
HAL Id: hal-02006331
https://hal.science/hal-02006331v2

Submitted on 24 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adjacency-constrained hierarchical clustering of a band
similarity matrix with application to Genomics

Christophe Ambroise, Alia Dehman, Pierre Neuvial, Guillem Rigaill, Nathalie
Vialaneix

To cite this version:
Christophe Ambroise, Alia Dehman, Pierre Neuvial, Guillem Rigaill, Nathalie Vialaneix. Adjacency-
constrained hierarchical clustering of a band similarity matrix with application to Genomics. Algo-
rithms for Molecular Biology, 2019, 14, pp.22. �10.1186/s13015-019-0157-4�. �hal-02006331v2�

https://hal.science/hal-02006331v2
https://hal.archives-ouvertes.fr

Adjacency-constrained hierarchical clustering of a

band similarity matrix with application to

genomics

Christophe Ambroise1, Alia Dehman2, Pierre Neuvial3,∗,
Guillem Rigaill1,4 and Nathalie Vialaneix5

1 Laboratoire de Mathématiques et Modélisation d’Evry, UMR CNRS 8071, Université
d’Evry Val d’Essonne, 23 boulevard de France, 91037 Evry, France.

christophe.ambroise@univ-evry.fr
2 Hyphen-stat, 195 Route d’Espagne, 31036 Toulouse, France.

alia.dehman@hyphen-stat.com
3 Institut de Mathématiques de Toulouse, UMR5219 CNRS, Université de Toulouse, UPS

IMT, F-31062 Toulouse Cedex 9, France.
pierre.neuvial@math.univ-toulouse.fr

4 Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Gif sur Yvette, France.
guillem.rigaill@inra.fr

5 MIAT, Université de Toulouse, INRA, Castanet-Tolosan, France.
nathalie.vialaneix@inra.fr

∗ corresponding author

Abstract

Background: Genomic data analyses such as Genome-Wide Associ-
ation Studies (GWAS) or Hi-C studies are often faced with the problem
of partitioning chromosomes into successive regions based on a similar-
ity matrix of high-resolution, locus-level measurements. An intuitive way
of doing this is to perform a modified Hierarchical Agglomerative Clus-
tering (HAC), where only adjacent clusters (according to the ordering of
positions within a chromosome) are allowed to be merged. But a major
practical drawback of this method is its quadratic time and space com-
plexity in the number of loci, which is typically of the order of 104 to 105

for each chromosome.
Results: By assuming that the similarity between physically distant ob-
jects is negligible, we are able to propose an implementation of adjacency-
constrained HAC with quasi-linear complexity. This is achieved by pre-
calculating specific sums of similarities, and storing candidate fusions in
a min-heap. Our illustrations on GWAS and Hi-C datasets demonstrate
the relevance of this assumption, and show that this method highlights
biologically meaningful signals. Thanks to its small time and memory
footprint, the method can be run on a standard laptop in minutes or even
seconds.
Availability and Implementation: Software and sample data are avail-

1

able as an R package, adjclust, that can be downloaded from the Compre-
hensive R Archive Network (CRAN).

Keywords

Hierarchical agglomerative clustering; adjacency constraint; segmentation; Ward’s
linkage; similarity; min heap; Genome-Wide Association Studies; Hi-C

1 Background

Genetic information is coded in long strings of DNA organised in chromo-
somes. High-throughput sequencing such as RNAseq, DNAseq, ChipSeq and
Hi-C makes it possible to study biological phenomena along the entire genome
at a very high resolution [Reuter et al., 2015].

In most cases, we expect neighboring positions to be statistically depen-
dent. Using this a priori information is one way of addressing the complexity
of genome-wide analyses. For instance, it is common practice to partition each
chromosome into regions, because such regions hopefully correspond to biologi-
cal relevant or interpretable units (such as genes or binding sites) and because
statistical modelling and inference are simplified at the scale of an individual
region. In simple cases, such regions are given (for example, in RNAseq analysis,
only genic and intergenic regions are usually considered and differential analy-
sis is commonly performed at the gene or transcript level). However, in more
complex cases, regions of interest are unknown and need to be discovered by
mining the data. This is the case in the two leading examples considered in this
paper. In the context of Genome Wide Association Studies (GWAS), region-
scale approaches taking haplotype blocks into account can result in substantial
statistical gains [Gabriel et al., 2002]. Hi-C studies [Dixon et al., 2012] have
demonstrated the existence of topological domains, which are megabase-sized
local chromatin interaction domains correlating with regions of the genome that
constrain the spread of heterochromatin. Hence, the problem of partitioning a
chromosome into biologically relevant regions based on measures of similarity
between pairs of individual loci has been extensively studied for genomic appli-
cations.

Recovering the “best” partition of p loci for each possible number, K, of
classes is equivalent to a segmentation problem (also known as “multiple change-
point problem”). In the simplest scenario where the signals to be segmented are
piecewise-constant, such as in the case of DNA copy numbers in cancer studies,
segmentation can be cast as a least squares minimization problem [Picard et al.,
2005, Hocking et al., 2013]. More generally, kernel-based segmentation methods
have been developed to perform segmentation on data described by a similarity
measure [Harchaoui and Cappé, 2007, Arlot et al., 2016b]. Such segmentation
problems are combinatorial in nature, as the number of possible segmentations
of p loci into K blocks (for a given K = 1 . . . p) is

(
p
K

)
= O(pK). The “best”

segmentation for all K = 1 . . . p can be recovered efficiently in a quadratic time

2

and space complexity using dynamic programming. As discussed in Celisse
et al. [2018], in the case of kernel-based segmentation, this complexity cannot
be improved without making additional assumptions on the kernel (or the cor-
responding similarity). Indeed, for a generic kernel, even computing the loss
(that is, the least square error) of any given segmentation in a fixed number of
segments K has a computational cost of O(p2).

The goal of this paper is to develop heuristics that can be applied to genomic
studies in which the number of loci is so large (typically of the order of p = 104 to
106) that algorithms of quadratic time and space complexity cannot be applied.
This paper stems from a modification of the classical hierarchical agglomerative
clustering (HAC) [Kaufman and Rousseeuw, 2009], where only adjacent clusters
are allowed to be merged. This simple constraint is well-suited to genomic
applications, in which loci can be ordered along chromosomes provided that an
assembled genome is available. Adjacency-constrained HAC can be seen as a
heuristic for segmentation; it provides not only a single partition of the original
loci, but a sequence of nested partitions.

The idea of incorporating such constraints was previously mentioned by
Lebart [1978] to incorporate geographical (two-dimensional) constraints to clus-
ter socio-economic data, and by Michel et al. [2012] to cluster functional Mag-
netic Resonance Imaging (fMRI) data into contiguous (three-dimensional) brain
regions. The totally ordered case that is the focus of this paper has been studied
by Grimm [1987], and an R package implementing this algorithm, rioja [Juggins,
2018], has been developed1. However, the algorithm remains quadratic in both
time and space. Its time complexity cannot be improved because all of the p2

similarities are used in the course of the algorithm. To circumvent this difficulty,
we assume that the similarity between physically distant loci is zero, where two
loci are deemed to be “physically distant” if they are separated by more than
h other loci. The main contribution of this paper is to propose an adjacency-
constrained clustering algorithm with quasi-linear complexity (namely, O(ph) in
space and O(p(h+ log(p))) in time) under this assumption, and to demonstrate
its relevance for genomic studies. This algorithm is obtained by combining (i)
constant-time calculation of Ward’s likage after a pre-calculation step of linear
time and space complexity, and (ii) storage of candidate fusions in a binary
heap.

The rest of the paper is organized as follows. In Section 2 we describe the
algorithm, its time and space complexity and its implementation. The resulting
segmentation method is then applied to GWAS datasets (Section 4) and to Hi-
C datasets (Section 5), in order to illustrate that the above assumption makes
sense in such studies, and that the proposed methods can be used to recover
biologically relevant signals.

1available on CRAN at https://cran.r-project.org/package=rioja.

3

https://cran.r-project.org/package=rioja

2 Method

2.1 Adjacency-constrained HAC with Ward’s linkage

In its unconstrained version, HAC starts with a trivial clustering where each
object is in its own cluster and iteratively merges the two most similar clus-
ters according to a distance function δ called a linkage criterion. We focus
on Ward’s linkage, which was defined for clustering objects (xi)i taking val-
ues in the Euclidean space Rd. Formally, Ward’s linkage between two clus-
ters C and C ′ defines the distance between two clusters as the increase in
the error sum of squares (or equivalently, as the decrease in variance) when
C and C ′ are merged: δ(C,C ′) = ESS(C ∪ C ′) − ESS(C) − ESS(C ′), where
ESS(C) := 1

|C|
∑
i∈C ‖xi − C̄‖2Rd is the Error Sum of Squares of cluster C (also

known as “inertia of C”) and C̄ = 1
n

∑
i∈C xi. It is one of the most widely

used linkages because of its natural interpretation in terms of within/between
cluster variance and because HAC with Ward’s linkage can be seen as a greedy
algorithm for least square minimization, similarly to the k-means algorithm. In
this paper, the p objects to be clustered are assumed to be ordered by their
indices i ∈ {1, . . . p}. We focus on a modification of HAC where only adjacent
clusters are allowed to be merged. This adjacency-constrained HAC is described
in Algorithm 1.

Algorithm 1 Adjacency-constrained HAC

1: C0 = (C0
i)1≤i≤p with C0

i = {xi} . Initalization
2: for t = 1 to p− 1 do
3: ut = arg minu∈{1,...,p−t} δ(C

t−1
u , Ct−1u+1) . Best candidate

4: for u = 1 to p− t− 1 do . Update of Ct−1 into Ct
5: if u < ut then Ctu = Ct−1u

6: else if u = ut then Ctu = Ct−1u ∪ Ct−1u+1

7: else if u > ut then Ctu = Ct−1u+1

8: end if
9: end for

10: end for

An implementation in Fortran of this algorithm was provided by Grimm
[1987]. This implementation has been integrated in the R package rioja [Jug-
gins, 2018].

2.2 Extension to general similarities

HAC and adjacency-constrained HAC are frequently used when the objects to
be clustered do not belong to Rd but are described by pairwise dissimilarities
that are not necessarily Eulidean distance matrices. This case has been formally
studied in Székely and Rizzo [2005], Strauss and von Maltitz [2017], Chavent
et al. [2018] and generally involves extending the linkage formula by making
an analogy between the dissimilarity and the distance in Rd (or the squared

4

distance in some cases). These authors have shown that the simplified update of
the linkage at each step of the algorithm, known as the Lance-Williams formula,
is still valid in this case and that the objective criterion can be interpreted as the
minimization of a so-called “pseudo inertia”. A similar approach can be used
to extend HAC to data described by an arbitrary similarity between objects,
S = (sij)i,j=1,...,p, using a kernel framework as in [Qin et al., 2003, Ah-Pine
and Wang, 2016]. More precisely, when S is positive definite, the theory of
Reproducing Kernel Hilbert Spaces [Aronszajn, 1950] implies that the data can
be embedded in an implicit Hilbert space. This allows to formulate Ward’s
linkage between any two clusters in terms of the similarity using the so-called
“kernel trick”: ∀C, C ′ ⊂ {1, . . . , p},

δ(C,C ′) =
S(C)

|C|
+
S(C ′)

|C ′|
− S(C ∪ C ′)
|C ∪ C ′|

, (1)

where S(C) =
∑

(i,j)∈C2 sij only depends on S and not on the embedding.
This expression shows that Ward’s Linkage also has a natural interpretation
as the decrease in average intra-cluster similarity after merging two clusters.
Equation (1) is proved in Section S1.1 of Supplementary material.

Extending this approach to the case of a general (that is, possibly non-
positive definite) similarity matrix has been studied in Miyamoto et al. [2015].
Noting that (i) for a large enough λ, the matrix Sλ = S+λIp is positive definite
and that (ii) δSλ(C,C ′) = δ(C,C ′) +λ, Miyamoto et al. [2015, Theorem 1] con-
cluded that applying Ward’s HAC to S and Sλ yields the exact same hierarchy,
only shifting the linkage values by +λ. This result, which a fortiori holds for
the adjacency-constrained Ward’s HAC, justifies the use of Equation (1) in the
case of a general similarity matrix.

2.3 Band similarity assumption

In the case described in Section 2.1 where the p objects to be clustered belong
to Rd, with d < p, the computation of Ward’s linkage between two clusters can
be done in O(d) by exploiting its explicit alternative formulation as the distance
between centers of gravity. In such cases, it is possible to obtain unconstrained
HAC in O(p2 log2 p) in time [Eppstein, 2000], and lower complexities could pos-
sibly be achieved for adjacency-constrained HAC. However, we focus in this
paper in the situation described in Section 2.2, where the input objects are rep-
resented by pairwise similarities. In such cases there is generally no explicit or
finite-dimensional representation of the centers of gravity, and the time com-
plexity of adjacency-constrained HAC (e.g. in rioja) is intrinsically quadratic
in p because all of the p2 similarities are used to compute all of the required
linkage values (Algorithm 1, line 3).

Note that the implementation provided in rioja is also quadratic in space, as
it takes as an input a p× p (dense) dissimilarity matrix. However, Algorithm 1
can be made sub-quadratic in space in situations where the similarity matrix is
sparse (see Ah-Pine and Wang [2016] for similar considerations in the uncon-

5

strained case) or when the similarities can be computed on the fly, that is, at
the time they are required by the algorithm, as in Dehman et al. [2015].

In applications where adjacency-constrained clustering is relevant, such as
Hi-C and GWAS data analysis, this quadratic time complexity is a major prac-
tical bottleneck because p is typically of the order of 104 to 105 for each chromo-
some. Fortunately, in such applications it also makes sense to assume that the
similarity between physically distant objects is small. Specifically, we assume
that S is a band matrix of bandwidth h + 1, where h ∈ {1 . . . p}: sij = 0 for
|i− j| ≥ h. This assumption is not restrictive, as it is always fulfilled for h = p.
However, we will be mostly interested in the case where h � p. In the next
section, we introduce an algorithm with improved time and space complexity
under this band similarity assumption.

3 Algorithm

3.1 Ingredients

Our proposed algorithm relies on (i) constant-time calculation of each of the
Ward’s linkages involved at line 3 of Algorithm 1 using Equation (1), and (ii)
storage of the candidate fusions in a min-heap. These elements are described in
the next two subsections.

3.1.1 Ward’s linkage as a function of pre-calculated sums

The key point of this subsection is to show that the sums of similarities involved
in Equation (1) may be expressed as a function of certain pre-calculated sums.
We start by noting that the sum of all similarities in any cluster C = {i, . . . , j−1}
of size k = j − i can easily be obtained from sums of elements in the first
min(h, k) subdiagonals of S. To demonstrate that this is the case we define, for
1 ≤ r, l ≤ p, P (r, l) as the sum of all elements of S in the first l subdiagonals of
the upper-left r × r block of S. Formally,

P (r, l) =
∑

1≤i,j≤r,|i−j|<l

sij (2)

and symmetrically, P̄ (r, l) = P (p + 1 − r, l). This notation is illustrated in
Figure 1, with r ∈ {i, j}. In the left panel, l = k ≤ h, while in the right panel,
l = h ≤ k. In both panels, P (j,min(h, k)) is the sum of elements in the yellow
and green regions, while P̄ (i,min(h, k)) is the sum of elements in the green and
blue regions. Because P and P̄ are sums of elements in pencil-shaped areas, we
call P (r, l) a forward pencil and P̄ (r, l) a backward pencil.

Figure 1 illustrates that the sum SCC of all similarities in cluster C can be
computed from forward and backward pencils using the identity:

P (j, hk) + P̄ (i, hk) = S(C) + P (p, hk) , (3)

6

P (j, k)

P̄ (i, k)

k

h

S(C)

i

i

j

j

P (j, h)

P̄ (i, h)

k

h

S(C)

i

i

j

j

Figure 1: Example of forward pencils (in yellow and green) and backward pencils
(in green and blue), and illustration of Equation (3) for cluster C = {i, . . . , j −
1}. Left: cluster smaller than bandwidth (k ≤ h); right: cluster larger than
bandwidth k ≥ h.

where hk := min(h, k) and P (p, hk) is the “full” pencil of bandwidth hk (which
also corresponds to P̄ (1, hk)). The above formula makes it possible to compute
δ(C,C ′) in constant time from the pencil sums using Equation (1). By con-
struction, all the bandwidths of the pencils involved are less than h. Therefore,
only pencils P (r, l) and P̄ (r, l) with 1 ≤ r ≤ p and 1 ≤ l ≤ h have to be
pre-computed, so that the total number of pencils to compute and store is less
than 2ph. These computations can be performed recursively in a O(ph) time
complexity. Further details about the time and space complexity of this pencil
trick are given in Section S1.2 of the Supplementary Material.

3.1.2 Storing candidate fusions in a min-heap

Iteration t of Algorithm 1 consists in finding the minimum of p − t elements,
corresponding to the candidate fusions between the p − t + 1 clusters in Ct−1,
and merging the corresponding clusters. Storing the candidate fusions in an un-
ordered array and calculating the minimum at each step would mean a quadratic
time complexity. One intuitive strategy would be to make use of the fact that
all but 2 to 3 candidate fusions at step t are still candidate fusions at step t− 1,
as illustrated by Figure 2 where candidate fusions are represented by horizontal
bars above the clusters. However, maintaining a totally-ordered list of candi-
date fusions is not efficient because the cost of deleting and inserting an element
in an ordered list is linear in p, again leading to a quadratic time complexity.
Instead, we propose storing the candidate fusions in a partially-ordered data
structure called a min heap [Williams, 1964]. This type of structure achieves
an appropriate tradeoff between the cost of maintaining the structure and the
cost of finding the minimum element at each iteration, as illustrated in Table 1

7

C1
t−1 Cut

t−1 Cut+1
t−1 Cp−t+1

t−1

Figure 2: The tth merging step in adjacency-constrained HAC in Algorithm 1.
The clusters are represented by rectangular cells. Candidate fusions are rep-
resented by horizontal bars: above the corresponding pair of clusters at step t
and below it at step t+ 1, assuming that the best fusion is the one between the
clusters of indices ut and ut + 1. Gray bars indicate candidate fusions that are
present at both steps.

below.

Find min Insert Delete min Total
Unordered array p 1 p p

Min heap 1 log(p) log(p) log(p)
Ordered array 1 p p p

Table 1: Time complexities (×O(1)) of the three main elementary operations
required by one step of adjacency-constrained clustering (in columns), for three
implementation options (in rows), for a problem of size p.

A min heap is a binary tree such that the value of each node is smaller than
the value of its two children. The advantage of this structure is that all the
operations required in Algorithm 1 to create and maintain the list of candidate
fusions can be done very efficiently. We provide a detailed description of the
method, which is implemented in the adjclust package. We also give illustrations
of the first steps of this algorithm when applied to the RLGH data set provided in
the package rioja, that are relative abundances of 41 taxa in p = 20 stratigraphic
samples. A detailed description of this data set is provided in the help of the
RLGH data set.

3.2 Proposed algorithm

3.2.1 Description and illustration

Our proposed algorithm is summarized by Algorithm 2. It is best expressed
in terms of candidate fusions, contrary to Algorithm 1 which was naturally
described in terms of clusters.

The initialization step (lines 1 to 3) consists in building the heap of p − 1
candidate fusions between the p adjacent items. At the end of this step, the
root of the heap contains the best such fusion. This is illustrated in Figure 3
for the RLGH data set. The best candidate fusion, which is by definition the
root of the tree, consists in merging {4} and {5}. It is highlighted in violet and
the two “neighbor fusions”, i.e., the fusions that involve either {4} or {5}, are

8

highlighted in pink. The initialization step has a O(p log(p)) time complexity
because the complexity of inserting each of the p − 1 elements in the heap is
upper bounded by the maximal depth of the heap, that is, log2(p).

4|5
.094

5|6
.095

7|8
.095

8|9
.105

11|12
.113

12|13
.111

15|16
.110

2|3
.106

19|20
.118

10|11
.145

1|2
.120

6|7
.125

13|14
.116

14|15
.131

3|4
.115

16|17
.118

17|18
.157

18|19
.153

9|10
.119

Figure 3: Min heap after the initialization step of the RLGH data set. Each
node corresponds to a candidate fusion, and is represented by a label of the form
i|i + 1 giving the indices of the items to be merged, and (ii) the value of the
corresponding linkage δ({i} , {j}). The nodes corresponding to the best fusion
and the two neighbor fusions are highlighted.

As stated in the previous section, the merging step consists in finding the
best candidate fusion (line 5), removing it from the heap (line 6) and inserting
(up to) two possible fusions (lines 11-12). The other lines of the algorithm
explain how the information regarding the adjacent fusions and clusters are
retrieved and updated. The notation is illustrated in Figure 4, elaborating on
the example of Figure 2.

9

Algorithm 2 adjclust: Adjacency-constrained Ward’s HAC of a band similarity

1: for i = 1 to p− 1 do . Initialization
2: Heap.Insert(id = i, left = {i}, right = {i+ 1}, prev=i−1, next=i+1)
3: end for
4: for i = p to 2p− 1 by 2 do . Merging
5: H? ← Heap.GetRoot() . Find best fusion
6: Heap.DeleteRoot() . Delete min element
7: P ? ← Prev(H?);N? ← Next(H?) . Preceding/next fusion
8: P ← Prev(P ?);N ← Next(N?) . Preceding/next fusion
9: Cl ← Left(P ?);Cl? ← Right(P ?) . Corresponding clusters

10: Cr? ← Left(N?);Cr ← Right(N?) . Corresponding clusters
11: Heap.Insert(id=i, left=Cl, right=Cl? ∪ Cr? , prev=P , next=H?) .

Add new fusion
12: Heap.Insert(id=i + 1, left=Cl? ∪ Cr? , right=Cr, prev=H?, next=N)

. Add new fusion
13: Tag(P ?);Tag(N?) . Tag inactive fusions
14: Next(P)← i;Next(N)← i+ 1 . Update neighbors
15: end for

Cl Cl* Cr* Cr

P
P*

H*
N*

N

P
i

i + 1
N

Figure 4: Illustration of the result of a merging step in Algorithm 2.

10

The state of the heap after the first fusion is illustrated by Figure 5, where the
two new candidate fusions are highlighted in yellow. The two fusions highlighted
in grey are the neighbors of the first fusion.

5|6
.095

4:5|6
.101

7|8
.095

2|3
.106

8|9
.105

12|13
.111

15|16
.110

16|17
.118

19|20
.118

11|12
.113

1|2
.120

6|7
.125

13|14
.116

14|15
.131

3|4
.115

9|10
.119

17|18
.157

18|19
.153

3|4:5
.119

10|11
.145

Figure 5: Min heap after the first merging step for the RLGH data set. The
nodes corresponding to the fusion that have changed since initialization (Fig-
ure 3) are highlighted.

In Algorithm 2, we have omitted several points for simplicity and conciseness
of exposition. For a more complete description, the following remarks can be
made:

1. The calculation of the linkage is not mentioned explicitly in the calls to
Heap.Insert. As explained in Section 3.1.1, the linkage between any
two clusters can be calculated in constant time from pre-calculated pencil
sums.

11

2. Algorithm 2 should take appropriate care of cases when the best fusion
involves the first or last cluster. In particular, only one new fusion is
defined and inserted in such cases. This is taken care of in the adjclust
package, but not in Algorithm 2 for simplicity of exposition.

3. At each merging step the algorithm also tags as inactive the fusions involv-
ing the merged clusters (13). Indeed, once a cluster is fused with its left
neighbor it can no longer be fused with its right neighbor and vice-versa.
These fusions are highlighted in pink in Figure 3 and in gray (once tagged)
in Figure 5. In order to avoid invalid fusions, each candidate fusion has
an active/inactive label (represented by the gray highlight in Figure 5),
and when retrieving the next best candidate fusion (line 5), the min heap
is first cleaned by deleting its root as long as it corresponds to an inactive
fusion. In the course of the whole algorithm, this additional cleaning step
will at worst delete 2p roots for a total complexity of O(p log(p)).

4. The insertion instructions in Algorithm 2 indicate that the heap not only
contains the value of the candidate fusions, but also the left and right
clusters of each fusion, and the preceding and next candidate fusions in
the order of the original objects to be clustered. In practice this side
information is not actually stored in the heap, but in a dedicated array,
together with the values of the corresponding linkage and the validity
statuses of each candidate fusion. The heap only stores the index of each
fusion in that array. The state of this array before and after the first fusion
for the RLGH data set are given in Tables 2 and 3.

left right prev next linkage valid

1 2 NA 2 0.121 1
2 3 1 3 0.106 1
3 4 2 4 0.115 1
4 5 3 5 0.095 1
5 6 4 6 0.095 1
...

...
...

18 19 17 19 0.153 1
19 20 18 NA 0.118 1

Table 2: State of the array after initialization of the clustering for the RLGH
data set, as in Figure 3.

3.2.2 Complexity of the proposed algorithm

By pre-calculating the ph initial pencils recursively using cumulative sums, the
time complexity of the pre-computation step is ph and the time complexity of

12

label left right prev next. linkage valid

1—2 1 2 NA 2 0.121 1
2—3 2 3 1 20 0.106 1
3—4 3 4 2 4 0.115 0
4—5 4 5 3 5 0.095 0
5—6 5 6 4 6 0.095 0
6—7 6 7 21 7 0.125 1
7—8 7 8 6 8 0.096 1
...

...
...

18—19 18 19 17 19 0.153 1
19—20 19 20 18 NA 0.118 1
3—4:5 3 4:5 2 21 0.120 1
4:5—6 4:5 6 20 6 0.101 1

Table 3: State of the array after the first merge in the clustering for the RLGH
data set, as in Figure 5.

the computation of the linkage of the merged cluster with its two neighbors
is O(1) (see Section S1.2 of Supplementary material for further details). Its
total time complexity is thus O(p(h + log(p)), where O(ph) comes from the
pre-computation of pencils, and O(p log(p)) comes from the p iterations of the
algorithm (to merge clusters from p clusters up to 1 cluster), each of which has
a complexity of O(log(p)). The space complexity of this algorithm is O(ph)
because the size of the heap is O(p) and the space complexity of the pencil
pre-computations is O(ph). Therefore, the method achieves a quasi-linear (lin-
earithmic) time complexity and linear space complexity when h � p, which in
our experience is efficient enough for analyzing large genomic datasets.

3.2.3 Implementation

Our method is available in the R package adjclust, using an underlying imple-
mentation in C and available on CRAN2. Additional features have been imple-
mented to make the package easier to use and results easier to interpret. These
include:

• plots to display the similarity or dissimilarity together with the dendro-
gram and a clustering corresponding to a given level of the hierarchy as
illustrated in Supplementary Figure S2;

• wrappers to use the method with SNP data or Hi-C data that take data
from standard bed files or outputs of the packages snpStats and HiTC
respectively;

2https://cran.r-project.org/package=adjclust

13

https://cran.r-project.org/package=adjclust

• a function to guide the user towards a relevant cut of the dendrogram
(and thus a relevant clustering). In practice the underlying number of
clusters is rarely known, and it is important to choose one based on the
data. Two methods are proposed in adjclust: the first is based on a broken
stick model [Bennett, 1996] for the dispersion. Starting from the root of
the dendrogram, the idea is to iteratively check whether the decrease in
within-cluster variance corresponding to the next split can or cannot be
explained by a broken stick model and to stop if it can. To the best of our
knowledge this broken stick strategy is ad hoc in the sense that it does
not have a statistical justification in terms of model selection, estimation
of the signal, or consistency. The second method is based on the slope
heuristic that is statistically justified in the case of segmentation problems
[Arlot et al., 2016b, Garreau and Arlot, 2018], for which HAC provides
an approximate solution. This later approach is implemented using the
capushe package [Arlot et al., 2016a], with a penalty shape of

(
p−1
K−1

)
.

Clustering with spatial constraints has many different applications in ge-
nomics. The next two sections illustrate the relevance of our adjacency contraint
clustering approach in dealing with SNP and Hi-C data. In both cases samples
are described by up to a few million variables. All simulations and figures were
performed using the R package adjclust, version 0.5.7.

4 Linkage disequilibrium block inference in GWAS

Genome-Wide Association Studies (GWAS) seek to identify causal genomic vari-
ants associated with rare human diseases. The classical statistical approach for
detecting these variants is based on univariate hypothesis testing, with healthy
individuals being tested against affected individuals at each locus. Given that an
individual’s genotype is characterized by millions of SNPs this approach yields
a large multiple testing problem. Due to recombination phenomena, the hy-
potheses corresponding to SNPs that are close to each other along the genome
are statistically dependent. A natural way to account for this dependence in
the process is to reduce the number of hypotheses to be tested by grouping and
aggregating SNPs [Dehman et al., 2015, Guinot et al., 2018] based on their pair-
wise Linkage Disequilibrium (LD). In particular, a widely used measure of LD
in the context of GWAS is the r2 coefficient, which can be estimated directly
from genotypes measured by genotyping array or sequencing data using stan-
dard methods [Clayton, 2015]. The similarity S = (r2ij)i,j induced by LD can be
shown to be a kernel (see Section S1.3 of Supplementary material). Identifying
blocks of LD may also be useful to define tag SNPs for subsequent studies, or
to characterize the recombination phenomena.

Numerical experiments were performed on a SNP dataset coming from a
GWA study on HIV [Dalmasso et al., 2008] based on 317k Illumina genotyping
microarrays. For the evaluation we used five data sets corresponding to five
chromosomes that span the typical number of SNPs per chromosome observed
on this array (p = 23, 304 for chromosome 1, p = 20, 811 for chromosome 6,

14

p = 14, 644 for chromosome 11, p = 8, 965 for chromosome 16 and p = 5, 436
for chromosome 21).

For each dataset, we computed the LD using the function ld of snpStats,
either for all SNP pairs (h = p) or with a reduced number of SNP pairs, corre-
sponding to a bandwidth h ∈ {100, 200, 500, 1000, 2000, 5000, 10000, 20000}.
The packages rioja [Juggins, 2018] (which requires the full matrix to be given as
a dist object3) and adjclust with sparse matrices of the class dgCMatrix (the
default output class of ld) were then used to obtain hierarchical clusterings. All
simulations were performed on a 64 bit Debian 4.9 server, with 512G of RAM,
3GHz CPU (192 processing units) and concurrent access. The available RAM
was enough to perform the clustering on the full dataset (h = p) with rioja
although we had previously noticed that rioja implementation could not handle
more than 8000 SNPs on a standard laptop because of memory issues.

4.1 Quality of the band approximation

First, we evaluated the relevance of the band approximation by comparing the
dendrogram obtained with h < p to the reference dendrogram obtained with
the full bandwidth (h = p). To perform this comparison we simply recorded
the index t of the last clustering step (among p− 1) for which all the preceding
fusions in the two dendrograms are identical. The quantity t/(p − 1) can then
be interpreted as a measure of similarity between dendrograms, ranging from 0
(the first fusions are different) to 1 (the dendrograms are identical). Figure 6
displays the evolution of t/(p− 1) for different values of h for the five chromo-
somes considered here. For example, for all five chromosomes, at h = 1000,
the dendrograms differ from the reference dendrogram only in the last 0.5%
of the clustering step. For h ≥ 2000 the dendrograms are exactly identical to
the reference dendrogram. We also considered other criteria for evaluating the
quality of the band approximation, including Baker’s Gamma correlation coef-
ficient [Baker, 1974], which corresponds to the Spearman correlation between
the ranks of fusion between all pairs of objects. The results obtained with these
indices are not shown here because they were consistent with those reported in
Figure 6.

One important conclusion that may be drawn from these results is that the
influence of the bandwidth parameter is the same across chromosomes, that is,
across values of p (that range from 5000 to 23000 in this experiment). Therefore,
it makes sense to assume that h does not depend on p and that the time and
space complexity of our proposed algorithm, which depends on h, is indeed
quasi-linear in p.

3The time needed to compute this matrix was 50-1000 times larger than the computation of
the LD matrix itself. However, we did not include this in the total computation time required
by rioja because we have not tried to optimize it from a computational point of view.

15

Figure 6: Quality of the band approximation as a function of the bandwidth h
for five different chromosomes.

4.2 Scalability and computation times

Figure 7 displays the computation time for the LD matrix (dotted lines) and for
the CHAC with respect to the size of the chromosome (x axis), both for rioja
(dashed line) and adjclust (solid lines). As expected, the computation time
for rioja did not depend on the bandwidth h, so we only represented h = p.
For adjclust, the results for varying bandwidths are represented by different
colors. Only the bandwidths 200, 1000, and 5000 are representend in Figure 7
for clarity.

Several comments can be made from Figure 7. First, the computation times
of rioja are much larger than those of adjclust, even when h = p where both
methods implement the exact same algorithm. For the largest chromosome
considered here (chromosome 1, p = 23304), the running time of rioja is 18900
seconds (more than five hours), compared to 345 seconds (less than 6 minutes).
As expected, the complexity of adjclust with h = p is quadratic in p, while it
is essentially linear in p for fixed values of h < p. For large values of p the
gain of the band approximation is substantial: for p = 23304 (chromosome 1),
the running time of adjclust for h = 1000 (which is a relevant value in this
application according to the results of the preceding section) is of the order of
20 seconds.

We also note that regardless of the value of h, the total time needed for the
clustering is of the order of (and generally lower than) the time needed for the

16

Figure 7: Computation times versus p: LD matrices, for CHAC rioja and adj-
clust with varying values for the band h.

computation of the LD.

5 Hi-C analysis

Hi-C protocol identifies genomic loci that are located nearby in vivo. These spa-
tial co-locations include intra-chromosomal and inter-chromosomal interactions.
After bioinformatics processing (alignment, filtering, quality control...), the data
are provided as a sparse square matrix with entries that give the number of reads
(contacts) between any given pair of genomic locus bins at genome scale. Typ-
ical sizes of bins are ∼40kb, which results in more than 75,000 bins for the
human genome. Constrained clustering or segmentation of intra-chromosomal
maps is a tool frequently used to search for e.g., functional domains (called
TADs, Topologically Associating Domains). A number of methods have been
proposed for TAD calling (see Forcato et al. [2017] for a review and compar-
ison), among which the ones proposed by Fraser et al. [2015], Haddad et al.
[2017] that take advantage of a hierarchical clustering, even using a constrained
version for the second reference. In the first article, the authors proceed in
two steps with a segmentation of the data into TADs using a Hidden Markov
Model on the directionality index of Dixon, followed by a greedy clustering on
these TADs, using the mean interaction as a similarity measure between TADs.
Proceeding in two steps reduces the time required for the clustering, which is

17

O(p2) otherwise. However, from a statistical and modeling perspective these
two steps would appear redundant. Also, pipelining different procedures (each
of them with their sets of parameters) makes it very difficult to control errors.
Haddad et al. [2017] directly use adjacency-constrained HAC, with a specific
linkage that is not equivalent to Ward’s. They do not optimize the computa-
tional time of the whole hierarchy, instead stopping the HAC when a measure
of homogeneity of the cluster created by the last merge falls below a parameter.
Both articles thus highlight the relevance of HAC for exploratory analysis of
Hi-C data. Our proposed approach provides, in addition, a faster way to obtain
an interpretable solution, using the interaction counts as a similarity and a h
similar to the bandwidth of the Dixon index.

5.1 Data and method

Data used to illustrate the usefulness of constrained hierarchical clustering
for Hi-C data came from Dixon et al. [2012], Shen et al. [2012]. Hi-C con-
tact maps from experiments in mouse embryonic stem cells (mESC), human
ESC (hESC), mouse cortex (mCortex) and human IMR90 Fibroblast (hIMR90)
were downloaded from the authors’ website at http://chromosome.sdsc.edu/
mouse/hi-c/download.html (raw sequence data are published on the GEO
website, accession number GSE35156.

Even if these data do not perfectly fulfill the sparse band assumption, their
sparsity is very high, especially outside a band centered on the diagonal. Taking
as an example the largest and smallest chromosomes of the hESC data (chromo-
somes 1 and 22 respectively), the proportion of bin pairs with a positive count
(present bin pairs) correspond to 10.7% and 25.8% respectively. This proportion
is even smaller when focusing on bins pairs with a count larger than one (3.2%
and 10.5% respectively). In addition, these bin pairs are mostly concentrated
close to the diagonal: the proportion of present bin pairs that are located within
a 10% diagonal band correspond to 60.1% and 45.6% of the present bin pairs,
respectively. Finally, respectively 92.5% and 87.8% of the remaining present bin
pairs have a count equal to only 1.

All chromosomes were processed similarly:

• counts were log-transformed to reduce the distribution skewness;

• constrained hierarchical clustering was computed on log-transformed data
using, for the similarity, either the whole matrix (h = p) or the sparse
approach with a sparse band size equal to h = {0.5p, 0.1p};

• model selection was finally performed using both the broken stick heuristic
and the slope heuristic.

All computations were performed using the Genotoul cluster.

18

http://chromosome.sdsc.edu/mouse/hi-c/download.html
http://chromosome.sdsc.edu/mouse/hi-c/download.html

5.2 Influence of the bandwidth parameter

The effect of h (sparse band parameter) on computational time, dendrogram or-
ganization and clustering were assessed. Figure 8 gives the computational times
versus the chromosome size for the three values of h together with the com-
putational time obtained by the standard version of constrained hierarchical
clustering as implemented in the R package rioja. As expected, the compu-

Figure 8: Impact of sparsity on the computational time. Dots that correspond
to the same datasets but different chromosomes are linked by a path.

tational time is substantially reduced by the sparse version (even though not
linearly with respect to h because of the preprocessing step that extracts the
band around the diagonal), making the method suitable for dealing efficiently
with a large number of chromosomes and/or a large number of Hi-C experi-
ments. rioja, that cannot cope efficiently with the sparse band assumption,
requires considerably more computational time (10 times the time needed by
adjclust). In addition, the memory required by the two approaches is very dif-
ferent: adjclust supports sparse matrix representation (as implemented in the R
package Matrix), which fits the way Hi-C matrices are typically stored (usually
these matrices are given as rows with bin number pairs and associated count).
For instance, the sparse version (dsCMatrix class) of the largest chromosome
(chromosome 1) in the hESC data is 23 Mb, as opposed to 231 Mb for the full
version. The sparse version of the smallest chromosome (chromosome 22) is 1.1
Mb, versus 5.2 Mb for the full version. The sparse version of the h = 0.1p band
for these two chromosomes is, respectively, 13.2M and 0.4Mb respectively.

However, this gain in time and space did not impact the results of the

19

method: the indexes of the first difference were computed between the den-
drograms obtained by the full version (h = p) and by the two sparse versions
(h ∈ {0.5p, 0.1p}) for every chromosome. For most of the clusterings there was
no difference in merge for h = 0.5p (with the similarity computed as in Figure 6
always larger than 0.9992, and equal to 1 in more than 3 clusterings out of 4).
For h = 0.1p, the similarity ranged from 0.9811 to 0.9983. Baker’s Gamma
index and Rand indices [Hubert and Arabie, 1985] for selected clusterings (both
with broken stick and slope heuristic) confirmed this conclusion (results not
shown).

5.3 Results

Supplementary Figure S1 provides the average cluster size for each chromosome
versus the chromosome length. It shows that the average cluster size is fairly
constant among the chromosomes and does not depend on the chromosome
length. Both model selection methods found typical cluster sizes of 1-2 Mb,
which is in line with what is reported in Forcato et al. [2017] for some TAD
callers.

Supplementary Figure S2 shows that clusters for a given chromosome (here
chromosome 11 for hIMR90 and chromosome 12 for mCortex) can have different
sizes and also different interpretations: some clusters exhibit a dense interac-
tion counts (deep yellow) and are thus good TAD candidates whereas a cluster
approximately located between bin 281 and bin 561 in chr12 - mCortex map
has almost no interaction and can be viewed as possibly separating two dense
interaction regions.

The directionality Index (DI, Dixon et al. [2012]) quantifies a directional
(upstream vs downstream) bias in interaction frequencies, based on a χ2 statis-
tic. DI is the original method used for TAD calling in Hi-C. Its sign is expected
to change and DI values are expected to show a sharp increase at TADs bound-
aries. Figure 9 displays the average DI, with respect to the relative bin position
within the cluster and the absolute bin position outside the cluster. The clusters
found by constrained HAC show a relation with DI that is similar to what is
expected for standard TADs, with slightly varying intensities.

Finally, boundaries of TADs are known to be enriched for the insulator bind-
ing protein CTCF Dixon et al. [2012]. CTCF ChIP-seq peaks were retrieved
from ENCODE [ENCODE Project Consortium, 2012] and the distribution of
the number of the 20% most intense peaks was computed at ±400 Kb of cluster
boundaries, as obtained with the broken stick heuristic (Supplementary Fig-
ure S3). The distribution also exhibited an enrichment at cluster boundaries,
which indicates that the clustering is relevant with respect to the functional
structure of the chromatin.

20

Figure 9: Evolution of the Directionality Index (DI) around clusters.

6 Conclusions

We have proposed an efficient approach to perform constrained hierarchical
clustering based on kernel (or similarity) datasets with several illustrations of
its usefulness for genomic applications. The method is implemented in a package
that is shown to be fast and that currently includes wrappers for genotyping
and Hi-C datasets. The package also provides two possible model selection
procedures to choose a relevant clustering in the hierarchy. The output of the
method is a dendrogram, which can be represented graphically, and provides a
natural hierarchical model for the organization of the objects.

The only tuning parameter in our algorithm is the bandwidth h. The nu-
merical experiments reported in this paper suggest that at least for GWAS and
Hi-C studies, there exists a range of values for h such that h� p (which implies
very fast clustering) and the result of the HAC is identical or extremely close to
the clustering obtained for h = p. While the range of relevant values of h will
depend on the particular application, an interesting extension of the present
work would be to propose a data-driven choice of h by running the algorithm
on increasing (yet small) values for h on a single chromosome, and deciding to
stop when the dendrogram is stable enough. In addition, by construction, all
groups smaller than h are identical in both clusterings (with and without the
h-band approximation).

While HAC is a tool for exploratory data analysis, an important prospect
of the present work will be to make use of the low time and memory footprint
of the algorithm in order to perform inference on the estimated hierarchy using
stability/resampling-based methods. Such methods could be used to propose
alternative model selection procedures, or to compare hierarchies corresponding

21

to different biological conditions, which has been shown to be relevant to Hi-C
studies [Fraser et al., 2015].

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CA and PN conceived the study. AD and GR proposed the algorithm. AD,
PN and NV wrote the software. CA and PN performed the analysis and inter-
pretation of Hi-GWAS data. NV performed the analysis and interpretation of
Hi-C data. CA, PN, GR and NV wrote the manuscript. All authors read and
approved the final manuscript.

Acknowledgements

The authors would like to warmly thank Michel Koskas for very interesting
discussions, and for proposing a very elegant alternative implementation.

The authors are grateful to the GenoToul bioinformatics platform (INRA
Toulouse, http://bioinfo.genotoul.fr/) and its staff for providing comput-
ing facilities. PN and NV would like to thank Shubham Chaturvedi for his
contribution to the package adjclust via the R project in google summer of code
2017.

The authors would like to thank two anonymous referees whose comments
helped us to improve the manuscript.

Availability of data and materials

GWAS data analyzed in this paper are available as described in Section 4. Hi-C
data analyzed in this paper are available as described in Section 5.1.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

22

http://bioinfo.genotoul.fr/

Funding

This work was supported by CNRS project SCALES (Mission “Osez l’interdisciplinarité”).
The work of GR was funded by an ATIGE from Génopole.

References

J. Ah-Pine and X. Wang. Similarity based hierarchical clustering with an ap-
plication to text collections. In H. Boström, A. Knobbe, C. Soares, and
P. Papapetrou, editors, Proceedings of the 15th International Symposium on
Intelligent Data Analysis (IDA 2016), Lecture Notes in Computer Sciences,
pages 320–331, Stockholm, Sweden, 2016. doi: 10.1007/978-3-319-46349-0.
URL https://hal.archives-ouvertes.fr/hal-01437124.

S. Arlot, V. Brault, J.-P. Baudry, C. Maugis, and B. Michel. capushe: CAl-
ibrating Penalities Using Slope HEuristics, 2016a. URL https://CRAN.

R-project.org/package=capushe. R package version 1.1.1.

S. Arlot, A. Celisse, and Z. Harchaoui. A kernel multiple change-point algorithm
via model selection. Preprint arXiv: 1202.3878, 2016b. URL https://arxiv.

org/abs/1202.3878.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68(3):337–404, 1950.

F. B. Baker. Stability of two hierarchical grouping techniques case I: sensitivity
to data errors. Journal of the American Statistical Association, 69(346):440–
445, 1974. doi: 10.1080/01621459.1974.10482971.

K. D. Bennett. Determination of the number of zones in a biostratigraphical
sequence. New Phytologist, 132(1):155–170, 1996. doi: 10.1111/j.1469-8137.
1996.tb04521.x.

A. Celisse, G. Marot, M. Pierre-Jean, and G. Rigaill. New efficient algorithms
for multiple change-point detection with reproducing kernels. Computational
Statistics & Data Analysis, 128:200–220, 2018.

M. Chavent, V. Kuentz-Simonet, A. Labenne, and J. Saracco. ClustGeo2: an
R package for hierarchical clustering with spatial constraints. Computational
Statistics, 33(4):1799–1822, 2018. doi: 10.1007/s00180-018-0791-1.

D. Clayton. snpStats: SnpMatrix and XSnpMatrix classes and methods, 2015.
R package version 1.24.0.

C. Dalmasso, W. Carpentier, L. Meyer, C. Rouzioux, C. Goujard, M.-L. Chaix,
O. Lambotte, V. Avettand-Fenoel, S. Le Clerc, L. D. de Senneville, C. Deveau,
F. Boufassa, P. Debré, J.-F. Delfraissy, P. Broet, and I. Theodorou. Distinct
genetic loci control plasma HIV-RNA and cellular HIV-DNA levels in HIV-1

23

https://hal.archives-ouvertes.fr/hal-01437124
https://CRAN.R-project.org/package=capushe
https://CRAN.R-project.org/package=capushe
https://arxiv.org/abs/1202.3878
https://arxiv.org/abs/1202.3878

infection: the ANRS Genome Wide Association 01 study. PLoS ONE, 3(12):
e3907, 2008. doi: 10.1371/journal.pone.0003907.

A. Dehman, C. Ambroise, and P. Neuvial. Performance of a blockwise approach
in variable selection using linkage disequilibrium information. BMC Bioin-
formatics, 16(1):148, 2015. doi: 10.1186/s12859-015-0556-6.

J. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. Liu, and
B. Ren. Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature, 485:376–380, 2012. doi: 10.1038/nature11082.

ENCODE Project Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature, 489:57–74, 2012. doi: 10.1038/nature11247.

D. Eppstein. Fast hierarchical clustering and other applications of dynamic
closest pairs. Journal of Experimental Algorithmics (JEA), 5:1, 2000. doi:
10.1145/351827.351829.

M. Forcato, C. Nicoletti, K. Pal, C. Livi, F. Ferrari, and S. Bicciato. Comparison
of computational methods for Hi-C data analysis. Nature Methods, 14(7):679–
685, 2017.

J. Fraser, C. Ferrai, A. Chiariello, M. Schueler, T. Rito, G. Laudanno, M. Barbi-
eri, B. Moore, D. Kraemer, S. Aitken, S. Xie, K. Morris, M. Itoh, H. Kawaji,
I. Jaeger, Y. Hayashizaki, P. Carninci, A. Forrest, The FANTOM Consor-
tium, C. Semple, J. Dostie, A. Pombo, and M. Nicodemi. Hierarchical fold-
ing and reorganization of chromosomes are linked to transcriptional changes
in cellular differentiation. Molecular Systems Biology, 11:852, 2015. doi:
10.15252/msb.20156492.

S. B. Gabriel, S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy, B. Blumen-
stiel, J. Higgins, M. DeFelice, A. Lochner, M. Faggart, S. N. Liu-Cordero,
C. Rotimi, A. Adeyemo, R. Cooper, R. Ward, E. S. Lander, M. J. Daly,
and D. Altshuler. The structure of haplotype blocks in the human genome.
Science, 296(5576):2225–2229, 2002. doi: 10.1126/science.1069424.

D. Garreau and S. Arlot. Consistent change-point detection with kernels. Elec-
tronic Journal of Statistics, 12(2):4440–4486, 2018.

E. Grimm. CONISS: a fortran 77 program for stratigraphically constrained anal-
ysis by the method of incremental sum of squares. Computers & Geosciences,
13(1):13–35, 1987.

F. Guinot, M. Szafranski, C. Ambroise, and F. Samson. Learning the optimal
scale for GWAS through hierarchical SNP aggregation. BMC Bioinformatics,
19, 2018. doi: 10.1186/s12859-018-2475-9.

N. Haddad, C. Vaillant, and D. Jost. IC-Finder: inferring robustly the hierar-
chical organization of chromatin folding. Nucleic Acids Research, 45(10):e81,
2017. doi: 10.1093/nar/gkx036.

24

Z. Harchaoui and O. Cappé. Retrospective mutiple change-point estimation with
kernels. In Proceedings of the 14th Workshop on Statistical Signal Processing
(SSP’07), pages 768–772, Madison, WI, USA, 2007. IEEE. doi: 10.1109/SSP.
2007.4301363.

T. D. Hocking, G. Schleiermacher, I. Janoueix-Lerosey, V. Boeva, J. Cappo,
O. Delattre, F. Bach, and J.-P. Vert. Learning smoothing models of copy
number profiles using breakpoint annotations. BMC Bioinformatics, 14(1):
164, 2013. doi: 10.1186/1471-2105-14-164.

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):
193–218, 1985. doi: 10.1007/BF01908075.

S. Juggins. rioja: Analysis of Quaternary Science Data, 2018. URL https:

//cran.r-project.org/package=rioja. R package version 0.9-15.1.

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction
to Cluster Analysis, volume 344 of Wiley Series in Probability and Statistics.
John Wiley & Sons, Hoboken, NJ, USA, 2009. ISBN 9780471878766. doi:
10.1002/9780470316801.

L. Lebart. Programme d’agrégation avec contraintes. Les Cahiers de l’Analyse
des Données, 3(3):275–287, 1978. URL http://www.numdam.org/item?id=

CAD_1978__3_3_275_0.

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin, and B. Thirion.
A supervised clustering approach for fmri-based inference of brain states.
Pattern Recognition, 45(6):2041–2049, 2012.

S. Miyamoto, R. Abe, Y. Endo, and J. Takeshita. Ward method of hierarchi-
cal clustering for non-Euclidean similarity measures. In Proceedings of the
VIIth International Conference of Soft Computing and Pattern Recognition
(SoCPaR 2015), 2015.

F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J.-J. Daudin. A statistical
approach for array-CGH data analysis. BMC Bioinformatics, 6(27):1471–
2105, 2005. doi: 10.1186/1471-2105-6-27.

J. Qin, D. P. Lewis, and W. S. Noble. Kernel hierarchical gene clustering from
microarray expression data. Bioinformatics, 19(16):2097–2104, 2003. doi:
10.1093/bioinformatics/btg288.

J. A. Reuter, D. V. Spacek, and M. P. Snyder. High-throughput sequencing
technologies. Molecular Cell, 58(4):586–597, 2015. doi: 10.1016/j.molcel.
2015.05.004.

Y. Shen, F. Yu, D. F. McCleary, Z. Ye, L. Edsall, S. Kuan, U. Wagner, J. Dixon,
L. Lee, V. V. Lobanenkov, and B. Ren. A map of the cis-regularoty sequence
in the mouse genome. Nature, 488:116–120, 2012. doi: 10.1038/nature11243.

25

https://cran.r-project.org/package=rioja
https://cran.r-project.org/package=rioja
http://www.numdam.org/item?id=CAD_1978__3_3_275_0
http://www.numdam.org/item?id=CAD_1978__3_3_275_0

T. Strauss and M. J. von Maltitz. Generalising Ward’s method for use with
Manhattan distances. PLoS ONE, 12:e0168288, 2017. doi: 10.1371/journal.
pone.0168288.

G. J. Székely and M. L. Rizzo. Hierarchical clustering via joint between-within
distances: extending Ward’s minimum variance method. Journal of Classifi-
cation, 22(2):151–183, 2005. doi: 10.1007/s00357-005-0012-9.

J. W. J. Williams. Algorithm 232 - heapsort. Communications of the ACM, 7
(6):347–348, 1964. doi: 10.1145/512274.512284.

26

	Background
	Method
	Adjacency-constrained HAC with Ward's linkage
	Extension to general similarities
	Band similarity assumption

	Algorithm
	Ingredients
	Ward's linkage as a function of pre-calculated sums
	Storing candidate fusions in a min-heap

	Proposed algorithm
	Description and illustration
	Complexity of the proposed algorithm
	Implementation

	Linkage disequilibrium block inference in GWAS
	Quality of the band approximation
	Scalability and computation times

	Hi-C analysis
	Data and method
	Influence of the bandwidth parameter
	Results

	Conclusions

