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S1 Supplementary methods

S1.1 Proof of Equation (1)

Proof of Equation (1). The theory of Reproducing Kernel Hilbert Spaces [Aronszajn, 1950]
makes is possible to generalize the definition of Ward-based HAC to the case where the sim-
ilarity matrix S describing the objects to cluster is a kernel, i.e., a positive definite symmetric
matrix. In this case, there exists a unique Hilbert space (H, 〈., .〉H) and a feature map φ : X → H,
where X denotes the arbitrary set in which the objects, {x1, . . . , xp}, described by s are defined,
such that the kernel s corresponds to the dot product in H :

sij = 〈φ(xi), φ(xj)〉H. (S1)
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Following Murtagh and Legendre [2014], since the feature space H is Euclidean, Ward’s
linkage may be written as

∀C, C ′ ⊂ {x1, . . . , xp}, C ∩ C ′ = ∅, δ(C,C ′) =
|C||C ′|
|C|+ |C ′|

∥∥C̄ − C̄ ′∥∥2H
where for any cluster C, C̄ := 1

|C|
∑

i∈C φ(xi) is the center of gravity of C in H and ‖ · ‖2H is the

norm associated to the scalar product in H. However,

‖C̄ − C̄ ′‖2H = 〈C̄ − C̄ ′, C̄ − C̄ ′〉H
= 〈C̄, C̄〉H + 〈C̄ ′, C̄ ′〉H − 2〈C̄, C̄ ′〉H .

Then, Equation (S1) yields ∀C, C ′ ⊂ {x1, . . . , xp},

〈C̄, C̄ ′〉H =
1

|C||C ′|
〈
∑
i∈C

φ(xi),
∑
i∈C′

φ(xi)〉H =
1

|C||C ′|
SCC′ .

where SCC′ =
∑

i∈C,j∈C′ sij . This implies

δ(C,C ′) =
|C||C ′|
|C|+ |C ′|

(
SCC

|C|2
+
SC′C′

|C ′|2
− 2SCC′

|C||C ′|

)

where SCC = S(C) and SC′C′ = S(C ′). To conclude, we note that

S(C ∪ C ′) = S(C) + S(C ′) + 2
∑

i∈C,j∈C′

sij

= SCC + SC′C′ + 2SCC′ ,

so that

δ(C,C ′) =
|C||C ′|
|C|+ |C ′|

((
1

|C|2
+

1

|C||C ′|

)
S(C) +

(
1

|C ′|2
+

1

|C||C ′|

)
S(C ′)− 1

|C||C ′|
S(C ∪ C ′)

)

=
S(C)

|C|
+
S(C ′)

|C ′|
− S(C ∪ C ′)
|C ∪ C ′|

which concludes the proof.

Because δ(C,C ′) is explicitly written in terms of S only, Ward’s HAC can be performed
implicitly in the feature space, without an explicit calculation. In particular, the mapping φ
itself does not need to be known explicitly. This property is known as the kernel trick. In our
paper, the kernel trick is used to write the distance between the centers of gravity in the feature
space as a function of S only. Ward’s HAC is then obtained by iteratively updating the matrix
of similarities between all pairs of centers of gravity after each successive merge. To the best of
our knowledge, the formulation of Ward’s linkage in terms of sums of elements of the similarity
matrix S has never been explicitly written in the form of Equation (1) even if kernel-based HAC
has already been proposed by Qin et al. [2003], Ah-Pine and Wang [2016] for linkages including
Ward’s linkage, but
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S1.2 Time and space complexity of the pencil trick

Space complexity The pencil trick is based on the pre-computation of backward and forward
pencils as defined in Equation (2). By construction, the number of all the bandwidths of the
pencils involved is less than h. Therefore, only pencils P (r, l) and P̄ (r, l) with 1 ≤ r ≤ p and
1 ≤ l ≤ h have to be pre-computed and the total number of pencils to compute and stored is
less than 2ph. The space complexity is thus O(ph) for pencils.

Time complexity The contribution of the pencil trick to the algorithm complexity is divided
into:

• during the initialization of the algorithm, the pre-computation of the backward and
forward pencils. This can be done efficiently by a recursive computation, as described in
Algorithm S1. This algorithm is based on the computation of less than ph quantities, all
having a complexity equal to 1. The total time complexity of the method is thus O(ph);

Algorithm S1 Pencil trick: Precomputation of pencils by a recursive strategy

1: for i = 1 to p do
2: P (i, 1)← s(i, i) . O(1) for every i
3: for l = 2 to min(h, p+ 1− i) do
4: P (i, l)← P (i, l − 1) + s(i, i+ l − 1) . O(1) for every i and every l
5: end for
6: end for

• during the call to Heap.Insert (see Section 2.2.2 and Algorithm 2 of the main text), the
computation of the linkage values between the new(ly fused) cluster and its right and left
neighbors. The time complexity of each linkage computation is O(1) (constant) because
according to Equations (1) and (4), δ is a function of a constant number of pencils.

S1.3 Linkage disequilibrium and kernel

If SNP values at position i are modeled by a binary random variable Zi which is the indicator
of the presence of minor allele for this locus, it is standard to make the asumption that

Zi ∼ B(pi).

The linkage disequilibrium (LD) between locus i and locus j is defined as the covariance between
the two corresponding random variables:

Dij = pij − pipj = E[ZiZj ]− pipj = Cov(Zi, Zj).

For practical use the measure is normalized to be between zero and one. Two popular choices
of normalization are the squared correlation

r2(i, j) = Cor(Zi, Zj)
2

and

d′ij(i, j) =
D(i, j)

maxij D(i, j)
.
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In this paper, we consider the r2 which is a classical choice in the context of association studies.
More precisely, given observations of the genotypes, or n individuals, we denote by zi the 2n-
dimensional vector of normalized allele values of locus i for the 2n genotypes of the n individuals

and estimates the LD with k(i, j) :=
(∑2n

`=1 zi`zj`

)2
.

It is possible to prove that this estimation, k, is a kernel, i.e., a positive definite symmetric
matrix. This result comes from the fact that k(i, j) can be re-written as:

2n∑
`,`′=1

(zi`zj`)(zi`′zj`′).

Defining the mapping Φ from R(2n) to R(2n)2 such that

∀(`, `′) ∈ {1, . . . , 2n}2, Φ(z)2n(`−1)+`′ = z`z`′ ,

we have:
k(i, j) = 〈zi, zj〉2 = 〈Φ(zi),Φ(zj)〉,

which concludes the proof since k is expressed as a dot product with the feature map i→ Φ(zi).
Notice that, when the available data are SNPs, computing the square correlation between

of two loci raises the additional problem of unknown haplotype phase. Indeed, with association
study, we observe locus values for pairs of chromosomes and not for specific chromosomes. For
each locus, SNP data give access to a 3 × 3 contingency table of genotype counts for each pair
of loci, while we would like to have the 2 × 2 table of diplotype counts. Nevertheless, these are
classical approaches for estimating the diplotypes from the genotypes.
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S2 Supplementary results

Figure S1: Average cluster size for both model selection approaches, compared to the chromosome
length (in term of number of observed bins) for every chromosome and every experiment (full version).
Chromosome X in mCortex had an average cluster size larger than 2.5Mb and was thus excluded from
the picture.

Figure S2: Left: Chromosome 11 of hIMR90. Right: Chromosome 12 of mCortex. Bottom: Hi-C data
(log-scaled) with clustering selected by the slope heuristic (blue line). Top: Constrained hierarchical
clustering with clustering selected by the slope heuristic (red rectangles).
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Figure S3: Distribution of the number of the 20% most intense CTCF ChIP-seq peaks with respect to
distance of cluster boundaries, as obtained with the broken stick heuristic. Left: hESC. Right: hIMR90.
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