Interpolation inequalities in W1,p(S1) and carré du champ methods
Résumé
This paper is devoted to an extension of rigidity results for nonlinear differential equations, based on carré du champ methods, in the one-dimensional periodic case. The main result is an interpolation inequality with non-trivial explicit estimates of the constants in W1,p(S1) with p ≥ 2. Mostly for numerical reasons, we relate our estimates with issues concerning periodic dynamical systems. Our interpolation inequalities have a dual formulation in terms of generalized spectral estimates of Keller-Lieb-Thirring type, where the differential operator is now a p-Laplacian type operator. It is remarkable that the carré du champ method adapts to such a nonlinear framework, but significant changes have to be done and, for instance, the underlying parabolic equation has a nonlocal term whenever p≠2.
Fichier principal
DoGHMa-2019-r.pdf (455.28 Ko)
Télécharger le fichier
F0.pdf (53.81 Ko)
Télécharger le fichier
F1.pdf (10.82 Ko)
Télécharger le fichier
F2.pdf (10.69 Ko)
Télécharger le fichier
F3.pdf (11.05 Ko)
Télécharger le fichier
F4.pdf (11.04 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...