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REGRESSION FUNCTION ESTIMATION ON NON COMPACT

SUPPORT IN AN HETEROSKESDASTIC MODEL

F. COMTE AND V. GENON-CATALOT

Abstract. We study the problem of non parametric regression function estimation on
non necessarily compact support in a heteroskedastic model with unbounded variance.
A collection of least squares projection estimators on m-dimensional functional linear
spaces is built. We prove new risk bounds for the estimator with fixed m and propose
a new selection procedure relying on inverse problems methods leading to an adaptive
estimator. Contrary to more standard cases, the data-driven dimension is chosen within a
random set and the penalty is random. Examples and numerical simulations results show
that the procedure is easy to implement and provides satisfactory estimators. December
31, 2018
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1. Introduction

This paper is concerned with nonparametric regression function estimation under some
non standard assumptions. Consider observations (Xi, Yi)i=1,...,n such that

(1) Yi = b(Xi) + σ(Xi)εi, i = 1, . . . , n,

where the random variables (Xi) are real-valued, independent and identically distributed
(i.i.d.), with density f , the noise variables (εi) are i.i.d. with E(ε1) = 0, Var(ε1) = 1
and the sequences (Xi), (εi) are independent. The function b(.) : R → R is unknown
and we aim at estimating b from the sample (Xi, Yi)i=1,...,n. This problem has been the
subject of a huge number of contributions and various methods have been developped (see
e.g. Tsybakov, 2009, for a reference book). Here, we are concerned with nonparametric
projection estimation of b where estimators are obtained by minimization of a least squares
contrast

(2) γn(t) =
1

n

n∑
i=1

[t2(Xi)− 2Yit(Xi)] =
1

n

n∑
i=1

[Yi − t(Xi)]
2 − 1

n

n∑
i=1

Y 2
i

over a collection of finite dimensional subspaces of L2(A, dx) for A ⊂ R. This approach
provides directly an estimator of b without requiring the estimation of the unknown den-
sity f of the Xis. A model selection procedure allows to determine the best choice of the
dimension m. On the other hand, the estimation of b is restricted to the set A (see e.g.
Birgé and Massart (1998), Barron et al. (1999), Baraud (2002) among others).
Papers concerned with model selection in a heteroskedastic regression model are not so
numerous. Comte and Rozenholc (2002), estimate the pair (b, σ) by a two-step procedure
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(one for b and one for σ) and give risk bounds separately for each function in L2-norm.
Under the assumption of bounded data, in Arlot (2007, chapter 6), estimation of the
regression function is studied. For polynomial collection of models, the author provides
oracle inequalities for the quadratic risk relying on resampling penalties. Galtchouk and
Pergamenshchikov (2009), propose an adaptive nonparametric estimation procedure lead-
ing to an oracle inequality for the quadratic risk under some regularity assumptions. Gen-
dre (2008) deals with estimation using a Kullback risk. In a recent paper, Jin et al. (2015)
study the problem of estimation in heteroskedastic regression (see also references therein),
but the point of view is rather different: they consider asymptotic properties in pointwise
setting, while we are interested in global risk from nonasymptotic point of view. Moreover,
we do not study here the estimation of the volatility function, but its specific impact on
regression function estimation.
In all of the above references and in most references, the estimation set A is assumed to
be compact, and this plays a crucial role in the assumptions and bounds. In addition, it is
fixed in the theory but in practice, adjusted on the data which contradicts the theoretical
assumption. This is why we intend to overcome this drawback and investigate the case
where A can be the whole real line or R+, and in any case a non compact set. This raises
specific difficulties which were investigated in a recent paper (Comte and Genon-Catalot,
2018) for the homoskedatic regression, i.e. σ(x) ≡ 1. Now, we study the heteroskedastic
case with the additional difficulty that we do not assume σ bounded. In particular, we
provide a new formula for the variance term of the procedure, which makes the influence
of the function σ(.) clear, and leads to a more precise evaluation of it in the model selec-
tion procedure. This involves real difficulties, as we both estimate matrices defining the
penalty function, and the collection of models, which is also random and data driven.

Projection estimators of b on a fixed space are studied in Section 2. For the risk
bound defined as the expectation of an empirical norm and as the expectation of the
L2(A, f(x)dx)-norm, we obtain a variance term which is new. Moreover the risk bounds
require a constraint for the possible dimensions of the projection spaces, called “stability
condition” following the terminology introduced in Cohen et al. (2013). Section 3 concerns
the model selection procedure where a data driven choice of the projection space dimension
is proposed. The non compacity of the estimation set and the unboundedness of σ induce
a specific treatment. First, the data driven dimension is chosen in a random set and the
penalty too is random. For the selection procedure, the function σ is supposed to be
known. Section 4 contains examples of bases with non compact support and numerical
simulation results on various models. To estimate the regression function on R, we propose
to use the Hermite basis and for estimation on R+, the Laguerre basis is convenient. These
two bases have been recently used for density estimation on non compact support (see e.g.
Comte and Genon-Catalot, 2018a) and for regression in a homoskedastic model in Comte
and Genon-Catalot (2018b). In practice, σ is unknown and we show on simulations how
to estimate this function in order to make the procedure implementable. Section 5 gives
some concluding remarks.

2. Projection estimator on a fixed space

Let A ⊂ R and consider Sm a finite-dimensional subspace of L2(A, dx) spanned by an
orthonormal basis of A-supported functions (ϕ0, . . . , ϕm−1). We assume that for all j,
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ϕ2
j (x)f(x)dx < +∞. With γn defined in (2), we set

b̂m = arg min
t∈Sm

γn(t).

The computation of b̂m using the basis (ϕ0, . . . , ϕm−1) is very classical. To recall it, let us
introduce some notations. For functions s, t and for u the vector (u1, . . . , un)′ (u′ denotes
the transpose of u), we set

‖t‖2n =
1

n

n∑
i=1

t2(Xi), 〈s, t〉n :=
1

n

n∑
i=1

s(Xi)t(Xi), 〈u, t〉n :=
1

n

n∑
i=1

uit(Xi).

We introduce the matrices

Φ̂m = (ϕj(Xi))1≤i≤n,0≤j≤m−1, Ψ̂m = (〈ϕj , ϕk〉n)
0≤j,k≤m−1

=
1

n
Φ̂′mΦ̂m,

and

(3) Ψm =

(∫
ϕj(x)ϕk(x)f(x)dx

)
0≤j,k≤m−1

= E(Ψ̂m).

Set ~Y = (Y1, . . . , Yn)′. Then, the m-dimensional vector ~̂a(m) = (â
(m)
0 , . . . , â

(m)
m−1)′ such that

b̂m =
∑m−1

j=0 â
(m)
j ϕj is given, if Ψ̂m is invertible almost surely (a.s.), by

(4) ~̂a(m) = (Φ̂′mΦ̂m)−1Φ̂′m
~Y =

1

n
Ψ̂−1
m Φ̂′m~Y .

2.1. Risk bound in empirical norm. We now evaluate the risk of the estimator b̂m.
The following notations are used in the sequel. For h a function, hA := h1A, ‖h‖ is the
L2(A, dx) norm, ‖h‖f is the L2(A, f(x)dx)-norm, ‖h‖∞ is the sup-norm on A. For M a
matrix, we denote by ‖M‖op the operator norm defined as the square root of the largest
eigenvalue of MM ′. If M is symmetric, ‖M‖op = sup{|λi|} where λi are the eigenvalues
of M . If M,N are two matrices with compatible product MN , ‖MN‖op ≤ ‖M‖op‖N‖op.
The trace of a matrix M is denoted Tr(M).
Assuming that E[σ2(X1)] < +∞, we define the matrices

(5) Ψ̂m,σ2 =

(
1

n

n∑
i=1

σ2(Xi)ϕj(Xi)ϕk(Xi)

)
0≤,j,k≤m−1

and Ψm,σ2 = E[Ψ̂m,σ2 ].

In other words,

(6) Ψm,σ2 :=

(∫
ϕj(x)ϕk(x)σ2(x)f(x)dx

)
0≤j,k≤m−1

.

Proposition 2.1. Let (Xi, Yi)1≤i≤n be observations drawn from model (1). Assume that

Ψ̂m is invertible a.s. and consider the least squares estimator b̂m of bA = b1A. Then

E
[
‖b̂m − bA‖2n

]
≤ inf

t∈Sm
‖bA − t‖2f +

E[Tr(Ψ̂−1
m Ψ̂m,σ2)]

n
.

If in addition σA = σ1A is bounded, then E[Tr(Ψ̂−1
m Ψ̂m,σ2)] ≤ m‖σA‖2∞.
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If σ2(x) = σ2 is constant, Ψ̂m,σ2 = σ2Ψ̂m and the variance term is simply σ2m/n. This

exactly coincides with the homoskedastic results. If σ2(x) is not constant, the variance

term becomes E[Tr(Ψ̂−1
m Ψ̂m,σ2)]/n which is new. Now, to have a better understanding of

its rate, assume that

(7) L(m) := sup
x∈A

m−1∑
j=0

ϕ2
j (x) < +∞.

The quantity L(m) was introduced in Comte and Genon-Catalot (2018a). It is independent
of the choice of the L2(dx)-orthonormal basis of Sm. Moreover, for nested spaces (i.e.
m ≤ m′ ⇒ Sm ⊂ Sm′), the map m 7→ L(m) is increasing. We show below on examples
that condition (7) is not stringent and that L(m) is on classical examples of order m (see
Section 4).

Proposition 2.2. Let (Xi, Yi)1≤i≤n be observations drawn from model (1). Assume that

Ψ̂m is invertible a.s. and that E(σ4(X1)) < +∞,E(b4(X1)) < +∞. Let m be such that

(8) L(m)(‖Ψ−1
m ‖op ∨ 1) ≤ c

2

n

log(n)
, c =

1− log(2)

5
.

Then, the least squares estimator b̂m of bA satisfies

E
[
‖b̂m − b‖2n

]
≤ inf

t∈Sm
‖bA − t‖2f +

2

n
Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
+
c

n
,

where c is a constant depending on E(ε4
1) and

∫
b4A(x)f(x)dx.

We mention that the value of c is chosen in order that Lemma 6.1 holds.
Condition (8) is to be interpreted as a stability condition. If m is too large, then the
least-squares estimator may be very unstable. Such a condition was introduced in Cohen
et al. (2013) and used also in Comte and Genon-Catalot (2018b). On the other hand, if
A is compact and f is lower bounded by f0 on A, then ‖Ψ−1

m ‖op ≤ 1/f0 (see Proposition
4.1 in Comte and Genon-Catalot (2018b)). This means that condition (8) can be written
L(m) ≤ c((f0 ∧ 1)/2)n/ log(n): this constraint is very weak, especially when L(m) is of
order m, see (12).

2.2. Risk bound in integral norm. To bound the risk in L2(f(x)dx)-norm, we intro-
duce a cutoff and define

(9) b̃m := b̂m1L(m)(‖Ψ̂−1
m ‖op∨1)≤cn/ log(n)

,

where L(m) is defined by (7) and c in (8). For nested spaces, it is proved in Comte and

Genon-Catalot (2018a) that the maps m 7→ ‖Ψ̂−1
m ‖ and m 7→ ‖Ψ−1

m ‖ are nondecreasing
(see Proposition 2.2).

Proposition 2.3. Let (Xi, Yi)1≤i≤n be observations drawn from model (1). Assume that

Ψ̂m is invertible a.s., and that E(σ4(X1)) < +∞,E(b4(X1)) < +∞. Consider the estima-

tor b̃m of bA. Let m satisfy condition (8), then

(10) E
[
‖b̃m − bA‖2f

]
≤
(

1 +
8c

log(n)

)
inf
t∈Sm

‖bA − t‖2f +
8

n
Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
+
c′

n
,

where c′ is a constant depending on E(ε4
1),
∫
b4A(x)f(x)dx,

∫
σ4
A(x)f(x)dx.
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If σ2(x) ≡ σ2, Ψm,σ2 = σ2Ψm and Tr
[
Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m

]
= σ2m. In all cases, the

variance term Tr
[
Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m

]
has the following properties (see Proposition 3.2 in

Comte and Genon-Catalot (2019)).

Proposition 2.4. Let m be an integer. Assume that Ψm is invertible and Eσ2(X1) < +∞.

(1) If the spaces Sm are nested, then m 7→ Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ] is non-decreasing.

(2) If σ is bounded on A, then Tr[Ψ−1/2
m Ψm,σ2Ψ−1/2

m ] ≤ ‖σA‖2∞m.
(3) Under condition (7), Tr[Ψ

−1/2
m Ψm,σ2Ψ

−1/2
m ] ≤ E[σ2

A(X1)]L(m)‖Ψ−1
m ‖op.

When σ2 is unknown, the upper bound (3) is interesting as E[σ2
A(X1)] is easy to estimate

and this quantity has been used as penalty term in the context of drift estimation in
stochastic differential equations studied in Comte and Genon-Catalot (2019). However,
this upper bound is not sharp. On simulations, we observe that the left-hand side seems
proportional to m while the right-hand side increases very fast with m.

2.3. Discussion on rates and lower bound. The evaluation of risk rates in this prob-
lem is delicate. Indeed, we do not know explicitly the variance rate in the risk bound (10)
and the assessment of the bias term requires to introduce specific regularity spaces linked
with f . In Comte and Genon-Catalot (2018b), the following spaces were introduced:

(11) W s
f (A,R) =

{
h ∈ L2(A, f(x)dx),∀` ≥ 1, ‖h− hf` ‖

2
f ≤ R`−s

}
where hf` is the L2(A, f(x)dx)-orthogonal projection of h on S`. Hence, for f ∈W s

f (A,R),

inft∈Sm ‖bA − t‖2f ≤ Rm−s. If the function σ is upper bounded, by Proposition 2.4, the

variance term is upper bounded by a term of order m/n. Therefore, if mopt := n1/(s+1)

satisfies (8), then, the risk of b̃mopt is upper bounded by Cn−s/(s+1).
If in addition σ is lower bounded (σ(x) ≥ σ0 > 0), the proof of Theorem 3.1 in Comte
and Genon-Catalot (2018b) can be extended without difficulty and leads to the following
lower bound: for ε1 ∼ N (0, σ2

ε),

lim inf
n→+∞

inf
Tn

sup
bA∈W s

f (A,R)
EbA [ns/(s+1)‖Tn − bA‖2f ] ≥ c

where infTn denotes the infimum over all estimators and the constant c > 0 depends on s
and R.

3. Adaptive procedure

We present now a model selection procedure and associated risk bounds where the
following assumptions are used.

(A1) We consider a nested collection of spaces (Sm,m ∈ Mn) (that is Sm ⊂ Sm′ for
m ≤ m′) such that, for each m, the basis (ϕ0, . . . , ϕm−1) of Sm satisfies

(12) ‖
m−1∑
j=0

ϕ2
j‖∞ ≤ c2

ϕm for c2
ϕ > 0 a constant.

(A2) ‖f‖∞ < +∞.
(A3) For α ≥ 1 and m ≥ 1, ‖Ψ−1

m ‖2op ≥ c?mα, where c? is a positive constant.
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(A4)
∑
m≥1

m‖Ψ−1
m ‖ope

−m/12 ≤ Σ < +∞.

Assumption (A1) is satisfied on most examples of compactly supported bases and for the
non compactly supported Laguerre and Hermite bases (see below Section 4). Assumption
(A2) is standard and rather weak. Assumption (A3) holds for the Laguerre and Hermite
bases (see Proposition 3.4 in Comte and Genon-Catalot (2018)) with α = 1 (see Section
4). Assumption (A4) holds for instance when ‖Ψ−1

m ‖op has polynomial order which is

the case if the unknown density f is R+-supported, satisfies f(x) ≥ c/(1 + x)k for all
x ≥ 0 and the Laguerre basis is used or if f satisfies f(x) ≥ c/(1 + x2)k for all x and
the Hermite basis is used (see Comte and Genon-Catalot (2018), Proposition 3.5). Let
us mention that if ‖Ψ−1

m ‖2op is bounded by a constant 1/f0, Assumption (A4) is auto-
matically fulfilled, but Assumption (A3) is not. However, Assumption (A3) is useful to
deal with the random penalty involving several matrices. In fact, in the case of bounded
‖Ψ−1

m ‖2op, the penalty may be taken proportional to c2
ϕE(σ2(X1))m/(f0n) (see Proposition

2.4, (3)) and studied as in the homoskedastic case (see Comte and Genon-Catalot (2018a)).

Under (A2), we define1

(13)

Mn =

{
m ∈ N, c2

ϕm (‖Ψ−1
m ‖2op ∨ 1) ≤ d

4

n

log(n)

}
, d = min{ 1/192

(‖f‖∞ ∨ 1) + 1/3
,
3

8

√
c∗}.

To select the most relevant space Sm, we set

(14) m̂ = arg min
m∈M̂n

{
−‖b̂m‖2n + p̂en(m)

}
,

(15) p̂en(m) = 2κ
m

n
V̂ (m), V̂ (m) = ‖Ψ̂−1/2

m Ψ̂m,σ2Ψ̂−1/2
m ‖op + 1,

where κ is a numerical constant and M̂n is a collection of models defined by

(16) M̂n =

{
m ∈ N, c2

ϕm(‖Ψ̂−1
m ‖2op ∨ 1) ≤ d

n

log(n)

}
,

The set M̂n where m̂ is chosen is random which is not usual in such procedures. It is the
empirical counterpart of Mn defined by (13) (with a change of constant). Similarly, the
theoretical counterpart of p̂en(m) is

(17) pen(m) = κ
m

n
V (m), V (m) = ‖Ψ−1/2

m Ψm,σ2Ψ−1/2
m ‖op + 1.

Note that if σ2(x) ≡ σ2 is a constant, then V̂ (m) = V (m) = σ2 + 1 and the penalty

p̂en(m) is nonrandom. Note that both m 7→ V̂ (m) and m 7→ V (m) are nondecreasing as
can be easily checked.

Theorem 3.1. Let (Xi, Yi)1≤i≤n be observations from model (1). Assume that (A1)-

(A4) hold, that E(ε10
1 ) < +∞, E

[
b4(X1)

]
< +∞, and E

[
σ

4+56/α
A (X1)

]
< +∞. Then,

1The constant d is calibrated in order that (33) and (42) both hold.
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there exists a numerical constant κ0 such that for κ ≥ κ0, we have

(18) E
[
‖b̂m̂ − bA‖2n

]
≤ C inf

m∈Mn

(
inf
t∈Sm

‖bA − t‖2f + pen(m)

)
+
C ′

n
,

and

(19) E
[
‖b̂m̂ − bA‖2f

]
≤ C1 inf

m∈Mn

(
inf
t∈Sm

‖bA − t‖2f + pen(m)

)
+
C ′1
n

where C,C1 are a numerical constants and C ′, C ′1 are constants depending on f , b, σ.

Note that we do not use the exact value of variance in the empirical and theoretical
penalty, but an upper bound on it, as for a m ×m positive matrix, Tr[M ] ≤ m‖M‖op.
As usual, the data-driven choice (14) of the dimension m is dictated by the squared-bias-
variance compromise. Two difficulties are to be stressed. First, m̂ is chosen in a random
set (this was already the case in the homoscedastic model treated in Comte and Genon-
Catalot (2018)). Second we have to deal here with a random penalty which was not the
case in the homoscedastic regression model. Handling this in the proof is rather difficult.
For practical implementation, the constant κ is calibrated by preliminary simulations in-
stead of applying the theoretical value κ0 provided by the proof which is not optimal. The
penalty (15) depends on the vector (σ2(Xi), i = 1, . . . , n). In Section 4, we propose to

replace these values by ((Yi− b̂m(Xi))
2) for a m taken close to the maximal possible value

and show that this works well on simulations.

4. Examples and numerical simulations

For implementation, we consider either the Laguerre basis (A = R+) or the Hermite
basis (A = R). Both are easy to handle in practice.
- Laguerre basis, A = R+. The Laguerre polynomial Lj and the Laguerre function `j of
order j are given by

(20) Lj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, `j(x) =

√
2Lj(2x)e−x1x≥0, j ≥ 0.

The collection (`j)j≥0 constitutes a complete orthonormal system on L2(R+) satisfying

(see Abramowitz and Stegun (1964)): ∀j ≥ 0, ∀x ∈ R+, |`j(x)| ≤
√

2. The collection of
models (Sm = span{`0, . . . , `m−1}) is nested and obviously (12) holds with c2

ϕ = 2.
- Hermite basis, A = R. The Hermite polynomial Hj and the Hermite function of order j
are given, for j ≥ 0, by:

(21) Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
), hj(x) = cjHj(x)e−x

2/2, cj =
(
2jj!
√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R, dx). Moreover (see Abramowitz

and Stegun (1964), Szegö (1959) p.242), ‖hj‖∞ ≤ Φ0,Φ0 ' 1, 086435/π1/4 ' 0.8160, so
that (12) holds with c2

ϕ = Φ2
0. The collection of models (Sm = span{h0, . . . , hm−1}) is

obviously nested.
Laguerre polynomials were computed using formula (20) and Hermite polynomials with
H0(x) ≡ 1, H1(x) = x and the recursion Hn+1(x) = 2xHn(x)− 2nHn−1(x).
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σ1(x) ≡ σ σ2(x) = σ
√
|x| σ3(x) = σ

√
1 + x2

X ∼ U([−1, 1]) N (0, 1/3) U([−1, 1]) N (0, 1/3) U([−1, 1]) N (0, 1/3)
σ̂ σ σ̂ σ σ̂ σ σ̂ σ σ̂ σ σ̂ σ

b1(x)
Emp. 0.14 0.14 0.25 0.25 0.09 0.08 0.25 0.23 0.16 0.17 0.78 0.69

(0.1) (0.1) (0.5) (0.5) (0.06) (0.06) (0.2) (0.17) (0.10) (0.12) (0.47) (0.46)

L2 0.13 0.13 0.22 0.22 0.07 0.07 0.18 0.17 0.14 0.16 0.52 0.46
(0.1) (0.1) (0.5) (0.5) (0.05) (0.05) (0.16) (0.13) (0.09) (0.11) (0.40) (0.35)

dim 4.3 4.3 6.4 6.7 4.2 4.1 6.2 6.0 4.0 4.1 5.0 5.2
(0.7) (0.8) (1.1) (1.5) (0.5) (0.3) (0.2) (0.8) (0.2) (0.5) (1.3) (1.2)

b2(x)
Emp 0.17 0.17 0.24 0.24 0.12 0.13 0.30 0.34 0.21 0.22 0.81 0.59

(0.08) (0.09) (0.12) (0.13) (0.06) (0.05) (0.70) (0.70) (0.10) (0.11) (0.79) (0.35)

L2 0.15 0.15 0.21 0.22 0.10 0.11 0.23 0.25 0.19 0.20 0.46 0.40
(0.07) (0.08) (0.14) (0.15) (0.05) (0.04) (0.68) (0.68) (0.10) (0.11) (0.32) (0.27)

dim 3.8 4.0 6.5 6.9 3.9 3.7 6.4 5.8 3.1 3.3 5.1 5.2
(1.1) (1.2) (1.17) (1.17) (1.2) (1.0) (1.5) (1.2) (0.5) (0.7) (1.1) (0.6)

b3(x)
Emp 0.14 0.15 0.21 0.22 0.09 0.09 0.34 0.23 0.24 0.21 0.60 0.57

(0.08) (0.09) (0.11) ( 0.12) (0.06) (0.06) (2.19) (0.15) (0.22) (0.16) (0.72) (0.29)

L2 0.13 0.13 0.18 0.19 0.08 0.08 0.27 0.16 0.21 0.19 0.44 0.40
(0.08) (0.08) (0.13) (0.13) (0.05) (0.05) (2.1) (0.12) (0.18) (0.14) (0.64) (0.28)

dim 5.1 5.2 6.5 6.7 5.1 5.1 6.3 6.0 5.0 5.1 5.5 5.4
(0.3) (0.7) (1.7) (1.8) (0.4) (0.3) (1.5) (1.2) (0.3) (0.4) (0.7) (0.6)

b4(x)
Emp. 0.92 0.91 5.02 2.42 0.81 0.81 5.65 2.47 1.25 1.03 9.38 3.07

(0.18) (0.11) (4.65) (0.67) (0.08) (0.08) (4.96) (0.72) (0.81) (0.17) (7.12) (0.81)

L2 0.89 0.88 4.47 2.19 0.78 0.78 4.93 2.16 1.19 0.97 8.04 2.50
(0.19) (0.12) (3.98) (0.65) (0.08) (0.08) (4.35) (0.69) (0.79) (0.17) (6.23) (0.85)

dim 11 11 14.5 16.0 11 11 14.3 16.1 10.8 11 13.0 16.1
(0.1) (0.0) (2.0) (1.0) (0.0) (0.0) (2.1) (1.1) (0.6) (0.0) (2.2) (1.1)

Table 1. Emp.= empirical risk × 100 (with std × 100), L2 = standard
L2-risk × 100 (with std × 100), dim= mean of the selected dimensions
(with std). 400 samples with size n = 1000.

We consider several models. In all cases, we generate the εi’s as i.i.d. standard Gaussian
random variables. For the distribution of X, we choose X ∼ U([−1, 1]) (compact support
case), or X ∼ N (0, 1)/

√
3 (non compact support case), both have the same variance equal

to 1/3. Graphs are also given for X with Gamma distribution γ(3, 1/4) for implementation
using the Laguerre basis. The uniform case allows to check that the general procedure
works also in the compact setting. For the function b(x) we experimented

b1(x) = −2x+ 1, b2(x) = 1− x2, b3(x) = sin(πx+ π/3), b4(x) = 2(x+ 2e−16x2
)
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jointly with different functions σ(x), with σ = 0.5 in all cases:

σ1(x) = σ, σ2(x) = σ
√
|x|, σ3(x) =

√
1 + x2.

The maximal dimension dn/ log(n) is replaced by Dmax = bn/ log2(1 + n)c − 1, which
from theoretical and practical point of view avoids to look for a specific value of d. The
cutoff to fix the random collection of models associated with each path is taken much

larger than recommended by the definition of M̂n in (16), namely we consider all di-

mensions m ≤ Dmax such that 2‖Ψ̂−1
m ‖

1/4
op ≤ Dmax, this defines a maximal value of m,

M̂n. The choice of M̂n is really delicate and implementing the true stability constraint

m‖Ψ̂−1
m ‖op ≤ Dmax is probably possible but further numerical investigations would be

required to avoid rare explosion events. The penalty constant is roughly calibrated to
the value κ = 3 in the two cases where the true function σ(x) is used for computing

‖Ψ̂m,σ2‖op and where the terms σ2(Xi) in the matrix are replaced by ((Yi − b̂m?(Xi))
2),

with m? = M̂n − 2.

Simulations results are given for sample sizes n = 400. For Table 1, K = 400 repetitions

are done to compute the risks. Column ”σ̂” means that the coefficients of the matrix Ψ̂m,σ2

are estimated as specified previously and column ”σ” means that function σ is assumed

to be known (in the computation of the matrix Ψ̂m,σ2 in the penalty).

Table 1 gives the empirical mean squared error (multiplied by 100) (Emp) computed as

1

K

K∑
j=1

1

n

n∑
i=1

[
b̂m̂(j)(X

(j)
i )− b(X(j)

i )
]2
,

where X
(j)
i is the ith observation of the jth simulated path, and the L2-risk (multiplied by

100) (L2) computed as

1

K

K∑
j=1

1

100

100∑
`=1

[
b̂m̂(j)(x

(j)
` )− b(x(j)

l )
]2
,

where (x
(j)
` )1≤j≤100 is a set of 100 equispaced points on [a(j), b(j)], a(j) is the 2% quantile

of the sample (X
(j)
i )1≤i≤n and b(j) the 98% quantile. Standard deviations multiplied by

100 are given below in parenthesis. We also give the mean of the selected dimensions along
the 400 repetitions, “dim”, together with its standard deviation in parenthesis.

The results in Table 1 show that the procedure works quite well. We can see that the
MSEs are smaller for uniform than for Gaussian Xi’s. Empirical MSEs are generally larger
than standard L2 error, but this may be due to the fact that the partition excludes points
near the borders. Globally, estimating σ(x) for the penalty seems to work well, except
for b4 and Gaussian X, where the error is much larger for estimated σ(x) than for known
σ(x). For uniform X, the risk is smaller for σ2(x) that for constant function σ1. This may

be due to the variance reduction associated with the factor
√
|x| when |x| ≤ 1, and this

is coherent with the observed increase for σ3(x).
Figure 1 presents beams of estimated functions for 40 different paths. The results are
rather typical of the method for such sample size, when using Hermite (on R) or Laguerre
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Hermite basis, b2(x) = 1− x2 σ(x) = σ
√

1 + x2, X ∼ N (0, 1/3)

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

¯̂m = 4.9 (1.1), Emp. = 0.9 (0.8) ¯̂m = 5.2 (0.7), Emp. = 0.6 (0.3)

Laguerre basis, b3(x) = sin(πx+ π/3), σ(x) = σ
√
|x|, X ∼ γ(3, 1/4)

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

¯̂m = 6.5 (1.4), Emp. = 0.4 (0.4) ¯̂m = 6.8 (1.4), Emp. = 0.3 (0.2)

Laguerre basis, b4(x) = 2(x+ 2e−16x2
), σ(x) = σ

√
1 + x2, X ∼ γ(3, 1/4)

0 0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

4

4.5

¯̂m = 5.4 (1.5), Emp. = 0.8 (0.5) ¯̂m = 5.7 (1.6), Emp. = 0.7 (0.2)

Figure 1. The true function b in bold (red-black) and 40 estimated curves
(green-grey) in Hermite basis (top) or Laguerre basis (middle and bottom),
the true in bold (red), n = 1000, ¯̂m: mean selected dimension (std), Emp.
= 100× empirical risk (100 std).

basis (on R+). The empirical risks given below graphs are computed as for Table 1 but for
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the 40 paths of the illustration. The method is stable as shown by the variability bands
and the values of risks.

5. Concluding remarks

In this paper, we consider the nonparametric regression function estimation by projec-
tion method allowing the estimation set to be non compact and the variance to be un-
bounded. This paper completes and extends the paper Comte and Genon-Catalot (2018b)
where the homoskedastic regression model is studied with the analogous method. Intro-
ducing an unbounded variance term changes a lot the theoretical study. First, the upper
bound of the estimators risk shows a new variance term whose explicit rate is not easy to
determine. This makes the determination of the optimal rate difficult. The problem of
finding it and proving a corresponding lower bound is open and worth of interest.

In both the homoskedastic and heteroskedastic models, the data-driven dimension is
chosen in a random set which is not standard. In the heteroskedastic case, the model
selection procedure relies on a random penalty which is not the standard case too. The
resulting estimator is adaptive in the sense that its risk automatically achieves the square-
bias-variance compromise. As illustrated by our simulations, the method is easy to imple-
ment and works well.

6. Proofs

6.1. Proof of Proposition 2.1. Let us denote by Πm the orthogonal projection (for the

scalar product of Rn) on the sub-space
{(
t(X1), . . . ,t(Xn)

)′
, t∈ Sm

}
of Rn and by Πmb the

projection of the vector (b(X1), . . . , b(Xn))′. The following equality holds,

(22) ‖b̂m − bA‖2n = ‖Πmb− bA‖2n + ‖b̂m −Πmb‖2n = inf
t∈Sm

‖t− bA‖2n + ‖b̂m −Πmb‖2n

By taking expectation, we obtain

E
[
‖b̂m − bA‖2n

]
≤ inf

t∈Sm
‖t− bA‖2f + E

[
‖b̂m −Πmb‖2n

]
.

Denote by b(X) = (b(X1), . . . , b(Xn))′ and bA(X) = (bA(X1), . . . , bA(Xn))′. We can
write

b̂m(X) = (b̂m(X1), . . . , b̂m(Xn))′ = Φ̂m
~̂a(m),

where ~̂a(m) is given by (4), and

Πmb = Φ̂m~a
(m), ~a(m) = (Φ̂′mΦ̂m)−1Φ̂′mb(X).

Now, denoting by P(X) := Φ̂m(Φ̂′mΦ̂m)−1Φ̂′m, and by−−→σAε the n×1-vector with coordinates
σA(Xi)εi, i = 1, . . . , n, we get, as the ϕj are A-supported,

‖b̂m −Πmb‖2n = ‖P(X)−−→σAε‖2n =
1

n
‖P(X)−→σε‖22,n =

1

n
(−→σε)′P(X)(−−→σAε),

as P(X)′P(X) = P(X) and P(X) is the n × n-matrix of the euclidean orthogonal
projection on the subspace of Rn generated by the vectors ϕ0(X), . . . , ϕm−1(X), where
ϕj(X) = (ϕj(X1), . . . , ϕj(Xn))′. Note that

E(‖P(X)−−→σAε‖22,n) ≤ E(‖−−→σAε‖22,n) ≤ ‖σA‖∞E(‖~ε‖22,n) < +∞.
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Next, using that P(X) has coefficients depending on the Xi’s only,

E
[
(−→σε)′P(X)(−→σε)

]
=

∑
i,`

E
[
εiε`σ(Xi)σ(X`)[P(X)]i,`

]
=

n∑
i=1

E
[
σ2(Xi)[P(X)]i,i

]
=

1

n

n∑
i=1

∑
0≤j,k≤m−1

E
[
σ2(Xi)ϕj(Xi)ϕk(Xi)[Ψ̂

−1
m ]j,k

]

= E

∑
j,k

[Ψ̂m,σ2 ]j,k[Ψ̂
−1
m ]j,k

 = E
[
Tr[Ψ̂m,σ2Ψ̂−1

m ]
]
.

If σ is bounded on A, we have E
[
(−→σε)′P(X)(−→σε)

]
≤ ‖σA‖2∞E

[
Tr(P(X))

]
= m‖σA‖2∞, as

Tr(P(X)) = Tr[(Φ̂′mΦ̂m)−1Φ̂′mΦ̂m] = m. We obtain the result of Proposition 2.1. 2

6.2. Proof of Proposition 2.2. We define the set,

(23) Ωm =

{∣∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣∣ ≤ 1

2
,∀t ∈ Sm

}
.

It is easy to see that (see Proposition 2.3 in Comte and Genon-Catalot (2018)):

(24) Ωm =

{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op ≤

1

2

}
.

This implies that on Ωm, all the eigenvalues of Ψ
−1/2
m Ψ̂mΨ

−1/2
m belong to [1/2, 3/2]. The

following lemma is proved in Comte and Genon-Catalot (2018) (see Proposition 2.3 and
Lemma 6.3) and determines the value of c.

Lemma 6.1. Under the assumptions of Proposition 2.2, for m satisfying condition (8),
we have P(Ωc

m) ≤ c/n4, where c is a positive constant.

Now, we write

‖b̂m − bA‖2n = ‖b̂m − bA‖2n1Ωm + ‖b̂m − bA‖2n1Ωcm(25)

For the last term, we have

(26) ‖bA − b̂m‖2n = ‖bA −ΠmbA‖2n + ‖Πmσε‖2n ≤ ‖b‖2n + n−1
n∑
k=1

σ2(Xk)ε
2
k.

Thus

E
[
‖bA − b̂m‖2n1Ωcm

]
≤ E

[
‖b‖2n1Ωcm

]
+

1

n

n∑
k=1

E
[
σ2(X1)ε2

k1Ωcm

]
≤ (E1/2

[
b4(X1)

]
+ E1/2

[
σ4(X1)

]
E1/2

[
ε4

1

]
)P1/2(Ωc

m) ≤ C

n2
.(27)

Next,

E[‖bA − b̂m‖2n1Ωm ] = E[‖bA −ΠmbA‖2n1Ωm ] + E[‖Πmσε‖2n1Ωm ]

≤ inf
t∈Sm

‖bA − t‖2f + E[‖Πmσε‖2n1Ωm ](28)
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From the proof of Proposition 2.1, and using that Ωm only depends on X1, . . . , Xn, we
have

E[‖Πmσε‖2n1Ωm ] =
1

n
E
[
Tr(Ψ̂−1

m Ψ̂m,σ2)1Ωm

]
.

We note that

Tr(Ψ̂−1
m Ψ̂m,σ2) = Tr(Ψ1/2

m Ψ̂−1
m Ψ1/2

m Ψ−1/2
m Ψ̂m,σ2Ψ−1/2

m ).

We know that the eigenvalues (λj)1≤j≤m of Ψ
1/2
m Ψ̂−1

m Ψ
1/2
m belong to [2/3, 2] on Ωm. Write

Ψ
1/2
m Ψ̂−1

m Ψ
1/2
m = P ′DP , with D = diag(λi) and PP ′ = P ′P = Idm and denote by M =

PΨ
−1/2
m Ψ̂−1

m,σ2Ψ
−1/2
m P . The matrix M is symmetric nonnegative so that [M ]j,j ≥ 0 for all

j. Thus

Tr(Ψ1/2
m Ψ̂−1

m Ψ1/2
m Ψ−1/2

m Ψ̂m,σ2Ψ−1/2
m ) = Tr[DM ] =

m∑
j=1

λj [M ]j,j ≤ 2Tr(M).

Now as Tr(M) = Tr(Ψ
−1/2
m Ψ̂m,σ2Ψ

−1/2
m ), we get

(29) E[‖Πmσε‖2n1Ωm ] =
1

n
E
[
Tr(Ψ̂−1

m Ψ̂m,σ2)1Ωm

]
≤ 2

n

[
Tr(Ψ−1/2

m Ψm,σ2Ψ−1/2
m )

]
.

Now, gathering (29), (28) and (27) and (25) gives the result of Proposition 2.2. 2.

6.3. Proof of Proposition 2.3. Let (see (9))

Λm =

{
L(m)(‖Ψ̂−1

m ‖op ∨ 1) ≤ c
n

log(n)

}
,

Lemma 6.2. Under the assumptions of Proposition 2.2, for m satisfying condition (8),
we have P(Λcm) ≤ c/n4, where c is a positive constant.

Now, we write

‖b̃m − bA‖2f = ‖b̂m − bA‖2f1Ωm∩Λm + ‖b̂m − bA‖2f1Ωcm∩Λm + ‖bA‖2f1Λcm(30)

The last term is obviously negligible as E[‖bA‖2f1Λcm ] ≤ ‖bA‖2fP(Λcm) ≤ cE[b2(X1)]/n.

For the middle term, we have from (42) in Comte and Genon-Catalot (2018) (proof of
Proposition 3.1), that

E(‖b̂m − bA‖2f1Ωcm∩Λm) ≤ c

n
.

So we turn to the main term and denote by b
(n)
m the orthogonal projection of b on Sm

w.r.t. the norm ‖.‖n. Set also (see Cohen et al. (2013)) g = b − b(f)
m where b

(f)
m is the

orthogonal projection of b on Sm w.r.t. the norm ‖.‖f . Note that ‖g‖2f = inft∈Sm ‖bA− t‖2f
and g

(n)
m = b

(n)
m − b(f)

m .

‖bA − b̂m‖2f = ‖g − g(n)
m − (b̂m − b(n)

m )‖2f = ‖g‖2f + ‖g(n)
m − (b̂m − b(n)

m )‖2f
≤ ‖g‖2f + 2‖g(n)

m ‖2f + 2‖(b̂m − b(n)
m )‖2f

It follows from Theorem 2 in Cohen et al. (2013) that

E(‖g(n)
m ‖2f1Ωm∩Λm) ≤ 4

c

log(n)
‖g‖2f .
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Moreover

E(‖(b̂m − b(n)
m )‖2f1Ωm∩Λm) ≤ 2E(‖(b̂m − b(n)

m )‖2n1Ωm∩Λm) = 2E(‖Πmσε‖2n1Ωm),

and we just proved in (29) that this term is less than (4/n)Tr(Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ). Joining

all terms gives the result. 2

6.4. Proof of Theorem 3.1. We denote by M̂n the maximal element of M̂n (see (16))
and by Mn the maximal element of Mn (see (13)). We need also:

(31) M+
n =

{
m ∈ N, c2

ϕm (‖Ψ−1
m ‖2op ∨ 1) ≤ 4d

n

log(n)

}
,

with d give in (16). Let M+
n denote the maximal element of M+

n . Heuristically, with
large probability, considering the constants associated with the sets, we should have Mn ≤
M̂n ≤ M+

n or equivalently Mn ⊂ M̂n ⊂ M+
n , and on this set, we really bound the risk;

otherwise, we bound the probability of the complement. More precisely, we denote by

(32) Ξn :=
{
Mn ⊂ M̂n ⊂M+

n

}
,

and use that Lemma 6.6 in Comte and Genon-Catalot (2018) states that: for c a positive
constant,

(33) P(Ξcn) = P
({
Mn * M̂n or M̂n *M+

n

})
≤ c

n2
.

Then we write the decomposition:

(34) b̂m̂ − bA = (̂bm̂ − bA)1Ξn + (̂bm̂ − bA)1Ξcn .

Proceeding as in (27), we get that

E
[
‖b− b̂m̂‖2n1Ξcn

]
≤ c′

n
.

The following Lemma allows to obtain the first Inequality of Theorem 3.1.

Lemma 6.3. Under the assumptions of Theorem 3.1, there exists κ0 such that for κ ≥ κ0,
we have (see (17))

E
[
‖b̂m̂ − bA‖2n1Ξn

]
≤ C inf

m∈Mn

(
inf
t∈Sm

‖t− bA‖2f + κc2
ϕ

V (m)

n

)
+
C ′

n

where C is a numerical constant and C ′ is a constant depending on f , b, σε.

The second inequality of Theorem 3.1 can be deduced from the first one as in Comte
and Genon-Catalot (2018), Section 6.3.4. 2

6.5. Proof of Lemma 6.3. To begin with, we note that γn(b̂m) = −‖b̂m‖2n. Indeed, using

formula (4) and Φ̂′mΦ̂m = nΨ̂m, we have

γn
(
b̂m
)

=
∥∥Φ̂m

~̂a(m)
∥∥2

n
− 2
(
~̂a(m)

)′
Φ̂′m ~Y = −

(
~̂a(m)

)′
Φ̂′m ~Y = −

∥∥Φ̂m
~̂a(m)

∥∥2

n
.

Consequently, we can write

m̂ = arg min
m∈M̂n

{γn(b̂m) + p̂en(m)},
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where p̂en(m) is defined by (15). Thus, using the definition of the contrast, we have, for

any m ∈ M̂n, and any bm ∈ Sm,

(35) γn(b̂m̂) + p̂en(m̂) ≤ γn(bm) + p̂en(m).

On the set Ξn =
{
Mn ⊂ M̂n ⊂M+

n

}
, we have m̂ ≤ M̂n ≤ M+

n and either Mn ≤ m̂ ≤

M̂n ≤ M+
n or m̂ < Mn ≤ M̂n ≤ M+

n . In the first case, m̂ is upper and lower bounded by
deterministic bounds, and in the second,

m̂ = arg min
m∈Mn

{γn(b̂m) + p̂en(m)}.

Thus, on Ξn, (35) holds for any m ∈ Mn and any bm ∈ Sm. The decomposition γn(t) −
γn(s) = ‖t− b‖2n − ‖s− b‖2n + 2νn(t− s), where νn(t) = 〈−→σε, t〉n, yields, for any m ∈ Mn

and any bm ∈ Sm,

‖b̂m̂ − b‖2n ≤ ‖bm − b‖2n + 2νn(b̂m̂ − bm) + p̂en(m)− p̂en(m̂).

We introduce, for ‖t‖2f =
∫
t2(u)f(u)du, the unit ball

Bf
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖f = 1}

and the set

(36) Ωn =

{∣∣∣∣‖t‖2n‖t‖2f − 1

∣∣∣∣ ≤ 1

2
, ∀t ∈

⋃
m,m′∈M+

n

(Sm + Sm′) \ {0}
}
.

We start by studying the expectation on Ωn. On this set, the following inequality holds:
‖t‖2f ≤ 2‖t‖2n. We get, on Ξn ∩ Ωn,

‖b̂m̂ − b‖2n ≤‖bm − b‖2n +
1

8
‖b̂m̂ − bm‖2f + (8 sup

t∈Bfm̂,m(0,1)

ν2
n(t) + p̂en(m)− p̂en(m̂))

≤
(

1 +
1

2

)
‖bm − b‖2n +

1

2
‖b̂m̂ − b‖2n + 8

(
sup

t∈Bfm̂,m(0,1)

ν2
n(t)− p(m, m̂)

)
+

+ p̂en(m) + 8p(m, m̂)− p̂en(m̂).(37)

Here we state the following Lemma:

Lemma 6.4. Assume that (A1), (A3) and (A4) hold, and that E(ε10
1 ) < +∞, E(σ10

A (X1)) <
+∞. Then νn(t) = 〈−→σε, t〉n satisfies

E

( sup
t∈Bfm̂,m(0,1)

ν2
n(t)− p(m, m̂)

)
+
1Ξn∩Ωn

 ≤ C

n

where p(m,m′) = sup(p(m), p(m′)) with p(m) = 8mV (m)/n (see (17)).

For κ ≥ 64, 8p(m,m′) ≤ pen(m) + pen(m′) . Therefore, plugging the result of Lemma 6.4
in (37) and taking expectation yield that

1

2
E(‖b̂m̂ − b‖2n1Ξn∩Ωn) ≤3

2
‖bm − b‖2n + pen(m) +

C

n
+ E(p̂en(m)1Ξn∩Ωn) + E[(pen(m̂)− p̂en(m̂))+1Ξn∩Ωn).



16 F. COMTE AND V. GENON-CATALOT

Lemma 6.5. Under the assumptions of Theorem 3.1, there exist constants c1, c2 > 0 such

that for m ∈Mn and m̂ ∈ M̂n,

(38) E(p̂en(m)1Ξn∩Ωn) ≤ c1pen(m) +
c2

n

(39) E[(pen(m̂)− p̂en(m̂))+1Ξn∩Ωn) ≤ c2

n
.

Lemma 6.5 concludes the study of the expectation of the empirical risk on Ξn ∩ Ωn. 2

6.6. Proof of Lemma 6.4. In order to apply the Talagrand Inequality, we make the
following decompositions, where kn, `n are to be chosen later:

εi = ηi + ξi, ηi = εi1|εi|≤kn − E
[
εi1|εi|≤kn

]
,

and set

τ(x) = σA(x)1σ2
A(x)≤`n , and σA(x) = τ(x) + θ(x),

Then we have νn(t) = νn,1(t) + νn,2(t) + νn,3(t), where

νn,1(t) = 〈τη, t〉n, νn,2(t) = 〈θη, t〉n, νn,3(t) = 〈σξ, t〉n.

We write(
sup

t∈Bfm̂,m(0,1)

ν2
n(t)− p(m, m̂)

)
+
≤

(
sup

t∈Bfm̂,m(0,1)

2ν2
n,1(t)− p(m, m̂)

)
+

+4 sup
t∈Bfm̂,m(0,1)

ν2
n,2(t) + 4 sup

t∈Bfm̂,m(0,1)

ν2
n,3(t).(40)

We successively bound the three terms. To bound the first term, we use the Talagrand
inequality applied to the process νn,1.

Let t =
∑m−1

j=0 ajϕj where ~a = Ψ
−1/2
m ~u (aj =

∑m−1
k=0 [Ψ

−1/2
m ]j,kuk) and ‖~u‖2,m = 1. Then,

‖t‖2f = ~a′Ψm~a = 1 and

t =

m−1∑
k=0

uk

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj

 and 〈τη, t〉2n ≤
m−1∑
k=0

〈τη,
m−1∑
j=0

[Ψ−1/2
m ]j,kϕj〉2n.

Therefore,

E

 sup
t∈Sm,‖Ψ1/2

m ~a‖2,m=1

〈τη, t〉2n

 ≤ m−1∑
k=0

E

〈τη,m−1∑
j=0

[Ψ−1/2
m ]j,kϕj〉2n

 .
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Then using that the (ηi, Xi) are independent and the terms are centered, we get

E

〈τη,m−1∑
j=0

[Ψ−1/2
m ]j,kϕj〉2n

 =
1

n
E

τ2(X1)

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj(X1)

2
≤ 1

n
E

σ2(X1)

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj(X1)

2
=

1

n

∑
0≤j,`≤m−1

[Ψ−1/2
m ]j,k[Ψ

−1/2
m ]`,k[Ψm,σ2 ]j,`

=
1

n
Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
≤ mV (m)

n
.

Therefore

E
[

sup
t∈Bf

m′,m(0,1)

ν2
n,1(t)

]
≤ mV (m) ∨ m′V (m′)

n
:= H2.

Next

sup
t∈Bf

m′,m(0,1)

Var(η1τ(X1)t(X1)) ≤ E
[
η2

1

]
sup

t∈Bf
m′,m(0,1)

E
[
τ2(X1)t2(X1)

]
≤ sup

t∈Bf
m′,m(0,1)

E
[
σ2(X1)t2(X1)

]
Now, to deal with this last term, we remark

sup
t∈Bfm(0,1)

∫
t2σ2f = sup

‖~u‖22,m=1

∫ m−1∑
k=0

uk

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj

2

σ2f

= sup
‖~u‖22,m=1

∫ m−1∑
j=0

(
m−1∑
k=0

uk[Ψ
−1/2
m ]j,k

)
ϕj

2

σ2f

= sup
‖~u‖22,m=1

∫ m−1∑
j,`=0

(
m−1∑
k=0

uk[Ψ
−1/2
m ]j,k

)(
m−1∑
k=0

uk[Ψ
−1/2
m ]`,k

)
ϕjϕ`σ

2f

= sup
‖~u‖22,m=1

m−1∑
j,`=0

(
m−1∑
k=0

uk[Ψ
−1/2
m ]j,k

)(
m−1∑
k=0

uk[Ψ
−1/2
m ]`,k

)
[Ψm,σ2 ]j,`

= sup
‖~u‖22,m=1

~u′Ψ−1/2
m Ψm,σ2Ψ−1/2

m ~u = ‖Ψ−1/2
m Ψm,σ2Ψ−1/2

m ‖op ≤ V (m).

As a consequence, we have

sup
t∈Bf

m′,m(0,1)

Var(η1τ(X1)t(X1)) ≤ V (m) ∨ V (m′) := v
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Lastly, setting m∗ := max(m,m′), for t =
∑m∗−1

j=0 ajϕj ∈ Bf
m′,m(0, 1), ~a′~a = ~u′Ψ−1

m∗~u with

~u′~u = 1. Therefore,

sup
t∈Bf

m′,m(0,1)

sup
(u,x)

(
|u|1|u|≤kn |τ(x)||t(x)|

)
≤ kn

√
`n sup

t∈Bf
m′,m(0,1)

sup
x
|t(x)|

≤ cϕkn
√
`n

√
m∗‖Ψ−1

m∗‖op := M1.

Consequently, the Talagrand Inequality implies, for p(m,m′) defined in Lemma 6.4, i.e.
1
2p(m,m

′) = 2(1 + 2ε)H2 with ε = 1/2,

E
(

sup
t∈Bf

m,m′ (0,1)

[νn,1]2(t)− 1

2
p(m,m′)

)
+
≤ C1

n
(T1 + T2) ,

with T1 = V (m∗) e−m
∗/12, T2 = k2

n`n
√
m∗√

n log(n)
e
−C3

n1/2

kn
√
`n

V 1/2(m∗)

‖Ψ−1
m∗‖

1/2
op .

We have V (m∗) ≥ 1, and we choose kn, `n such that k2
n`n = n1/2. As ‖Ψ−1

m∗‖op ≤√
dn/(m log n), we get, provided that log n ≥ 1, T2 ≤

√
m∗ exp(−C5(m∗)1/4).

As ‖Ψ−1/2
m Ψm,σ2Ψ

−1/2
m ‖op ≤ ‖Ψ−1

m ‖op‖Ψm,σ2‖op and

‖Ψm,σ2‖op = sup
‖~x‖2,m=1

~x′Ψm,σ2~x = sup
‖~x‖2,m=1

∫
(
m−1∑
j=0

xjϕj(u))2σ2(u)f(u)du ≤ c2
ϕmE[σ2(X1)]

we get V (m) ≤ cϕ2m‖Ψ−1
m ‖opE[σ2(X1)] + 1. So, from Assumption (A4), we have

∑
m′∈M+

n

V (m∗) e−m
∗/12 ≤ c2

ϕΣ < +∞.

This yields, by summing up all terms over m′ ∈M+
n ,

E
(

sup
t∈Bfm̂,m(0,1)

[νn,1]2(t)− 1

2
p(m, m̂)

)
+
≤

∑
m′

E
(

sup
t∈Bf

m′,m(0,1)

[νn,1]2(t)− 1

2
p(m,m′)

)
+

≤ C

n
.(41)



REGRESSION FUNCTION ESTIMATION IN HETEROSKEDASTIC MODEL 19

Now, we study the second term in (40). Recall that M+
n ≤ n is the dimension of the

largest space of the collection M+
n . Then we have

E
[(

sup
t∈Bfm̂,m(0,1)

ν2
n,2(t)1Ξn

)
+

]
≤ ‖Ψ−1

M+
n
‖op

M+
n −1∑
j=0

E
[
〈ηθ, ϕj〉2n

]

= ‖Ψ−1

M+
n
‖op

M+
n −1∑
j=0

Var
( 1

n

n∑
i=1

ηiθ(Xi)ϕj(Xi)
)

≤
c2
ϕM

+
n ‖Ψ−1

M+
n
‖op

n
E
[
η2

1

]
E
[
θA(X1)2

]
≤ c2

ϕ

M+
n ‖Ψ−1

M+
n
‖op

n
E
[
σ2
A(X1)1σ2

A(X1)>`n

]
≤ C

E
[
|σA(X1)|2+q

]
log(n)`

q/2
n

= C
E
[
σ10
A (X1)

]
n

by taking `n = n1/4 and q = 8.
Let us now study the third term in (40) with kn = n1/8.We have

E
[(

sup
t∈Bfm̂,m(0,1)

ν2
n,3(t)

)
+

]
≤ ‖Ψ−1

M+
n
‖op

M+
n −1∑
j=0

E
[
〈ξ, σAϕj〉2n

]

= ‖Ψ−1

M+
n
‖op

M+
n −1∑
j=0

Var
( 1

n

n∑
i=1

ξiσA(Xi)ϕj(Xi)
)

≤
c2
ϕM

+
n ‖Ψ−1

M+
n
‖op

n
E[σ2(X1)]E

[
ξ2

1

]
≤ c2

ϕE[σ2(X1)]
M+
n ‖Ψ−1

M+
n
‖op

n
E
[
ε2

11|ε1|>kn
]
≤ C

E
[
ε10

1

]
n

.

This bound together with (41) plugged in (40) gives the result of Lemma 6.4. 2

6.7. Proof of Lemma 6.5. Take pen(m) as in (17) and set p̂en(m) = κ′mV̂ (m)/n to
determine κ′.
On Ωm (see (23)), |‖t‖2n/‖t‖2f − 1| ≤ 1/2, which implies 2/3 ≤ ‖t‖2f/‖t‖2n ≤ 2, so that

‖Ψ̂−1/2
m Ψ̂m,σ2Ψ̂−1/2

m ‖op = sup
t∈Sm,‖t‖2n=1

‖tσ‖2n = sup
t∈Sm

‖tσ‖2n
‖t‖2n

= sup
t∈Sm

‖tσ‖2n
‖t‖2f

‖t‖2f
‖t‖2n

≤ 2 sup
t∈Sm

‖tσ‖2n
‖t‖2f

= 2‖Ψ−1/2
m Ψ̂m,σ2Ψ−1/2

m ‖op.

Thus

V̂ (m)1Ωm ≤ (2‖Ψ−1/2
m Ψ̂m,σ2Ψ−1/2

m ‖op + 1)1Ωm

≤ 2V (m)1Ωm + 2‖Ψ−1/2
m (Ψ̂m,σ2 −Ψm,σ2)Ψ−1/2

m ‖op1Ωm
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Now we set

σ2(x) = σ2
m(x) + s2

m(x), where σ2
m(x) := σ2(x)1σ2(x)≤cm .

We decompose accordingly

Ψ̂m,σ2 −Ψm,σ2 = [Ψ̂m,σ2
m
−Ψm,σ2

m
] + [Ψ̂m,s2m

−Ψm,s2m
].

Let

Ωm,σ2
m

:=

{
‖Ψ−1/2

m (Ψ̂m,σ2
m
−Ψm,σ2

m
)Ψ−1/2

m ‖op ≤
1

2

}
.

We can prove (see section 6.8) that, for cm ≥ 1,

(42) P(Ωc
m,σ2

m
) ≤ c

n4
if c2

ϕmc
2
m‖Ψ−1

m ‖op ≤
3

8

n

log(n)
.

Under our constraint (13), the above holds for cm = mα/4 as under (A3), ‖Ψ−1
m ‖op ≥√

c?mα/2.
We write

‖Ψ−1/2
m (Ψ̂m,σ2 −Ψm,σ2)Ψ−1/2

m ‖op ≤ ‖Ψ−1/2
m (Ψ̂m,σ2

m
−Ψm,σ2

m
)Ψ−1/2

m ‖op1Ω
m,σ2

m

+‖Ψ−1/2
m (Ψ̂m,σ2

m
−Ψm,σ2

m
)Ψ−1/2

m ‖op1Ωc
m,σ2

m

+ ‖Ψ−1/2
m (Ψ̂m,s2m

−Ψm,s2m
)Ψ−1/2

m ‖op.

and we study the three terms.
First,

T1 = ‖Ψ−1/2
m (Ψ̂m,σ2 −Ψm,σ2)Ψ−1/2

m ‖op1Ω
m,σ2

m
≤ 1

2
≤ V (m)

2
.

Next,

T2 = E(‖Ψ−1/2
m (Ψ̂m,σ2

m
−Ψm,σ2

m
)Ψ−1/2

m ‖op1Ωc
m,σ2

m

)

≤ E1/2(‖Ψ−1/2
m (Ψ̂m,σ2

m
−Ψm,σ2

m
)Ψ−1/2

m ‖2op)P1/2(Ωc
m,σ2

m
).(43)

So, we must bound E(‖Ψ−1/2
m (Ψ̂m,σ2

m
−Ψm,σ2

m
)Ψ
−1/2
m ‖2op), and the term

T3 = E(‖Ψ−1/2
m (Ψ̂m,s2m

−Ψm,s2m
)Ψ−1/2

m ‖op).

We have

T 2
3 ≤ E

(
‖Ψ−1/2

m (Ψ̂m,s2m
−Ψm,s2m

)Ψ−1/2
m ‖2op

)
≤ ‖Ψ−1

m ‖2opE

(
sup

‖~x‖2,m=1
‖(Ψ̂m,s2m

−Ψm,s2m
)~x‖22,m

)

≤ ‖Ψ−1
m ‖2opE

 sup
‖x‖2,m=1

m−1∑
j=0

(
m−1∑
k=0

[
Ψ̂m,s2m

−Ψm,s2m

]
j,k
xk

)2


≤ ‖Ψ−1
m ‖2opE


m−1∑
j=0

m−1∑
k=0

[
Ψ̂m,s2m

−Ψm,s2m

]2

j,k

 =
‖Ψ−1

m ‖2op

n

m−1∑
j=0

m−1∑
k=0

Var
(
ϕj(X1)ϕk(X1)s2

m(X1)
)

≤
c4
ϕm

2‖Ψ−1
m ‖2op

n
E(σ4(X1)1σ2(X1)≥cm) ≤

c4
ϕm‖Ψ−1

m ‖2op

n

mE(σ4+2q(X1))

cqm
≤ c

m6
,(44)
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for αq/4 = 7 as cqm = mαq/4. Thus 4+2q = 4+56/α and we require E(σ4+56/α(X1)) < +∞.
Using (44) and the Schwarz Inequality yields

T3 = E(‖Ψ−1/2
m (Ψ̂m,s2m

−Ψm,s2m
)Ψ−1/2

m ‖op) ≤ c

m3
.

Similarly,

E
(
‖Ψ−1/2

m (Ψ̂m,σ2
m
−Ψm,σ2

m
)Ψ−1/2

m ‖2op

)
≤

c4
ϕm

2‖Ψ−1
m ‖2op

n
E(σ4(X1)1σ2(X1)≤cm)

≤ cE[σ4(X1)]
n

log(n)
.(45)

This yields, plugging (45) and (42) in (43),

T2 = E(‖Ψ−1/2
m (Ψ̂m,σ2

m
−Ψm,σ2

m
)Ψ−1/2

m ‖op1Ωc
m,σ2

m

) ≤ c/n3/2,

Thus for m ≥ 1, and using that under our assumptions m ∈ M+
n satisfies m ≤

√
n as

under (A3), ‖Ψ−1
m ‖2op ≥ c?m,

m

n
T2 =

m

n
E(‖Ψ−1/2

m (Ψ̂m,σ2
m
−Ψm,σ2

m
)Ψ−1/2

m ‖op1Ωc
m,σ2

m

) ≤ c/n2

and
m

n
T3 =

m

n
E(‖Ψ−1/2

m (Ψ̂m,s2m
−Ψm,s2m

)Ψ−1/2
m ‖op) ≤ c/n.

This implies that

E(p̂en(m)1Ξn∩Ωn) = E(κ′
m

n
V̂ (m)1Ξn∩Ωn) ≤ 2κ′

m

n
V (m) +

c

n

and concludes the proof of (38).
In the same way, on Ωm, for all m,

(pen(m)− p̂en(m))+ =
m

n

(
κV (m)− κ′V̂ (m)

)
+

≤ m

n

(
κ‖Ψ−1/2

m (Ψm,σ2 − Ψ̂m,σ2)Ψ−1/2
m ‖op + κ‖Ψ−1/2

m Ψ̂m,σ2Ψ−1/2
m ‖op + κ− κ′V̂ (m)

)
+

≤ m

n

(
κ‖Ψ−1/2

m (Ψm,σ2 − Ψ̂m,σ2)Ψ−1/2
m ‖op −

κ

2
+ (

3

2
κ− κ′)V̂ (m)

)
+

using that on Ωm,

‖Ψ−1/2
m Ψ̂m,σ2Ψ−1/2

m ‖op +
3

2
≤ 3

2
‖Ψ̂−1/2

m Ψ̂m,σ2Ψ̂−1/2
m ‖op +

3

2
=

3

2
V̂ (m).

Then, using the same decomposition on Ωm,σ2 and its complement as above,

(pen(m)− p̂en(m))+

≤ m

n

(
κ‖Ψ−1/2

m (Ψm,σ2
m
− Ψ̂m,σ2

m
)Ψ−1/2

m ‖op1Ωc
m,σ2

m

+ κ‖Ψ−1/2
m (Ψm,s2m

− Ψ̂m,s2m
)Ψ−1/2

m ‖op

+(
3

2
κ− κ′)V̂ (m)

)
+
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Choose (3
2κ− κ

′) ≤ 0, hence κ′ = 2κ is convenient, to get

(pen(m̂)− p̂en(m̂))+ ≤ m̂

n
κ‖Ψ−1/2

m̂ (Ψm̂,σ2 − Ψ̂m̂,σ2)Ψ
−1/2
m̂ ‖op1Ωc

m̂,σ2
m̂

+κ
m̂

n
‖Ψ−1/2

m̂ (Ψm̂,s2m̂
− Ψ̂m̂,s2m̂

)Ψ
−1/2
m̂ ‖op

Then

E (pen(m̂)− p̂en(m̂))+1Ωn∩Ξn)

≤
∑

m′∈M+
n

E
[
m′

n
κ

(
‖Ψ−1/2

m′ (Ψm′,σ2
m′
− Ψ̂m′,σ2

m′
)Ψ
−1/2
m′ ‖op1Ωc

m′,σ2
m′

+‖Ψ−1/2
m′ (Ψm′,s2

m′
− Ψ̂m′,s2

m′
)Ψ
−1/2
m′ ‖op

)]
≤ c/n

as the cardinality of M+
n is smaller than n and m ≤ n and (1/n)

∑
m′(1/(m

′)2) ≤ c/n. 2

6.8. Proof of Inequality (42). To get the announced result, we apply a Bernstein matrix

inequality (see Theorem 7.2). Thus we write Ψ
−1/2
m Ψ̂m,σ2

m
Ψ
−1/2
m as a sum of a sequence of

independent matrices

Ψ−1/2
m Ψ̂m,σ2

m
Ψ−1/2
m =

1

n

n∑
i=1

Km(Xi),

with

Km(Xi) = Ψ−1/2
m Σm(Xi)Ψ

−1/2
m , Σm(Xi) = (ϕj(Xi)ϕk(Xi)σ

2
m(Xi))0≤j,k≤m−1.

Considering Sm = 1
n

∑n
i=1 Km(Xi) − E [Km(Xi)], we compute L and a bound on ν(Sm)

to apply Theorem 7.2.
• Bound on ‖Km(X1)− E [Km(X1)] ‖op/n.
First we can write that

‖Km(X1)− E [Km(X1)] ‖op ≤ ‖Km(X1)‖op + ‖E [Km(X1)] ‖op,

and we bound the first term, the other one being similar. As Km(X1) is symmetric and
nonnegative a.s., we have a.s.

‖Km(X1)‖op = sup
‖~x‖2,m=1

∑
0≤j,k≤m−1

[Ψ−1/2
m ~x]j [Ψ

−1/2
m ~x]kϕj(X1)ϕk(X1)σ2

m(X1)

≤ ‖Ψ−1
m ‖op sup

‖~y‖2,m≤1

∑
0≤j,k≤m−1

yjykϕj(X1)ϕk(X1)σ2
m(X1)

= ‖Ψ−1
m ‖op sup

‖~x‖2,m≤1

m−1∑
j=0

yjϕj(X1)σ2
m(X1)

2 ≤ c2
ϕmcm‖Ψ−1

m ‖op.

So we get that, a.s.

(46)
1

n
‖Km(X1)− E [Km(X1)] ‖op ≤

2c2
ϕmcm‖Ψ−1

m ‖op

n
:= L.
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• Bound on ν(Sm) = ‖
∑n

i=1 E [(Km(Xi)− E [Km(Xi)])
′ (Km(Xi)− E [Km(Xi)])] ‖op/n

2.
By definition of the operator norm we have

ν(Sm) =
1

n2
sup

‖~x‖2,m=1
~x′

n∑
i=1

E
[
(Km(Xi)− E [Km(Xi)])

′ (Km(Xi)− E [Km(Xi)])
]
~x

=
1

n
sup

‖~x‖2,m=1
~x′ E

[
(Km(X1)− E [Km(X1)])′ (Km(X1)− E [Km(X1)])

]
~x

=
1

n
sup

‖~x‖2,m=1
E ‖(Km(X1)− E [Km(X1)]) ~x‖22,m

It yields that, for ~x′ = (x0, . . . , xm−1),

E1 := E ‖(Km(X1)− E [Km(X1)]) ~x‖22,m =
m−1∑
j=0

Var

[
m−1∑
k=0

[Ψ−1/2
m Σm(X1)]j,k[Ψ

−1/2
m ~x]k

]

≤
m−1∑
j=0

E

(
m−1∑
k=0

m−1∑
`=0

[Ψ−1/2
m ]j,`[Σm(X1)]`,k[Ψ

−1/2
m ~x]k

)2

=
m−1∑
j=0

E

(m−1∑
k=0

m−1∑
`=0

[Ψ−1/2
m ]j,`ϕ`(X1)ϕk(X1)σ2

m(X1)[Ψ−1/2
m ~x]k

)2


=
m−1∑
j=0

E

(σ2
m(X1)

m−1∑
`=0

[Ψ−1/2
m ]j,`ϕ`(X1)

m−1∑
k=0

ϕk(X1)[Ψ−1/2
m ~x]k

)2


E1 ≤
m−1∑
j=0

E
[(
σ2
m(X1)[Ψ−1/2

m

−−−−→
ϕ(X1)]j

−−−−→
ϕ(X1)′Ψ−1/2

m ~x
)2
]

= E
[
σ4
m(X1)‖Ψ−1/2

m

−−−−→
ϕ(X1)‖22,m

(−−−−→
ϕ(X1)′Ψ−1/2

m ~x
)2
]

≤ c2
m sup
x∈A
‖Ψ−1/2

m

−−→
ϕ(x)‖22,mE

[
~x′Ψ−1/2

m

−−−−→
ϕ(X1)

−−−−→
ϕ(X1)′Ψ−1/2

m ~x
]

≤ c2
m‖Ψ−1

m ‖opc
2
ϕm‖~x‖22,m

Then we get that ν(Sm) ≤
c2
ϕmc

2
m‖Ψ−1

m ‖op

n
. Applying Theorem 7.2 yields that for all

u > 0 and cm ≥ 1,

P
[
‖Ψ−1/2

m (Ψ̂m,σ2
m
−Ψm,σ2

m
)Ψ−1/2

m ≥ u
]
≤ 2m exp

(
− n

c2
ϕmc

2
m‖Ψ−1

m ‖op

u2/2

1 + 2u/3)

)
.

Then choosing u = 1/2 and

(32/3)c2
ϕmc

2
m‖Ψ−1

m ‖op ≤ 4n/ log(n)

ensures that (42) holds. 2
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7. Theoretical tools

We recall the Talagrand concentration inequality given in Klein and Rio (2005).

Theorem 7.1. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =

(1/n)
∑n

i=1(f(Xi)− E[f(Xi)]), and assume that there are three positive constants M1, H
and v such that sup

f∈F
‖f‖∞ ≤M1, E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v.

Then for all ε > 0,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2ε)H2

)
+

]
≤ 4

b

(
v

n
e−bε

nH2

v +
49M2

1

bC2(ε)n2
e
−
√

2bC(ε)
√
ε

7
nH
M1

)
with C(ε) = (

√
1 + ε− 1) ∧ 1, and b = 1

6 .

By density arguments, this result can be extended to the case where F is a unit ball of
a linear normed space, after checking that f → νn(f) is continuous and F contains a
countable dense family.

Theorem 7.2 (Bernstein Matrix inequality). Consider a finite sequence {Sk} of indepen-
dent, random matrices with common dimension d1 × d2. Assume that

ESk = 0 and ‖Sk‖op ≤ L for each index k.

Introduce the random matrix Z =
∑

k Sk. Let ν(Z) be the the variance statistic of the sum:
ν(Z) = max{λmax (E[Z′Z]), λmax (E[ZZ′])}. Then, for all t ≥ 0

P [‖Z‖op ≥ t] ≤ (d1 + d2) exp

(
− t2/2

ν(Z) + Lt/3

)
.

A proof can be found in Tropp (2012) or Tropp (2015).
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