Adjacency-constrained hierarchical clustering of a band similarity matrix with application to Genomics - Archive ouverte HAL
Article Dans Une Revue Algorithms for Molecular Biology Année : 2019

Adjacency-constrained hierarchical clustering of a band similarity matrix with application to Genomics

Résumé

Motivation: Genomic data analyses such as Genome-Wide Association Studies (GWAS) or Hi-C studies are often faced with the problem of partitioning chromosomes into successive regions based on a similarity matrix of high-resolution, locus-level measurements. An intuitive way of doing this is to perform a modified Hierarchical Agglomerative Clustering (HAC), where only adjacent clusters (according to the ordering of positions within a chromosome) are allowed to be merged. A major practical drawback of this method is its quadratic time and space complexity in the number of loci, which is typically of the order of 10^4 to 10^5 for each chromosome. Results: By assuming that the similarity between physically distant objects is negligible, we propose an implementation of this adjacency-constrained HAC with quasi-linear complexity. Our illustrations on GWAS and Hi-C datasets demonstrate the relevance of this assumption, and show that this method highlights biologically meaningful signals. Thanks to its small time and memory footprint, the method can be run on a standard laptop in minutes or even seconds. Availability and Implementation: Software and sample data are available as an R package, adjclust, that can be downloaded from the Comprehensive R Archive Network (CRAN).
Fichier principal
Vignette du fichier
ambroise_etal_AMB2019.pdf (703.99 Ko) Télécharger le fichier
RLGH_heap_label+linkage_0.pdf (6.28 Ko) Télécharger le fichier
RLGH_heap_label+linkage_1.pdf (6.39 Ko) Télécharger le fichier
algo-chac.pdf (4.51 Ko) Télécharger le fichier
algo-chac_fusion-labels.pdf (4.5 Ko) Télécharger le fichier
ambroise_etal_AMB2019-suppmat.pdf (783.52 Ko) Télécharger le fichier
article_comptime_dots.png (71.03 Ko) Télécharger le fichier
article_di_full.png (62.2 Ko) Télécharger le fichier
pencil_large_h.pdf (33.56 Ko) Télécharger le fichier
pencil_small_h.pdf (33.55 Ko) Télécharger le fichier
snp_comptime_p.png (121.99 Ko) Télécharger le fichier
snp_firstDiff.png (103.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02006331 , version 1 (04-02-2019)
hal-02006331 , version 2 (24-11-2019)

Identifiants

Citer

Christophe Ambroise, Alia Dehman, Pierre Neuvial, Guillem Rigaill, Nathalie Vialaneix. Adjacency-constrained hierarchical clustering of a band similarity matrix with application to Genomics. Algorithms for Molecular Biology, 2019, 14, pp.22. ⟨10.1186/s13015-019-0157-4⟩. ⟨hal-02006331v2⟩
217 Consultations
397 Téléchargements

Altmetric

Partager

More