Interpolation inequalities in W1,p(S1) and carré du champ methods - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Interpolation inequalities in W1,p(S1) and carré du champ methods

Résumé

This paper is devoted to an extension of rigidity results for nonlinear differential equations, based on carré du champ methods, in the one-dimensional periodic case. The main result is an interpolation inequality with non-trivial explicit estimates of the constants in W1,p(S1) with p ≥ 2. Mostly for numerical reasons, we relate our estimates with issues concerning periodic dynamical systems. Our interpolation inequalities have a dual formulation in terms of generalized spectral estimates of Keller-Lieb-Thirring type, where the differential operator is now a p-Laplacian type operator. It is remarkable that the carré du champ method adapts to such a nonlinear framework, but significant changes have to be done and, for instance, the underlying parabolic equation has a nonlocal term whenever p≠2.
Fichier principal
Vignette du fichier
DoGHMa-2019.pdf (451.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02003141 , version 1 (01-02-2019)
hal-02003141 , version 2 (17-06-2019)

Identifiants

Citer

Jean Dolbeault, Marta Garcia-Huidobro, Raul Manásevich. Interpolation inequalities in W1,p(S1) and carré du champ methods. 2019. ⟨hal-02003141v1⟩
109 Consultations
257 Téléchargements

Altmetric

Partager

More