Regression function estimation on non compact support in an heteroskedastik model - Archive ouverte HAL
Article Dans Une Revue Metrika Année : 2020

Regression function estimation on non compact support in an heteroskedastik model

Fabienne Comte
Valentine Genon-Catalot
  • Fonction : Auteur
  • PersonId : 1037577

Résumé

We study the problem of non parametric regression function estimation on non necessarily compact support in a heteroskedastic model with unbounded variance. A collection of least squares projection estimators on m-dimensional functional linear spaces is built. We prove new risk bounds for the estimator with fixed m and propose a new selection procedure relying on inverse problems methods leading to an adaptive estimator. Contrary to more standard cases, the data-driven dimension is chosen within a random set and the penalty is random. Examples and numerical simulations results show that the procedure is easy to implement and provides satisfactory estimators.
Fichier principal
Vignette du fichier
SigmaNonBorne.pdf (611.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02009555 , version 1 (06-02-2019)

Identifiants

  • HAL Id : hal-02009555 , version 1

Citer

Fabienne Comte, Valentine Genon-Catalot. Regression function estimation on non compact support in an heteroskedastik model. Metrika, 2020, 83, pp.93-128. ⟨hal-02009555⟩
80 Consultations
75 Téléchargements

Partager

More