcritical assumption in dimension N ≥ 3:

+∞ 1 (g(s) -g(-s))s -1-N N -2 ds < +∞.

(1.8)

They obtained the existence, uniqueness and stability of weak solutions for the problem. When N = 2, Vàzquez [START_REF] Vàzquez | On a semilinear equation in R N involving bounded measures[END_REF] introduced the exponential orders of growth of g defined by

β + (g) = inf b > 0 : ∞ 1 g (t) e -bt dt < ∞ , β -(g) = sup b < 0 : -1 -∞ g (t) e bt dt > -∞ , (1.9) 
and proved that if ν is any bounded measure in Ω with Lebesgue decomposition

ν = ν r + j∈N α j δ a j ,
where ν r is part of ν with no atom, a j ∈ Ω and the α j ∈ R satisfy

4π β -(g) ≤ α j ≤ 4π β + (g) , (1.10) 
then (1.7) admits a (unique) weak solution. Later on, Baras and Pierre [START_REF] Baras | Singularité séliminables pour des équations semi linéaires[END_REF] studied (1.7) when g(u) = |u| p-1 u for p > 1 and they discovered that if p ≥ N N -2 the problem is well posed if and only if ν is absolutely continuous with respect to the Bessel capacity c 2,p with p = p p-1 . It is a well established fact that, by the improved Hardy inequality [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF] and Lax-Milgram theorem, the non-homogeneous problem

L µ u = f in Ω, u = 0 on ∂Ω, (1.11) 
with f ∈ L 2 (Ω), has a unique solution in H 1 0 (Ω) if µ > µ 0 , or in a weaker space H(Ω) if µ = µ 0 [START_REF] Dupaigne | A nonlinear elliptic PDE with the inverse square potential[END_REF]. When f / ∈ L 2 (Ω) a natural question is to find sharp conditions on f for the existence or nonexistence of solutions of (1.11) and the difficulty comes from the fact that the Hardy term |x| -2 u may not be locally integrable in Ω. An attempt done by Dupaigne in [START_REF] Dupaigne | A nonlinear elliptic PDE with the inverse square potential[END_REF] is to consider problem (1.11) when µ ∈ [µ 0 , 0) and N ≥ 3 in the sense of distributions

Ω uL µ ξ dx = Ω f ξ dx, ∀ ξ ∈ C ∞ c (Ω).
(1.12)

The corresponding semi-linear problem is studied in [START_REF] Boccardo | A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential[END_REF] with this approach.

We adopt here a different point of view in using a different notion of weak solutions. It is known that the equation L µ u = 0 in R N \ {0} has two distinct radial solutions:

Φ µ (x) =    |x| τ -(µ) if µ > µ 0 , |x| -N -2 2 ln 1 |x| if µ = µ 0 , and Γ µ (x) = |x| τ + (µ) , with τ -(µ) = - N -2 2 - (N -2) 2 4 + µ and τ + (µ) = - N -2 2 + (N -2) 2 4 + µ.
In the remaining of the paper and when there is no ambiguity, we put

τ + = τ + (µ), τ 0 + = τ + (µ 0 ), τ -= τ -(µ) and τ 0 -= τ -(µ 0 ).
It is noticeable that identity (1.12) cannot be used to express that Φ µ is a fundamental solution, i.e. f = δ 0 since Φ µ is not locally integrable if µ ≥ 2N . Recently, Chen, Quaas and Zhou found in [START_REF] Chen | On nonhomogeneous elliptic equations with the Hardy-Leray potentials[END_REF] that the function Φ µ is the fundamental solution in the sense that it solves

R N Φ µ L * µ ξ dγ µ (x) = c µ ξ(0) for all ξ ∈ C 1,1 0 (R N ), (1.13) 
where

dγ µ (x) = Γ µ (x)dx, L * µ ξ = -∆ξ -2 τ + |x| 2 x, ∇ξ , (1.14) 
and

c µ = 2 √ µ -µ 0 | S N -1 | if µ > µ 0 , S N -1 if µ = µ 0 .
(1.15)

With the power-absorption nonlinearity in Ω * = Ω \ {0}, the precise behaviour near 0 of any positive solution of

L µ u + u p = 0 in D (Ω * ) (1.16)
is given in [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF] when p > 1. In this paper it appears a critical exponent

p * µ = 1 - 2 τ - (1.17)
with the following properties: if p ≥ p * µ any solution of (1.16) can be extended by continuity as a solution in D (Ω). If 1 < p < p * µ any positive solution of (1.16) either satisfies

lim x→0 |x| 2 p-1 u(x) = , (1.18) 
where = N,p,µ > 0, or there exists k ≥ 0 such that

lim x→0 u(x) Φ µ (x) = k, (1.19) 
and in that case u ∈ L p loc (Ω; dγ µ ). In view of [START_REF] Chen | On nonhomogeneous elliptic equations with the Hardy-Leray potentials[END_REF], it implies that u satisfies

R N uL * µ ξ + u p ξ dγ µ (x) = c µ kξ(0), ∀ ξ ∈ C 1,1 0 (R N ). (1.20)
Note the threshold p * µ and its role is put into light by the existence or non-existence of explicit solutions of (1.16) under the form x → a|x| b , where necessarily b = -2 p-1 and a = . It is also proved in [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF] that when µ > µ 0 and g : R → R + is a continuous nondecreasing function satisfying

∞ 1 (g(s) -g(-s)) s -1-p * µ ds < ∞, (1.21) 
then for any k > 0 there exists a radial solution of

L µ u + g(u) = 0 in D (B * 1 ) (1.22)
satisfying (1.19), where B * 1 := B 1 (0) \ {0}. When µ = µ 0 and N ≥ 3 it is proved in [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF] that if there exists b > 0 such that

1 0 g -bs -N -2 N +2 ln s ds < ∞, (1.23) 
then there a exists a radial solution of (1.22) 

satisfying (1.19) with γ = (N +2)b 2 .
In fact this condition is independent of b > 0, by contrast to the case N = 2 and µ = 0 where the introduction of the exponential order of growth of g is a necessity. Moreover, it is easy to see that u satisfies

R N uL * µ ξ + g(u)ξ dγ µ (x) = c µ γξ(0), ∀ξ ∈ C 1,1 0 (R N ). (1.24)
In view of these results and identity (1.13), we introduce a definition of weak solutions adapted to the operator L µ in a measure framework. Since Γ µ is singular at 0 if µ < 0, there is need of defining specific set of measures and we denote by M(Ω * ; Γ µ ), the set of Radon measures ν in Ω * such that

Ω * Γ µ d|ν| := sup Ω * ζd|ν| : ζ ∈ C 0 (Ω * ), 0 ≤ ζ ≤ Γ µ < ∞.
(1.25)

If ν ∈ M + (Ω * ), we define its natural extension, with the same notation since there is no ambiguity, as a measure in Ω by

Ω ζdν = sup Ω * ηdν : η ∈ C 0 (Ω * ) , 0 ≤ η ≤ ζ for all ζ ∈ C 0 (Ω) , ζ ≥ 0, (1.26) 
a definition which is easily extended if ν = ν + -ν -∈ M(Ω * ). Since the idea is to use the weight Γ µ in the expression of the weak solution, the expression Γ µ ν has to be defined properly if τ + < 0. We denote by M(Ω; Γ µ ) the set of measures ν on Ω which coincide with the above natural extension of ν Ω * ∈ M + (Ω * ; Γ µ ). If ν ∈ M + (Ω; Γ µ ) we define the measure Γ µ ν in the following way

Ω ζd(Γ µ ν) = sup Ω * ηΓ µ dν : η ∈ C 0 (Ω * ) , 0 ≤ η ≤ ζ for all ζ ∈ C 0 (Ω) , ζ ≥ 0. (1.27)
If ν = ν + -ν -, Γ µ ν is defined acoordingly. Notice that the Dirac mass at 0 does not belong to M(Ω; Γ µ ) although it is a limit of {ν n } ⊂ M(Ω; Γ µ ). We detote by M(Ω; Γ µ ) the set of measures which can be written under the form

ν = ν Ω * +kδ 0 , (1.28) 
where ν Ω * ∈ M(Ω; Γ µ ) and k ∈ R. Before stating our main theorem we make precise the notion of weak solution used in this article. We denote Ω * := Ω \ {0}, ρ(x) = dist(x, ∂Ω) and

X µ (Ω) = ξ ∈ C 0 (Ω) ∩ C 1 (Ω * ) : |x|L * µ ξ ∈ L ∞ (Ω) . (1.29) Clearly C 1,1 0 (Ω) ⊂ X µ (Ω). Definition 1.1 We say that u is a weak solution of (1.6) with ν ∈ M(Ω; Γ µ ) such that ν = ν Ω * +kδ 0 if u ∈ L 1 (Ω, |x| -1 dγ µ ), g(u) ∈ L 1 (Ω, ρdγ µ )
and

Ω uL * µ ξ + g(u)ξ dγ µ (x) = Ω ξd(Γ µ ν) + kξ(0) for all ξ ∈ X µ (Ω), (1.30) 
where L * µ is given by (1.13) and c µ is defined in (1.15).

A measure for which problem (1.6) admits a solution is a g-good measure. In the regular case we prove the following Theorem A Let µ ≥ 0 if N = 2, µ ≥ µ 0 if N ≥ 3 and g : R → R be a Hölder continuous nondecreasing function such that g(r)r ≥ 0 for any r ∈ R. Then for any ν ∈ L 1 (Ω, dγ µ ), problem (1.6) has a unique weak solution u ν such that for some c 1 > 0,

u ν L 1 (Ω,|x| -1 dγµ) ≤ c 1 ν L 1 (Ω,dγµ) .
Furthermore, if u ν is the solution of (1.6) with right-hand side ν ∈ L 1 (Ω, dγ µ ), there holds

Ω |u ν -u ν |L * µ ξ + |g(u ν ) -g(u ν )|ξ dγ µ (x) ≤ Ω (ν -ν )sgn(u -u )ξdγ µ (x), (1.31) 
and

Ω (u ν -u ν ) + L * µ ξ + (g(u ν ) -g(u ν )) + ξ dγ µ (x) ≤ Ω (ν -ν )sgn + (u -u )ξdγ µ (x), (1.32)
for all ξ ∈ X µ (Ω), ξ ≥ 0. The ∆ 2 -condition has been intruduced in the study of Birnbaum-Orlicz spaces [START_REF] Birnbaum | Über die Verallgemeinerung des Begriffes der zueinander Konjugierten Potenzen[END_REF], [START_REF] Krasnosel | Convex Functions and Orlicz Spaces[END_REF] and it is satisfied by power function r → |r| p-1 r, p > 0, but not by exponential functions r → e ar . It plays a key role in the study of semilinear equation with a power type reaction term (see eg. [START_REF] Véron | Singularities of Solutions of Second Order Quasilinear Equations[END_REF], [START_REF] Véron | Elliptic equations involving Measures[END_REF]). The new weak ∆ 2 -condition is more general and it is also satisfied by exponential functions.

Theorem B Let µ > 0 if N = 2 or µ > µ 0 if N ≥ 3 and g : R → R be a nondecreasing continuous function such that g(r)r ≥ 0 for any r ∈ R. If g satisfies the weak ∆ 2 -condition and

∞ 1 (g(s) -g(-s))s -1-min{p * µ , p * 0 } ds < ∞, (1.34) 
where p * µ is given by (1.17), then for any ν ∈ M + (Ω; Γ µ ) problem (1.6) admits a unique weak solution u ν .

Note that min{p

* µ , p * 0 } = p * µ for µ > 0 and min{p * µ , p * 0 } = p * 0 if µ < 0.
Furthermore, the mapping: ν → u ν is increasing. In the case N ≥ 3 and µ = µ 0 we have a more precise result.

Theorem C Assume that N ≥ 3 and g : R → R is a continuous nondecreasing function such that g(r)r ≥ 0 for any r ∈ R satisfying the weak ∆ 2 -condition and (1.8). Then for any

ν = ν Ω * + c µ kδ 0 ∈ M + (Ω; Γ µ ) problem (1.6) admits a unique weak solution u ν .
Furthermore, if ν Ω * = 0, condition (1.8) can be replaced by the following weaker one

∞ 1 (g(t) -g(-t)) (ln t) N +2 N -2 t -2N N -2 dt < ∞. (1.35)
The optimality of these conditions depends whether the measure is concentrated at 0 or not. When the measure is of the form kδ 0 the condition proved to be optimal in [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF] and when it is of the type kδ a with a = 0 optimality is shown in [START_REF] Véron | Weak and strong singularities of nonlinear ellptic equations[END_REF]. Normally, the estimates on the Green kernel plays an essential role for approximating the solution of elliptic problems with absorption and Radon measure data. However, we have avoided to use the estimates on the Green kernel for Hardy operators which are not easily tractable when 0 > µ ≥ µ 0 , and our main idea is to separate the measure ν * in M(Ω; Γ µ ) and the Dirac mass at the origin, and then to glue the solutions with above measures respectively. This technique requires this new weak ∆ 2 -condition.

In the previous result, it is noticeable that if k = 0 (resp. ν Ω * = 0) only condition (1.8) (resp. condition (1.35)) is needed. In the two cases the weak ∆ 2 -condition is unnecessary. In the power case where g(u) = |u| p-1 u := g p (u),

L µ u + g p (u) = ν in Ω, u = 0 on ∂Ω, (1.36) 
the following result follows from Theorem B and C.

Corollary D Let µ ≥ µ 0 if N ≥ 3 and µ > 0 if N = 2. Any nonzero measure ν = ν Ω * +c µ kδ 0 ∈ M + (Ω; Γ µ ) is g p -good if one of the following holds: (i) 1 < p < p * µ in the case ν Ω * = 0; (ii) 1 < p < p * 0 in the case k = 0; (iii) 1 < p < min p *
µ , p * 0 in the case k = 0 and ν Ω * = 0. We remark that p * µ is the sharp exponent for existence of (1.35) when ν Ω * = 0, while the critical exponent becomes p * 0 when k = 0 and ν has atom in Ω \ {0}. The supercritical case of equation (1.36) corresponds to the fact that not all measures are g p -good and the case where k = 0 is already treated.

Theorem E Assume that N ≥ 3. Then ν = ν Ω * ∈ M(Ω; Γ µ ) is g p -good if
and only if for any > 0, ν = νχ B c is absolutely continuous with respect to the c 2,p -Bessel capacity.

Finally we characterize the compact removable sets in Ω.

Theorem F Assume that N ≥ 3, p > 1 and K is a compact set of Ω. Then any weak solution of L µ u + g p (u) = 0 in Ω \ K (1.37)
can be extended a weak solution of the same equation in whole

Ω if and only if (i) c 2,p (K) = 0 if 0 / ∈ K; (ii) p ≥ p µ * if K = {0}; (iii) c 2,p (K) = 0 if µ ≥ 0, 0 ∈ K and K \ {0} = {∅}; (iv) c 2,p (K) = 0 and p ≥ p * µ if µ < 0, 0 ∈ K and K \ {0} = {∅}. The case (i) is already proved in [22, Theorem 1.2]. Notice also that if A = ∅ necessarily c 2,p (A) = 0 holds only if p ≥ p 0 . Therefore, if µ ≥ 0 there holds p ≥ p * 0 ≥ p * µ , while if µ < 0, then p 0 < p *
µ . The rest of this paper is organized as follows. In Section 2, we build the framework for weak solutions of (1.6) involving L 1 data. Section 3 is devoted to solve existence and uniqueness of weak solution of (1.6), where the absorption is subcritical and ν is a related Radon measure. Finally, we deal with the super critical case in Section 4 by characterized by Bessel Capacity.

L 1 data

Throughout this section we assume N ≥ 2 and µ ≥ µ 0 and in what follows, we denote by c i with i ∈ N a generic positive constant. We first recall some classical comparison results for Hardy operator L µ . The next lemma is proved in [12, Lemma 2.1], and in [START_REF] Cignoli | An Introduction to Functional Analysis[END_REF]

, Lemma 2.1] if h(s) = s p . Lemma 2.1 Let G be a bounded domain in R N such that 0 ∈ Ḡ, L : G × [0, +∞) → [0, +∞) be a continuous function satisfying for any x ∈ G, h(x, s 1 ) ≥ h(x, s 2 ) if s 1 ≥ s 2 , and functions u, v ∈ C 1,1 (G) ∩ C(G) satisfy L µ u + h(x, u) ≥ L µ v + h(x, v) in G, u ≥ v on ∂G, then u ≥ v in G.
As an immediate consequence we have Lemma 2.2 Assume that Ω is a bounded C 2 domain containing 0. If L is a continuous function as in Lemma 2.1 verifying furthermore L(x, 0) = 0 for all x ∈ Ω, and

u ∈ C 1,1 (Ω * ) ∩ C(Ω * ) satisfies        L µ u + L(x, u) = 0 in Ω * , u = 0 on ∂Ω, lim x→0 u(x)Φ -1 µ (x) = 0.
(2.1)

Then u = 0. We recall that if u ∈ L 1 (Ω, |x| -1 dγ µ ) is a weak solution of L µ u = f in Ω, u = 0 on ∂Ω, (2.2) 
in the sense of Definition 1.1, it satisfies also

Ω uL * µ (ξ) dγ µ (x) = Ω f ξ dγ µ (x) for all ξ ∈ X µ (Ω). (2.3) 
If u is a weak solution of (2.2) there holds

L µ u = f in D (Ω * ), (2.4 
)

and v = Γ -1 µ u verifies L * µ v = Γ -1 µ f in D (Ω * ), (2.5) 
a fact which is expressed by the commutating formula

Γ µ L * µ v = L µ (Γ µ v). (2.6) 
The following form of Kato's inequality, proved in [12, Proposition 2.1], plays an essential role in the obtention a priori estimates and uniqueness of weak solution of (1.6).

Proposition 2.1 If f ∈ L 1 (Ω, ρdγ µ ), then there exists a unique weak solution u ∈ L 1 (Ω, |x| -1 dγ µ ) of (2.2). Furthermore, for any ξ ∈ X µ (Ω), ξ ≥ 0, we have Ω |u|L * µ (ξ) dγ µ (x) ≤ Ω sign(u)f ξ dγ µ (x) (2.7)
and

Ω u + L * µ (ξ) dγ µ (x) ≤ Ω sign + (u)f ξ dγ µ (x). (2.8) The proof is done if ξ ∈ C 1,1 0 (Ω), but it is valid if ξ ∈ X µ (Ω). The next result is proved in [13, Lemma 2.3]. Lemma 2.3 Assume that µ > µ 0 and f ∈ C 1 (Ω * ) verifies 0 ≤ f (x) ≤ c 2 |x| τ -2 ,
(2.9)

for some τ > τ -. Let u f be the solution of

         L µ u = f in Ω * , u = 0 on ∂Ω, lim x→0 u(x) Φ µ (x) = 0.
(2.10)

Then there holds:

(i) if τ -< τ < τ + , 0 ≤ u f (x) ≤ c 3 |x| τ in Ω * ; (2.11) (ii) if τ = τ + , 0 ≤ u f (x) ≤ c 4 |x| τ (1 + (-ln |x|) + ) in Ω * ; (2.12) (iii) if τ > τ + , 0 ≤ u f (x) ≤ c 5 |x| τ + in Ω * . (2.13) Proof of Theorem A. Let H 1 µ,0 (Ω) be the closure of C ∞ 0 (Ω) under the norm of u H 1 µ,0 (Ω) = Ω |∇u| 2 dx + µ Ω u 2 |x| 2 dx. (2.14)
Then H 1 µ,0 (Ω) is a Hilbert space with inner product

u, v H 1 µ,0 (Ω) = Ω ∇u, ∇v dx + µ Ω uv |x| 2 dx (2.15)
and the embedding

H 1 µ,0 (Ω) → L p (Ω) is continuous and compact for p ∈ [2, 2 * ) with 2 * = 2N N -2 when N ≥ 3 and any p ∈ [2], ∞ if N = 2. Furthermore, if η ∈ C 1 0 (Ω) has the value 1 in a neighborhood of 0, then ηΓ µ ∈ H 1 µ,0 (Ω). We put G(v) = v 0 g(s)ds, then G is a convex nonnegative function. If ρν ∈ L 2 (Ω) we define the functional J ν in the space H 1 µ,0 (Ω) by J ν (v) =    1 2 v 2 H 1 µ,0 (Ω) + Ω G(v)dx - Ω νvdx if G(v) ∈ L 1 (Ω, dγ µ ), ∞ if G(v) / ∈ L 1 (Ω, dγ µ ).
(2.16)

The functional J is strictly convex, lower semicontinuous and coercive in H 1 µ,0 (Ω), hence it admits a unique minimum u which satisfies

u, v H 1 µ,0 (Ω) + Ω g(u)vdx = Ω νvdx for all v ∈ H 1 µ,0 (Ω). If ξ ∈ C 1,1 0 (Ω) then v = ξΓ µ ∈ H 1 µ,0 (Ω), then u, ξΓ µ H 1 µ,0 (Ω) = Ω ∇u, ∇ξ dγ µ (x) + Ω ∇u, ∇Γ µ + µΓ µ |x| 2 ξdx, (2.17) 
and

Ω ∇u, ∇Γ µ ξdx = - Ω ∇ξ, ∇Γ µ udx - Ω uξ∆Γ µ dx, since C ∞ 0 (Ω) is dense in H 1 µ,0 (Ω). Furthermore, since u ∈ L p (Ω) for any p < 2 * , |x| -1 u ∈ L 1 (Ω, dγ µ ), hence uL * µ ξ ∈ L 1 (Ω, dγ µ ).
Therefore

Ω uL * µ ξ + g(u)ξ dγ µ = Ω νξdγ µ . (2.18) Next, if ν ∈ L 1 (Ω, ρdγ µ ) we consider a sequence {ν n } ⊂ C ∞ 0 (Ω) converging to ν in L 1
(Ω, ρdγ µ ) and denote by {u n } the sequence of the corresponding minimizing problem in H 1 µ,0 (Ω). By Proposition 2.1 we have that, for any ξ ∈ X µ (Ω),

Ω |u n -u m |L * µ ξ + (g(u n ) -g(u m ))sgn(u n -u m )ξ dγ µ ≤ Ω (ν n -ν m )sgn(u n -u m )ξdγ µ .
(2.19) We denote by η 0 the solution of

L * µ η = 1 in Ω, η = 0 on ∂Ω. (2.20)
Its existence is proved in [12, Lemma 2.2], as well as the estimate 0 ≤ η 0 ≤ c 6 ρ for some c 6 > 0.

Since g is monotone, we obtain from (2. [START_REF] Folland | The uncertainty principle: a mathematical survey[END_REF])

Ω (|u n -u m | + |g(u n ) -g(u m )|η 0 ) dγ µ ≤ Ω |ν n -ν m |η 0 dγ µ . (2.21) 
Hence {u n } is a Cauchy sequence in L 1 (Ω, dγ µ ). Next we construct a solution η 1 to

L * µ η = |x| -1 in Ω * , η = 0 on ∂Ω. (2.22) 
For this aim, we consider for 0 < θ < 1 the function

y θ (x) = 1-|x| 2-θ (N -θ+2τ + (µ)) which verifies verifies L * µ y θ = |x| -θ in B 1 , y θ = 0 on ∂B 1
(we can always assume that Ω ⊂ B 1 ). As in the proof of [12, Lemma 2.2], for any x 0 ∈ Ω there exists r 0 > 0 such that B r 0 (x 0 ) ⊂ Ω and for t > 0 small enough w t,x 0 (x) = t(r 2 0 -|x -x 0 | 2 ) is a subsolution of (2.20), hence of (2.22). Therefore there exists η θ solution of

L * µ η θ = |x| -θ in Ω * , η θ = 0 on ∂Ω. (2.23)
Furthermore θ → η θ is increasing and bounded from above by y 1 , hence it converges to a function η 1 which satisfies (2.23).

Then

Ω |u n -u m ||x| -θ + |g(u n ) -g(u m )|η θ dγ µ (x) ≤ Ω |ν n -ν m |η θ dγ µ . (2.24) 
Letting θ → 1, we obtain as a complement of (2.21)

Ω |u n -u m | |x| + |g(u n ) -g(u m )|η 1 dγ µ (x) ≤ Ω |ν n -ν m |η 1 dγ µ . (2.25)
Hence {u n } is a Cauchy sequence in L 1 (Ω, |x| -1 dγ µ ) with limit u and {g(u n )} is a Cauchy sequence in L 1 (Ω, ρdγ µ ) with limit g(u). Then (2.18) holds. As for (1.31) it is a consequence of (2. [START_REF] Folland | The uncertainty principle: a mathematical survey[END_REF]) and (1.32) is proved similarly.

The subcritical case

In this section as well as in the next one we always assume that N ≥ 3 and µ ≥ µ 0 , or N = 2 and µ > 0, since the case N = 2, µ = 0, which necessitates specific tools, has already been completely treated in [START_REF] Vàzquez | On a semilinear equation in R N involving bounded measures[END_REF]. We recall that the set M(Ω * ; Γ µ ) of Radon measures is defined in the introduction as the set of measures in Ω * satisfying (1.25), and any positive measure ν ∈ M(Ω * ; Γ µ ) is naturaly extended by formula (1.26) as a positive measure in Ω. The space M(Ω; Γ µ ) is the space of measures ν on C 0 (Ω) such that

ν = ν Ω * +kδ 0 , (3.1) 
where ν Ω * ∈ M(Ω * ; Γ µ ). 

The linear equation

L µ u = ν in Ω, u = 0 on ∂Ω. (3.2)
This solution is denoted by G µ [ν], and this defines the Green operator of L µ in Ω with homogeneous Dirichlet conditions.

Proof. By linearity and using the result of [START_REF] Chen | On nonhomogeneous elliptic equations with the Hardy-Leray potentials[END_REF] on fundamental solution, we can assume that k = 0 and ν ≥ 0. Let {ν n } ⊂ L 1 (Ω, ρdγ µ ) be a sequence such that ν n ≥ 0 and

Ω ξΓ µ ν n dx → Ω ξd(Γ µ ν) for all ξ ∈ X µ (Ω),
and by Proposition 2.1, we may let u n be the unique, nonnegative weak solution of

L µ u n = ν n in Ω, u n = 0 on ∂Ω, (3.3) 
with n ∈ N. There holds

Ω u n L * µ ξdγ µ (x) = Ω ξν n Γ µ dx for all ξ ∈ X µ (Ω). (3.4) 
Then u n ≥ 0 and using the function η 1 defined in the proof of Theorem A for test function, we have c

Ω u n |x| dγ µ = Ω η 1 Γ µ ν n dx ≤ c ν M(Ω,Γµ) , (3.5) 
which implies that {u n } is bounded in L 1 (Ω, 1 |x| dγ µ (x)). For any > 0 sufficiently small, set the test function ξ in {ζ ∈ X µ (Ω) : ζ = 0 in B }, then we have that

Ω\B (0) u n L * µ ξdγ µ (x) = Ω\B (0) ξν n Γ µ dx for all ξ ∈ X µ (Ω). (3.6) Therefore, for any open sets O, O verifying Ō ⊂ O ⊂ Ō ⊂ Ω \ B (0), there exists c > 0 independent of n such that u n L 1 (O ) ≤ c ν M(Ω,Γµ) .
Note that in Ω \ B , the operator L * µ is uniformly elliptic and the measure dγ µ is equivalent to the N-dimensional Lebesgue measure dx, then [30, Corollary 2.8] could be applied to obtain that for some c > 0 independent of n but dependent of O ,

u n W 1,q (O) ≤ c u n L 1 (O ) + νn L 1 (Ω,dγµ) ≤ c ν M(Ω,Γµ) .
That is, {u n } is uniformly bounded in W 1,q loc (Ω \ {0}). As a consequence, since is arbitrary, there exist a subsequence, still denoted by {u n } n and a function u such that u n → u a.e. in Ω.

Meanwhile, we deduce from Fatou's lemma,

Ω u |x| dγ µ ≤ c Ω η 1 Γ µ dν. (3.7) 
Next we claim that u n → u in L 1 (Ω, |x| -1 dγ µ ). Let ω ⊂ Ω be a Borel set and ψ ω be the solution of

L * µ ψ ω = |x| -1 χ ω in Ω, ψ ω = 0 on ∂Ω. (3.8) 
Then ψ ω ≤ η 1 , thus it is uniformly bounded. Assuming that Ω ⊂ B 1 , clearly ψ ω is bounded from above by the solution Ψ ω of

L * µ Ψ ω = |x| -1 χ ω in B 1 , Ψ ω = 0 on ∂B 1 , (3.9) 
and by standard rearrangement, sup 

B 1 Ψ ω ≤ sup B 1 Ψ r ω , where Ψ r ω solves L * µ Ψ r ω = |x| -1 B (|ω|) in B 1 , Ψ r ω = 0 on ∂B 1 , (3.10 
Using (3.4) with ξ = ψ ω , ω u n |x| dγ µ (x) = ω ν n Γ µ ψ ω dx ≤ sup Ω ψ ω ω ν n Γ µ dx → 0 as |ω| → 0.
Therefore {u n } is uniformly integrable for the measure |x| -1 dγ µ . Letting n → ∞ in (3.4) implies the claim.

Dirac masses

We assume that g : R → R is a continuous nondecreasing function such that rg(r) ≥ 0 for all r ∈ R. The next lemma dealing with problem (ii) N ≥ 3, µ = µ 0 and g satisfies (1.35).

L µ u + g(u) = kδ 0 in Ω, u = 0 on ∂Ω, (3.12 
Proof. Without loss of generality we assume B R ⊂ Ω ⊂ B 1 for some R ∈ (0, 1). (i) The case µ > µ 0 . It follows from [22, Theorem 3.1] that for any k ∈ R there exists a radial

function v k,1 (resp. v k,R ) defined in B * 1 (resp. B * R ) satisfying L µ v + g(v) = 0 in B * 1 (resp. in B * R ), (3.13) 
vanishing respectively on ∂B 1 and ∂B R and satisfying

lim x→0 v k,1 (x) Φ µ (x) = lim x→0 v k,R (x) Φ µ (x) = k c µ . (3.14) Furthermore g(v k,1 ) ∈ L 1 (B 1 , dγ µ ) (resp. g(v k,R ) ∈ L 1 (B R , dγ µ )). Assume that k > 0, then 0 ≤ v k,R ≤ v k,1 in B *
R and the extension of ṽk,R by 0 in Ω * is a subsolution of (3.13) in Ω * and it is still smaller than v k,1 in Ω * . By the well known method on super and subsolutions (see e.g. [START_REF] Véron | Local and global aspects of quasilinear degenerate elliptic equations. Quasilinear elliptic singular problems[END_REF]Theorem 1.4.6]), there exists a function u in Ω * satisfying ṽk,R ≤ u ≤ v k,1 in Ω * and

         L µ u + g(u) = 0 in Ω * , u = 0 on ∂Ω, lim x→0 u(x) Φ µ (x) = k c µ . (3.15)
By standard methods in the study of isolated singularities (see e.g. [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF], [START_REF] Véron | Singularities of Solutions of Second Order Quasilinear Equations[END_REF], and [START_REF] Cîrstea | A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials[END_REF] and [START_REF] Cîrstea | Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity[END_REF] for various extensions)

lim x→0 |x| 1-τ -∇u(x) = τ - k c µ x |x| . (3.16)
For any > 0 and ξ ∈ X µ (Ω),

0 = Ω\B (L µ u + g(u))Γ µ ξdx = Ω\B uL * µ ξdγ µ (x) + (τ --τ + ) k c µ |S N -1 |ξ(0)(1 + o(1)).
Using (1.15), we obtain Ω uL * µ ξdγ µ (x) = kξ(0).

(3.17)

(ii)The case µ = µ 0 . In [START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF]Theorem 3.2] it is proved that if for some b > 0 there holds

I := ∞ 1 g bt N -2 N +2 ln t t -2 dt < ∞, (3.18) 
then there exists a solution of (1.22) satisfying (1.19) with γ = (N +2)b

2

. Actually we claim that the finiteness of this integral is independent of the value of b. To see that, set s = t N -2 N +2 , then

I = N + 2 N -2 ∞ 1 g (βs ln s) s -2N N -2 ds, with β = N +2 N -2 b. Set τ = βs ln s, then ln s 1 + ln ln s ln s + ln β ln s =⇒ ln s = ln τ (1 + o(1)) as s → ∞.
We infer that for > 0 there exists s > 2 and τ = s ln s such that

(1 -)β N +2 N -2 ≤ ∞ s g (βs ln s) s -2N N -2 ds ∞ τ g (τ ) (ln τ ) N +2 N -2 τ -2N N -2 dτ ≤ (1 + )β N +2 N -2 , (3.19) 
which implies the claim. Next we prove as in case (i) the existence of v k,1 (resp. v k,R ) defined in B * 1 (resp. B * R ) satisfying

L µ 0 v + g(v) = 0 in B * 1 (resp. in B * R ), (3.20) 
vanishing respectively on ∂B 1 and ∂B R and satisfying

lim x→0 v k,1 (x) Φ µ (x) = lim x→0 v k,R (x) Φ µ (x) = k c µ 0 . (3.21)
We end the proof as above.

Remark. It is important to notice that conditions (1.21) and (1.35) (or equivalently (1.23)) are also necessary for the existence of radial solutions in a ball, hence their are also necessary for the existence of non radial solutions of the Dirichlet problem (3.12).

Measures in Ω *

We consider now the problem

L µ u + g(u) = ν in Ω, u = 0 on ∂Ω, (3.22) 
where ν ∈ M(Ω * ; Γ µ ).

Lemma 3.1 Let µ ≥ µ 0 . Assume that g satisfies (1.8) if N ≥ 3 or the β ± (g) defined by (1.9) satisfy β -(g) < 0 < β + (g) if N = 2, and let ν ∈ M(Ω * ; Γ µ ). If N = 2, we assume that ν can be decomposed as ν = ν r + j α j δ a j where ν r has no atom, the α j satisfy (1.10) and {a j } ⊂ Ω * . Then problem (3.22) admits a unique weak solution.

Proof. We assume first that ν ≥ 0 and let r 0 = dist (x, ∂Ω). For 0 < σ < r 0 , we set Ω σ = Ω\{B σ } and ν σ = νχ Ω σ and for 0 < < σ we consider the following problem in Ω

     L µ u + g(u) = ν σ in Ω , u = 0 on ∂Ω, u = 0 on ∂B . (3.23) Since 0 / ∈ Ω problem (3.23) admits a unique solution u νσ, which is smaller than G µ [ν] and satisfies 0 ≤ u νσ, ≤ u ν σ ,
in Ω for all 0 < ≤ and 0 < σ ≤ σ.

For any ξ ∈ C 1,1 c (Ω * ) and small enough so that supp (ξ) ⊂ Ω , there holds

Ω u νσ, L * µ ξ + g(u νσ, )ξ dγ µ = Ω ξΓ µ dν σ .
There exists u νσ = lim →0 u νσ, and it satisfies the identity

Ω u νσ L * µ ξ + g(u νσ )ξ dγ µ = Ω ξΓ µ dν σ for all ξ ∈ C 1,1 c (Ω * ). (3.24)
As a consequence of the maximum principle and Lemma 3.1, there holds

0 ≤ u νσ ≤ G µ [ν σ ] ≤ G µ [ν]. (3.25) Since ν σ vanishes in B σ , G µ [ν σ ](x) ≤ cΦ µ (x)
in a neighborhood of 0, and u νσ is also bounded by cΦ µ in this neighborhood. This implies that Φ -1 µ (x)u νσ (x) → c as x → 0 for some c ≥ 0.

Next let ξ ∈ C 1,1 c (Ω), n (r) = 2 -1 1 + cos 2π|x| σ if |x| ≤ σ 2 , 0 if |x| > σ 2 , and ξ n = ξ n . Then Ω u νσ L * µ ξ n + g(u νσ )ξ n dγ µ = Ω ξ n Γ µ dν σ . (3.26) When n → ∞, Ω ξ n Γ µ dν σ → Ω ξΓ µ dν σ and Ω g(u σ )ξ n dγ µ → Ω g(u σ )ξdγ µ .
Now for the first inegral term in (3.26), we have

Ω u νσ L * µ ξ n dγ µ = Ω n u σ L * µ ξdγ µ + I n + II n + III n ,
where

I n = - B σ 2 u σ ξ∆ n dγ µ , II n = -2 B σ 2 u σ ∇ξ, ∇ n dγ µ and III n = -τ + B σ 2 u σ x |x| 2 , ∇ n dγ µ .
Using the fact that ξ(x) → ξ(0) and ∇ξ(x) → ∇ξ(0) we easily infer that I n , II n and III n converge to 0 when n → ∞, the most complicated case being the case when µ = µ 0 , which is the justification of introducing the explicit cut-off function n . Therefore (3.24) is still valid if it is assumed that ξ ∈ C 1,1 c (Ω). This means that u νσ is a weak solution of

L µ u + g(u) = ν σ in Ω, u = 0 on ∂Ω. (3.27) 
Furthermore u νσ is unique and u νσ is a decreasing function of σ with limit u when σ → 0. Taking η 1 as test function, we have

Ω c|x| -1 u νσ + η 1 g(u νσ ) dγ µ = Ω η 1 d (γ µ ν σ ) ≤ Ω η 1 d (γ µ ν) .
By using the monotone convergence theorem we infer that u νσ → u in L 1 (Ω, |x| -1 dγ µ ) and g(u νσ ) → g(u ν ) in L 1 (Ω, dγ µ ). Hence u = u ν is the weak solution of (3.22).

Next we consider a signed measure ν = ν + -ν -. We denote by u ν σ + , , u -ν σ -, and u ν σ , the solutions of (3.23) in Ω corresponding to ν σ + , -ν σ -and ν σ , respectively. Then

u -ν σ -, ≤ u ν σ , ≤ u ν σ + , . (3.28) 
The correspondence → u ν σ + , and → u -ν σ -, are respectively increasing and decreasing. Furthermore u ν σ , is locally bounded, hence by local compactness and up to a subsequence u ν σ , converges a.e. in B to some function

u ν σ . Since u -ν σ -, → u -ν σ -and u ν σ + , → u ν σ + in L 1 (Ω, |x| -1 dγ µ ), it follows by Vitali's theorem that u ν σ , → u ν σ in L 1 (Ω, |x| -1 dγ µ ).
Similarly, using the monotonicity of g, g(u ν σ , ) → g(u ν σ ) in L 1 (Ω, dγ µ ). By local compactness, u ν σ → u a.e. in Ω. Using the same argument of uniform integrability, we have that

u ν σ → u in L 1 (Ω, |x| -1 dγ µ ) and g(u ν σ ) → g(u) in L 1 (Ω, dγ µ ) when σ → 0 and u satisfies Ω uL * µ ξ + g(u)ξ dγ µ = Ω ξd(dγ µ ν) for any ξ ∈ C 1,1 c (Ω * ). (3.29) 
Finally the singularity at 0 is removable by the same argument as above which implies that u solves (3.29) and thus u = u ν is the weak solution of (3.22).

Proof of Theorem B

The idea is to glue altogether two solutions one with the Dirac mass and the other with the measure in Ω * , this is the reason why the weak ∆ 2 condition is introduced.

Lemma 3.3 Let ν = ν Ω * +kδ 0 ∈ M + (Ω; Γ µ ) and σ > 0.
We assume that ν Ω * (B σ ) = 0. Then there exists a unique weak solution to (1.6).

Proof.

Set ν σ = ν Ω * . It has support in Ω σ = Ω\B σ . For 0 < < σ we consider the approximate problem in Ω = Ω \ B ,      L µ u + g(u) = ν σ in Ω , u = 0 on ∂Ω, u = u kδ 0 on ∂B , (3.30) 
where u kδ 0 is the solution of problem (3.12) obtained in Lemma 3.2. It follows from [30, Theorem 3.7] that problem (3.30) admits a unique weak solution denoted by U νσ, , thanks to the fact that the operator is not singular in Ω . We recall that u νσ, is the solution of (3.23) and G µ [δ 0 ] the fundamental solution in Ω. Then

max{u kδ 0 , u νσ, } ≤ U νσ, ≤ u νσ + kG µ [δ 0 ] in Ω . (3.31) 
Furthermore one has U νσ, ≤ U νσ, in Ω , for 0 < < . Since u νσ ≤ u ν and both kG µ [δ 0 ] and u ν belong to L 1 (Ω, |x| -1 dγ µ ), then it follows by the monotone convergence theorem that U νσ, converges in L 1 (Ω, |x| -1 dγ µ ) and almost everywhere to some function

U νσ ∈ L 1 (Ω, |x| -1 dγ µ ).
Since Γ µ is a supersolution for equation L µ u + g(u) = 0 in B σ , for 0 < 0 < σ there exists c 8 := c 8 ( 0 , σ) > 0 such that u νσ (x) ≤ c 8 |x| τ + for all x ∈ B 0 .

For any δ > 0, there exists 0 such that u νσ (x)

≤ δG µ [δ 0 ](x) in B 0 . Hence u νσ + kG µ [δ 0 ] ≤ (k + δ)G µ [δ 0 ] in B 0 , which implies g(U νσ, ) ≤ g((k + δ)G µ [δ 0 ]) in B 0 \ B , (3.32) 
and

Ω g((k + δ)G µ [δ 0 ])dγ µ (x) ≤ B 1 g( k+δ cµ |x| τ -)|x| τ + dx = |S N -1 | 1 0 g( k+δ cµ r τ -)r τ + +N -1 dr = c 9 ∞ k+δ cµ g(t)t -2+ 2 τ -= c 9 ∞ k+δ cµ g(t)t -1-p * µ dt < ∞.
Now, using the local ∆ 2 -condition,with a = k cµ τ - 0 , we see that Letting → 0 we obtain that

g(U νσ, ) ≤ g(u νσ + k cµ τ - 0 ) ≤ K(a ) g(u νσ ) + g(a ) in Ω 0 . ( 3 
Ω U νσ L * µ ξ + g(U νσ )ξ dγ µ = Ω ξΓ µ dν σ . (3.34) Let ξ ∈ C 1,1 0 (Ω). Let also η n ∈ C 1,1 (R N ) be a nonnegative cut-off function such that 0 ≤ η n ≤ 1, η n ≡ 1 in B c 2 n , η n ≡ 0 in B 1 n
, and choose ξη n for test function. Then 

Ω η n U νσ L * µ ξ + g(U νσ )η n ξ dγ µ - Ω U νσ A n dγ µ = Ω ξη n Γ µ dν σ , (3.35 
ξη n Γ µ dν σ = Ω ξΓ µ dν σ .
We take

η n (r) =      1 2 -1 2 cos nπ r -1 n if 1 n ≤ r ≤ 2 n , 0 if r < 1 n , 1 if r > 2 n . Then A n = n 2 π 2 2 cos nπ r - 1 n + nπ 2 N -1 + 2τ + r sin nπ r - 1 n .
Letting → 0 in (3.31), we have

U νσ (x) = kG µ [δ 0 ](x)(1 + o(1)) = k c µ |x| τ -(1 + o(1)) as x → 0. Hence lim n→∞ Ω U νσ A n dγ µ = 2k|S N -1 | √ µ -µ 0 c µ = k. (3.37)
This implies that U νσ is the solution of (1.6) with ν replaced by ν σ + kδ 0 . As a consequence U νσ → U in L 1 (Ω, |x| -1 dγ µ ) as σ → 0. We take η 1 for test function in the weak formulation of (3.39), then

Ω |x| -1 U νσ + η 1 g(U νσ ) dγ µ = Ω η 1 Γ µ dν σ + kη 1 (0).
By the monotone convergence theorem we obtain the identity

Ω |x| -1 U + η 1 g(U ) dγ µ = Ω η 1 d(γ µ ν Ω * ) + kη 1 (0) = Ω η 1 d(γ µ ν),
and the fact that g(U νσ ) → g(U ) in L 1 (Ω, ρdγ µ ). Going to the limit as σ → 0 in the weak formulation of (3.38), we infer that U = u ν is the solution of (1.6).

Proof of Theorem B. Assume ν = ν Ω * +kδ 0 ∈ M(Ω; Γ µ ) satisfies k > 0 and let ν + = ν + Ω * +kδ 0 and ν -= ν -Ω * the positive and the negative part of ν. We denote by u ν + and u -ν -the weak solutions of (1.6) with respective data ν + and -ν -. For 0 < < σ such that B σ ⊂ Ω, we set decreases and converges, when k → ∞, to some nonnegative function u, and there exists a measure ν * ∈ M + (Ω; Γ µ ) such that 0 ≤ ν * ≤ ν and u = u ν * .

Proof. The proof is similar to the one of [START_REF] Brezis | Nonlinear Elliptic Equations with Measures Revisited[END_REF]Prop. 4.1]. Observe that u ν,k ↓ u * and the sequence {u ν,k } is uniformly integrable in L 1 (Ω, |x| -1 dγ µ ). By Fatou's lemma u satisfies

Ω u * L * µ ξ + g(u * )ξ dγ µ (x) ≤ Ω ξd(Γ µ ν) for all ξ ∈ Xµ(Ω), ξ ≥ 0. (4.5)
Hence u * is a subsolution of (1.6) and by construction it is the largest of all nonnegative subsolutions. The mapping

ξ → Ω u * L * µ ξ + g(u * )ξ dγ µ (x) for all ξ ∈ C ∞ (Ω),
is a positive distribution, hence a measure ν * , called the reduced measure of ν.

It satisfies 0 ≤ ν * ≤ ν and u * = u ν * . Lemma 4.2 Let ν, ν ∈ M + (Ω; Γ µ ). If ν ≤ ν and ν = ν * , then ν = ν * .
Proof. Let u ν ,k be the weak solution of the truncated equation

L µ u + g k (u) = ν in Ω, u = 0 on ∂Ω. (4.6) 
Then 0 ≤ u ν ,k ≤ u ν,k . By Proposition 4.1, we know that u ν,k ↓ u ν * = u ν and u ν ,k ↓ u * a.e. in L 1 (Ω, |x| -1 dγ µ ) and then

L µ (u ν,k -u ν ) + g k (u ν,k ) -g k (u ν ) = g(u ν ) -g k (u ν ),
from what follows, by Proposition 2.1,

Ω (u ν,k -u ν ))|x| -1 dγ µ + Ω |g k (u ν,k ) -g k (u ν )|η 1 dγ µ ≤ Ω |g(u ν ) -g k (u ν )|η 1 dγ µ .
By the increasing monotonicity of mapping k → g k (u ν ), we have

g k (u ν ) → g(u ν ) in L 1 (Ω, ρdγ µ ) as k → +∞, hence Ω |g k (u ν,k ) -g(u ν )|η 1 dγ µ ≤ 2 Ω |g(u ν ) -g k (u ν )|η 1 dγ µ → 0 as n → ∞. Because g k (u ν ,k ) ≤ g k (u ν,k ) it follows by Vitali's convergence theorem that g k (u ν ,k ) → g(u * ) in L 1 (Ω, ρdγ µ ).
Using the weak formulation of (4.6), we infer that u * verifies

Ω u * L * µ ξ + g(u * )ξ dγ µ = Ω ξd(γ µ ν ) for all ξ ∈ X µ (Ω).
This yields u * = u ν .

The next result follows from Lemma 4.2.

u ν which is the weak solution of

-∆u + µ |x| 2 u + u p = ν in Ω, u = 0 on ∂Ω. (4.10)
If ν is a signed measure absolutely continuous with respect to the c 2,p -capacity, so are ν + and ν -. Hence there exists solutions u ν + and u ν -. For 0 < < σ 2 we construct u νσ, with the property that -u -ν -σ , ≤ u νσ, ≤ u ν + σ , , we let → 0 and deduce the existence of u νσ which is eventually the weak solution of

-∆u + µ |x| 2 u + |u| p-1 u = ν σ in Ω * , u = 0 on ∂Ω, (4.11) 
and satisfies -u

-ν -σ ≤ u νσ ≤ u ν + σ . Letting σ → 0 we obtain that u = lim σ→0 u νσ satisfies -∆u + µ |x| 2 u + |u| p-1 u = ν in Ω * , u = 0 on ∂Ω. (4.12) 
Hence u = u ν and ν is a good solution.

Proof of Theorem F. Part 1. Without loss of generality we can assume that Ω is a bounded smooth domain. Let K ⊂ Ω be compact. If 0 ∈ K and p < p * µ there exists a solution u kδ 0 , hence K is not removable. If 0 / ∈ K and c 2,p (K) > 0, there exists a capacitary measure ν K ∈ W -2,p (Ω) ∩ M + (Ω) with support in K. This measure is g p -good by Theorem E, hence K is not removable.

Part 2. Conversely we first assume that 0 / ∈ K. Then there exists a subdomain D ⊂ Ω such that 0 / ∈ D and K ⊂ D. Hence a solution u of (1.37) is also a solution of However, the condition p > p 0 is ensured when µ < 0 since p ≥ p * µ > p 0 . We consider a sequence {η n } ⊂ S(R N ) such that 0 ≤ η n ≤ 1, η n = 0 on a neighborhood of K and such that η n W 2,p → 0 when n → ∞. Such a sequence exists by the result in [START_REF] Meyers | A theory of capacities for potentials of functions in Lebesgue classes[END_REF] since c 2,p (K) = 0. Let ξ ∈ C ∞ 0 (Ω) such that 0 ≤ ξ ≤ 1 and with value 1 in a neighborhood of K. We take Finally, if u is a signed solution, then |u| is a subsolution. For > 0 we set K = {x ∈ R N : dist (x, K) ≤ }. If is small enough K ⊂ Ω. Let v := v be the solution of such that {v n } converges to v locally uniformly in Ω \ K and in the C 2 loc (Ω \ K)-topology. This implies that v is a positive solution of (1.37) in Ω \ K. Hence it is a solution in Ω. This implies that u ∈ L p (Ω) and |u(x)| ≤ v(x) ≤ c 14 Γ µ (x) in Ω * . We conclude as in the nonnegative case that u is a weak solution in Ω.

-∆u + µ |x| 2 u + |u| p-1 u = 0 in D \ K,
       -∆v + µ |x| 2 v + v p = 0 in Ω \ K , v = |u| ∂K on ∂K , v = |u| ∂Ω on ∂Ω.
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Lemma 3 . 1

 31 If ν ∈ M(Ω; Γ µ ), then there exists a unique weak solution u ∈ L 1 (Ω, |x| -1 dγ µ ) to

1 N

 1 . Then Ψ r ω is radially decreasing and lim |ω|→0 Ψ r ω = 0, uniformly on B 1 . This implies lim |ω|→0 ψ ω (x) = 0 uniformly in B 1 .(3.11)

) is an extension of [ 22 ,Lemma 3 . 2

 2232 Theorem 3.1, Theorem 3.2]. Actually it was quoted without demonstration in this article as Remark 3.1 and Remark 3.2 and we give here their proof. Notice also that when N ≥ 3 and µ = µ 0 we give a more complete result that[START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF] Theorem 3.2]. Let k ∈ R and g : R → R be a continuous nondecreasing function such that rg(r) ≥ 0 for all r ∈ R. Then problem (3.12) admits a unique solution u := u kδ 0 if one of the following conditions is satisfied: (i) N ≥ 2, µ > µ 0 and g satisfies (1.21);

  .33) From (3.32) and (3.33) we infer that g(U νσ, ) is bounded in L 1 (Ω , dγ µ ) independently of . If ξ ∈ C 1,1 0 (Ω * ), we have for > 0 small enough so that supp (ξ) ⊂ Ω Ω U νσ, L * µ ξ + g(U νσ, )ξ dγ µ = Ω ξΓ µ dν σ .

Lemma 3 . 4

 34 Let ν = ν Ω * +kδ 0 ∈ M + (Ω; Γ µ ). Then there exists a unique weak solution to(1.6).Proof. Following the notations of Lemma 3.3, we set ν σ = χ Bσ ν Ω * and denote by U νσ the solution ofL µ u + g(u) = ν σ + kδ 0 in Ω, u = 0 on ∂Ω. (3.38)It is a positive function and there holdsmax{u kδ 0 , u νσ } ≤ U νσ ≤ u νσ + kG µ [δ 0 ] in Ω. (3.39)Since the mapping σ → U νσ is decreasing, then there exists U = lim σ→0 U νσ and U satisfies (3.39).

and the coefficient µ |x| 2 .,

 2 is uniformly bounded in D. By[START_REF] Baras | Singularité séliminables pour des équations semi linéaires[END_REF] Theorem 3.1] it can be extended as a C 2 solution of the same equation in Ω . Hence, if c 2,p (K) = 0 the set K is removable.If 0 ∈ K we have to assume at least p ≥ p * µ in order that 0 is removable and p ≥ p 0 in order there exists non-empty set with zero c 2,p -capacity. Letζ ∈ C 1,1 0 (Ω) with 0 ≤ ζ ≤ 1, vanishing in a compact neighborhood D of K. Since 0 /∈ Ω \ D, we first consider the case where u is nonnegative and satisfies in the usual sense-∆u + µ |x| 2 u + u p = 0 in Ω \ D.Taking ζ 2p for test function, we get-2p Ω uζ 2p -1 ∆ζdx -2p (2p -1) Ω uζ 2p -2 |∇ζ| 2 dx + µ Ω uζ 2p |x| 2 dx + Ω ζ 2p u p dx = 0.By standard elliptic equations regularity estimates and Gagliardo-Nirenberg inequality[START_REF] Gilbarg | Elliptic Partial Differential equations of Second Order[END_REF] (and since 0 ≤ ζ ≤ 1),Ω |∆ζ| p ζ p 1 p ≤ c 11 ζ W 2,p and Ω |∇ζ| 2p dx 1 p ≤ c 12 ζ W 2,p .Finally, if p > p 0 := N N -2 , then 2p < N which implies that there exists c 13 independent of ζ (with value in [0, 1]) such that and we obtain if µ ≥ 0, if p ≥ p 0 X p -2p (2p -1)c 12 -p c 12 ζ W 2,p X ≤ 0, (4.13) and if µ < 0 if p > p 0 X p -2p (2p -1)c 12 -p c 12 ζ W 2,p -c 13 µ X ≤ 0. (4.14)

uξ∆η n dx ≤ Ω u p ξdx 1 pΩ u p |∇ξ|dx 1 p

 11 ζ := ζ n = (1 -η n )ξin the above estimates. Letting n → ∞, then ζ n → ξ in W 2,p and finallyX p-1 = Ω ξ 2p u p dx p-1 p ≤ 2p (2p -1)c 12 -p c 12 ξ W 2,p + c 13 µ -,(4.15)under the condition that p > p 0 if µ < 0, in which case there also holdsΩ uζ 2p |x| 2 dx ≤ c 13 X. (4.16)However the condition p > p 0 is not necessary in order the left-hand side of (4.16) be bounded, since we haveµ Ω uζ 2p |x| 2 dx + X p ≤ 2p (2p -1)c 12 -p c 12 ζ W 2,p X,(4.17)and X is bounded.Next we take ζ := ζ n = (1 -η n )ξ for test function in (1.37) and get-Ω ((1 -η n )∆ξ -ξ∆η n -2 ∇η n , ∇ξ ) udx + µ Ω uζ n |x| 2 dx + Ω ζ n u p dx = 0. Since Ω η n W 2,p → 0 as n → ∞,andΩ u ∇η n , ∇ξ dx ≤ ∇ξ L ∞ η n W 1,p as n → ∞,then we conclude that u satisfies u satisfies the equation in the sense of distributions. By standard regularity u is C 2 in Ω * , and by the maximum principle u(x) ≤ c 14 Γ µ (x) in B r 0 ⊂ Ω. Integrating by part as in the proof of Lemma 3.2 we obtain that u satisfies Ω uL * µ ξ + ξu p dγ µ (x) = 0 for every ξ ∈ X µ (Ω).(4.19) 

(4. 20 ) 2 p- 1

 2021 Then |u| ≤ v . Furthermore, by Keller-Osserman estimate as in[START_REF] Guerch | Local properties of stationary solutions of some nonlinear singular Schrödinger equations[END_REF] Lemma 1.1], there holdsv (x) ≤ c 15 dist (x, K ) for all x ∈ Ω \ K ,(4.21)where c 14 > 0 depends on N , p and µ. Using local regularity theory and the Arzela-Ascoli theorem, there exists a sequence { n } converging to 0 an a function v ∈ C 2 (Ω \ K) ∩ C( Ω \ K)

  It satisfies the ∆ 2 -condition if the above function K is constant.

	Definition 1.2 A continuous function g : R → R such that rg(r) ≥ 0 for all r ∈ R satisfies the
	weak ∆ 2 -condition if there exists a positive nondecreasing function t ∈ R → K(t) such that
	|g(s + t)| ≤ K(t) (|g(s)| + |g(t)|) for all (s, t) ∈ R × R s.t. st ≥ 0.	(1.33)

  )withA n = ξ∆η n + 2 ∇η n , ∇ξ + 2τ + ξ ∇η n , x |x| 2 .

		(3.36)
	Clearly	
	lim n→∞ Ω	η

n U νσ L * µ ξ + g(U νσ )η n ξ dγ µ = Ω U νσ L * µ ξ + g(U νσ )ξ dγ µ ,

and lim

n→∞ Ω
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ν σ = χ Bσ ν Ω * , with positive and negative part ν σ+ and ν σ-and denote by U ν σ+ , , U -ν σ-, and U νσ, the respective solutions of

and

Then

Furthermore U ν σ+ , satisfies (3.31) and, in coherence with the notations of Lemma 3.1 with ν σ replaced by

By compactness, {U νσ, j } j converges almost everywhere in Ω to some function U for some sequence { j } converging to 0. Moreover U νσ, j converges to Similarly g(U νσ, j ) converges to g(U ) in L 1 (Ω, ρdγ µ ). This implies that U satisfies

In order to use test functions in C 1,1 0 (Ω), we proceed as in the proof of Lemma 3.3, using the inequality (derived from (3.43)) and the

(3.45)

) as x → 0 and we conclude as in the proof of Lemma 3.3 that u = u νσ+kδ 0 . At end we let σ → 0. Up to a sequence {σ j } converging to 0 such that u νσ j +kδ 0 → U almost everywhere and

(Ω, ρdγ µ ), we infer that the convergences of u νσ j +kδ 0 → U and g(u νσ j +kδ 0 ) → g(U ) occur respectively in the same space, therefore U = u ν+kδ 0 , it is the weak solution of (1.6).

Remark. In the course of the proof we have used the following result which is independent of any assumption on g except for the monotonicity: If {ν n } ⊂ M + (Ω; Γ µ ) is an increasing sequence of g-good measures converging to a measure ν ∈ M + (Ω; Γ µ ), then ν is a g-good measure, {u νn } converges to u ν in L 1 (Ω, |x| -1 dγ µ ) and {g(u νn )} converges to g(u ν ) in L 1 (Ω, ρdγ µ ).

Proof of Theorem C

The construction of a solution is essentially similar to the one of Theorem B, the only modifications lies in Lemma 3.3. Estimate (3.31) remains valid with 4 The supercritical case

Reduced measures

The notion of reduced measures introduced by Brezis, Marcus and Ponce [START_REF] Brezis | Nonlinear Elliptic Equations with Measures Revisited[END_REF] turned out to be a useful tool in the construction of solutions in a measure framework. We will develop only the aspect needed for the proof of theorem E. If k ∈ N * , we set

Since g k satisfies (1.34) and (1.35), for any ν ∈ M + (Ω; Γ µ ) there exists a unique weak solution

Furthermore, from the proof of Lemma 3.4 and Kato's type estimates Proposition 2.1 we have that 0

Then the sequence of weak solutions {u ν,k } of Proof. Let λ ∈ M + (Ω; Γ µ ) be a g-good measure, λ ≤ ν. Then λ * = λ ≤ ν * . Since ν * is a g-good measure the result follows.

Proof of Theorem E. Assume that ν ≥ 0. By Lemma 4.2 and Remark at the end of Section 3.5 the following assertions are equivalent:

and since u νσ (x) ≤ c|x| τ + if |x| ≤ σ 2 (4.7) holds in D (Ω). This implies that u ∈ L p (Ω) and |x| -2 u νσ ∈ L α (B σ

2 ) for any α < N (2-τ + ) + . Using [START_REF] Baras | Singularité séliminables pour des équations semi linéaires[END_REF] the measure ν σ is absolutely continuous with respect to the c 2,p -Bessel capacity. If E ⊂ Ω is a Borel set such that c 2,p (E) = 0, then

Conversely, if ν is nonnegative and absolutely continuous with respect to the c 2,p -Bessel capacity, then so is ν σ = χ B c σ ν. For 0 ≤ ≤ σ 2 we consider the problem

Since µ |x| 2 is bounded in Ω and ν σ is absolutely continuous with respect to the c 2,p capacity there exists a solution u νσ, thanks to [START_REF] Baras | Singularité séliminables pour des équations semi linéaires[END_REF], unique by monotonicity. Now the mapping → u νσ, is decreasing. We use the method developed in Lemma 3.1, when → 0, we know that u νσ, increase to some u σ which is dominated by G[ν σ ] and satisfies -∆u + µ |x| 2 u + u p = ν σ in Ω * , u = 0 on ∂Ω.

(4.9)

Because u σ ≤ G[ν σ ] and ν σ = 0 in B σ , there holds u(x) ≤ c 11 Γ µ (x) in B σ 2 , and then u σ is a solution in Ω and u = u νσ . Letting σ → 0, we conclude as in Lemma 3.1 that u νσ converges to