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Abstract. This paper is devoted to an extension of rigidity results for non-

linear differential equations, based on carré du champ methods, in the one-

dimensional periodic case. The main result is an interpolation inequality with
non-trivial explicit estimates of the constants in W1,p(S1) with p ≥ 2. Mostly

for numerical reasons, we relate our estimates with issues concerning periodic

dynamical systems. Our interpolation inequalities have a dual formulation in
terms of generalized spectral estimates of Keller-Lieb-Thirring type, where the

differential operator is now a p-Laplacian type operator. It is remarkable that

the carré du champ method adapts to such a nonlinear framework, but sig-
nificant changes have to be done and, for instance, the underlying parabolic

equation has a nonlocal term whenever p 6= 2.

1. Introduction. This paper is a generalization to p 6= 2 of results which have
been established in [5] in the case p = 2 and go back to [10]. On the other hand,
we use a flow interpretation which was developed in [7] and relies on the carré du
champ method. This second approach gives similar results and can be traced back
to [4, 3]. As far as we know, Bakry-Emery techniques have been used in the context
of the p-Laplacian operator to produce estimates of the first eigenvalue but neither
for non-linear (i.e., p 6= 2) interpolation inequalities nor for estimates on non-linear
p-Laplacian flows. By mixing the two approaches, we are able not only to establish
inequalities with accurate estimates of the constants but we also obtain improved
inequalities and get quantitative rates of convergence for a nonlinear semigroup
associated with the p-Laplacian. We also establish improved rates of convergence,
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at least as long as the solution does not enter the asymptotic regime. Results are
similar to those of [9] in the case p = 2.

Let us denote by S1 the unit circle which is identified with [0, 2π), with periodic
boundary conditions and by dσ = dx

2π the uniform probability measure on S1. We
define

λ?1 := inf
v∈W1

‖v′‖2Lp(S1)

‖v‖2L2(S1)

and λ1 := inf
v∈W1

‖v′‖2Lp(S1)

‖v‖2Lp(S1)

where the infimum is taken on the set W1 of all functions v in W1,p(S1) \ {0} such
that

∫
S1 v dσ = 0. Here we use the notation:

‖u‖Lp(S1) :=

(∫
S1
|u|p dσ

)1/p

.

With our notations, λ
p/2
1 is the lowest positive eigenvalue of the p-Laplacian operator

Lp defined by

−Lp v := −
(
|v′|p−2 v′

)′
.

Since dσ is a probability measure, then ‖u‖2Lp(S1) − ‖u‖
2
L2(S1) has the same sign as

(p− 2), so that

(p− 2)
(
λ?1 − λ1

)
≥ 0 .

See Appendix A for further considerations. Our main result goes as follows.

Theorem 1. Assume that p ∈ (2,+∞) and q > p− 1. There exists Λp,q > 0 such
that for any function u ∈W1,p(S1), the following inequalities hold:

‖u′‖2Lp(S1) ≥
Λp,q
p− q

(
‖u‖2Lp(S1) − ‖u‖

2
Lq(S1)

)
(1)

if p 6= q, and

‖u′‖2Lp(S1) ≥
2

p
Λp,p ‖u‖2−pLp(S1)

∫
S1
|u|p log

(
|u|

‖u‖Lp(S1)

)
dσ (2)

if p = q and u 6≡ 0. Moreover, the sharp constant Λp,q in (1) and (2) is such that

λ1 ≤ Λp,q ≤ λ?1 .

Inequality (2) is an Lp logarithmic Sobolev inequality which is reminiscent of, for
instance, [6]. A Taylor expansion that will be detailed in the proof of Proposition 1
(also see Proposition 3 and Section 2.5) shows that (1) and (2) tested with u = 1+ε v
and v ∈ W1 are equivalent at order ε2 to ‖v′‖2Lp(S1) ≥ λ

?
1 ‖v‖2L2(S1), which would not

be true if, for instance, we were considering ‖u′‖αLp(S1) with α 6= 2. This explains

why we have to consider the square of the norms in the inequalities and not other
powers, for instance α = 1 or α = p. This is also the reason why λ1 and λ?1 are not
defined as the standard first positive eigenvalue of the p-Laplacian operator.

In 1992, L. Véron considered in [13] the equation

−Lpu+ |u|q−2 u = λ |u|p−2 u

not only on S1 but also on general manifolds and proved that it has no solution in

W1,p(S1) except the constant functions if λ ≤ λ
p/2
1 and 1 < p < q. Let us point

out that, up to constants that come from the various norms involved in (1), the
corresponding Euler-Lagrange equation is the same equation when q < p, while in
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the case q > p, the Euler-Lagrange equation of our problem is, again up to constants
that involve the norms, of the form

−Lpu+ λ |u|p−2 u = |u|q−2 u .

This paper is organized as follows.
• In Section 2, we start by proving Theorem 1 in the case 2 < p < q with estimates
for elliptic equations. The key estimate is the Poincaré type estimate of Lemma 1,
which is used in Section 2.3 to prove Proposition 2. The adaptations needed to deal
with the case q < p are listed in Section 2.4.
• Section 3 is devoted to further results and consequences. In Section 3.1, we give
an alternative proof of Theorem 1 based on a method for parabolic equations. This
is the link with the carré du champ methods. The parabolic setting provides a
framework in which the computations of Section 2 can be better interpreted. An-
other consequence of the parabolic approach is that a refined estimate is established
by taking into account terms that are simply dropped in the elliptic estimates of
Section 2: see Section 3.2. A last result deals with ground state energy estimates
for nonlinear Schrödinger type operators, which generalize to the case of the p-
Laplacian the Keller-Lieb-Thirring estimates known when p = 2: see Section 3.3.
Notice that such Keller-Lieb-Thirring estimates are completely equivalent to the
interpolation inequalities of Theorem 1, including for optimality results.
• Numerical results which illustrate our main theoretical results have been col-
lected in Section 4. The computations are relatively straightforward because, after
a rescaling, the bifurcation problem (described below in Sections 2.1 and 2.4) can
be rephrased as a dynamical system such that all quantities associated with critical
points can be computed in terms of explicit integrals.

2. Proof of the main result. The goal of this section is to prove Theorem 1 and
some additional results. The emphasis is put on the case 2 < p < q, while the other
cases are only sketched. We shall collect a series of observations before proving
Theorem 1 in Section 2.5.

2.1. A variational problem. On S1, let us assume that p < q and define

Qλ[u] :=
‖u′‖2Lp(S1) + λ ‖u‖2Lp(S1)

‖u‖2Lq(S1)

for any λ > 0. Let
µ(λ) := inf

u∈W1,p(S1)\{0}
Qλ[u] .

In the range p < q, inequality (1) can be embedded in the larger family of inequalities

‖u′‖2Lp(S1) + λ ‖u‖2Lp(S1) ≥ µ(λ) ‖u‖2Lq(S1) ∀u ∈W1,p(S1) (3)

so that the optimal constant Λp,q of Theorem 1 can be characterized as

Λp,q = (q − p) inf
{
λ > 0 : µ(λ) < λ

}
.

Proposition 1. Assume that 1 < p < q. On (0,+∞), the function λ 7→ µ(λ) is
concave, strictly increasing, such that µ(λ) < λ if λ > λ?1/(q − p).

Proof. The concavity is a consequence of the definition of µ(λ) as an infimum of
affine functions of λ. If µ(λ) = λ, then the equality is achieved by constant functions.
If we take

u = 1 + ε v with

∫
S1
v dσ = 0
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as a test function for Qλ and let ε→ 0, then we get

Qλ[1 + ε v]− λ ∼ ε2
(
‖v′‖2Lp(S1) − λ (q − p) ‖v‖2L2(S1)

)
.

Let us take an optimal v for the minimization problem corresponding to λ?1, so that
the r.h.s. becomes proportional to λ?1 − λ (q − p). As a consequence, we know that
µ(λ) < λ if λ > λ?1/(q − p).

By standard methods of the calculus of variations, we know that the infimum
µ(λ) is achieved for any λ > 0 by some a.e. positive function in W 1,p(S1). As
a consequence, we know that there exists a non-constant positive solution to the
Euler-Lagrange equation if λ > λ?1/(q − p). Notice that all non-zero constants are
also solutions in that case. The equation can be written as

− ‖u′‖2−pLp(S1) Lpu+ λ ‖u‖2−pLp(S1) u
p−1 = µ(λ) ‖u‖2−qLq(S1) u

q−1 . (4)

What we want to prove is that (4) has no non-constant solution for λ > 0, small
enough, and give an estimate of this rigidity range.

Proposition 2. Assume that 2 < p < q and λ > 0. All positive solutions of (4)
are constant if λ ≤ λ1/(q − p).

The proof of this result is given in Section 2.3. As a preliminary step, we establish
a Poincaré estimate.

2.2. A Poincaré estimate. Let us consider the Poincaré inequality

‖v′‖2Lp(S1) − λ1 ‖v‖2Lp(S1) ≥ 0 ∀ v ∈ W1 ,

which is a consequence of the definition of λ1.

Lemma 1. Assume that p > 2. Then for any non-negative u ∈W2,p(S1) \ {0}, we
have ∫

S1
u2−p (Lpu)2 dσ ≥ λ1

‖u′‖2(p−1)
Lp(S1)

‖u‖p−2
Lp(S1)

. (5)

Moreover λ1 is the sharp constant.

Proof. By expanding the square, we know that

0 ≤
∫
S1
u2−p ∣∣Lpu+ C |u|p−2 (u− ū)

∣∣2 dσ =

∫
S1
u2−p (Lpu)2 dσ − C ‖u′‖pLp(S1)

− C

(
‖u′‖pLp(S1) − C

∫
S1
|u|p−2 (u− ū)2 dσ

)
.

With

C = λ1

‖u′‖p−2
Lp(S1)

‖u‖p−2
Lp(S1)

, v = u− ū and ū =

∫
S1
u dσ ,

we know that∫
S1

u2−p

‖u‖2−pLp(S1)

(Lpu)2 dσ − λ1 ‖u′‖2(p−1)
Lp(S1)

≥ λ1 ‖u′‖2(p−2)
Lp(S1)

(
‖u′‖2Lp(S1) − λ1

∫
S1

|u|p−2

‖u‖p−2
Lp(S1)

v2 dσ

)
.
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Assuming that p > 2, Hölder’s inequality with exponents p/(p− 2) and p/2 shows
that∫

S1

|u|p−2

‖u‖p−2
Lp(S1)

v2 dσ ≤ ‖u‖2−pLp(S1)

[∫
S1

(
|u|p−2

) p
p−2 dσ

] p−2
p

‖v‖2Lp(S1) = ‖v‖2Lp(S1) .

We observe that v is in W1 so that λ1 ‖v‖2Lp(S1) ≤ ‖v
′‖2Lp(S1) and

λ1

∫
S1
|u|p−2 v2 dσ ≤ ‖u′‖2Lp(S1) ‖u‖

p−2
Lp(S1)

(see (16) for further considerations). Hence we conclude that∫
S1

u2−p

‖u‖2−pLp(S1)

(Lpu)2 dσ − λ1 ‖u′‖2(p−1)
Lp(S1)

≥ λ1 ‖u′‖2(p−2)
Lp(S1)

(
‖v′‖2Lp(S1) − λ1 ‖v‖2Lp(S1)

)
≥ 0 .

The fact that λ1 is optimal is obtained by considering the equality case in the above
inequalities. See details in Appendix A.

2.3. A first rigidity result. We adapt the strategy of [5, 10] when p = 2 to the
case p > 2 using the Poincaré estimate of Section 2.2.

Proof of Proposition 2. Let us consider a positive solution to (4). If we multiply (4)
by −u2−pLpu and integrate on S1, we obtain the identity

‖u′‖2−pLp(S1)

∫
S1
u2−p (Lpu)2 dσ + λ ‖u‖2−pLp(S1)

∫
S1
|u′|p dσ

= (1 + q − p)µ(λ) ‖u‖2−qLq(S1)

∫
S1
uq−p |u′|p dσ .

If we multiply (4) by (1+q−p)u1−p |u′|p and integrate on S1, we obtain the identity

− ‖u′‖2−pLp(S1) (1 + q − p)
∫
S1
u1−pLpu |u′|p dσ + λ ‖u‖2−pLp(S1) (1 + q − p)

∫
S1
|u′|p dσ

= (1 + q − p)µ(λ) ‖u‖2−qLq(S1)

∫
S1
uq−p |u′|p dσ .

By subtracting the second identity from the first one, we obtain that

‖u′‖2−pLp(S1)

(∫
S1
u2−p (Lpu)2 dσ + (1 + q − p)

∫
S1
u1−pLpu |u′|p dσ

)
− λ (q − p) ‖u‖2−pLp(S1)

∫
S1
|u′|p dσ = 0 .

After an integration by parts, the above identity can be rewritten as∫
S1
u2−p (Lpu)2 dσ +

(1 + q − p) (p− 1)2

2 p− 1

∫
S1

|u′|2p

up
dσ

− λ (q − p)
‖u′‖p−2

Lp(S1)

‖u‖p−2
Lp(S1)

∫
S1
|u′|p dσ = 0 .
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By Lemma 1, this proves that

(
λ1 − λ (q − p)

) ‖u′‖2(p−1)
Lp(S1)

‖u‖p−2
Lp(S1)

+
(1 + q − p) (p− 1)2

2 p− 1

∫
S1

|u′|2p

up
dσ ≤ 0 .

If λ ≤ λ1/(q − p), this proves that u is a constant. This completes the proof of
Proposition 2.

2.4. An extension of the range of the parameters. So far we have considered
only the case q > p. Let us consider the case 1 < q < p and define, in that case,

Qµ[u] :=
‖u′‖2Lp(S1) + µ ‖u‖2Lq(S1)

‖u‖2Lp(S1)

for any µ > 0. Let

λ(µ) := inf
u∈W1,p(S1)\{0}

Qµ[u] .

If µ(λ) = λ, then the equality is achieved by constant functions. In the range p > q,
inequality (1) can be embedded in the larger family of inequalities

‖u′‖2Lp(S1) + µ ‖u‖2Lq(S1) ≥ λ(µ) ‖u‖2Lp(S1) ∀u ∈W1,p(S1) (6)

so that the optimal constant Λp,q of Theorem 1 can be characterized as

Λp,q = (p− q) inf
{
µ > 0 : λ(µ) < µ

}
.

As in Section 2.1, a Taylor expansion allows us to prove the following result.

Proposition 3. Assume that 1 < q < p. The function µ 7→ λ(µ) is concave, strictly
increasing, such that λ(µ) < µ if µ > λ?1/(p− q).

As a consequence of Proposition 3, there exists a non-constant positive solution
to the Euler-Lagrange equation if µ > λ?1/(p− q). This equation can be written as

− ‖u′‖2−pLp(S1) Lpu+ µ ‖u‖2−qLq(S1) u
q−1 = λ(µ) ‖u‖2−pLp(S1) u

p−1 . (7)

There is also a range in which the only solutions are constants.

Proposition 4. Assume that p > 2 and p−1 < q < p. All positive solutions of (7)
are constant if µ ≤ λ1/(q − p).

Proof. The computation is exactly the same as in the proof of Proposition 2, except
that λ and µ(λ) have to be replaced by −λ(µ) and −µ respectively.∫

S1
u2−p (Lpu)2 dσ +

(1 + q − p) (p− 1)2

2 p− 1

∫
S1

|u′|2p

up
dσ

− λ (p− q)
‖u′‖p−2

Lp(S1)

‖u‖p−2
Lp(S1)

∫
S1
|u′|p dσ = 0 .

The conclusion then holds by Lemma 1 as in the case q > p, except that we need
to ensure that the factor (1 + q − p) is positive.
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2.5. The interpolation inequalities.

Proof of Theorem 1. Inequality (1) follows from Inequalities (3) and (6) with

Λp,q :=(q − p) min
{
λ > 0 : µ(λ) < λ

}
if 2 < p < q ,

Λp,q :=(p− q) min
{
µ > 0 : λ(µ) < µ

}
if p > 2 and p− 1 < q < p ,

and from Propositions 1 and 2 if p < q, or from Propositions 3 and 4 if p > q. It
remains to consider the limit case as q → p. By passing to the limit in the right
hand side, we obtain the Lp logarithmic Sobolev inequality (2). The upper bound
Λp,p ≤ λ?1 is easily checked by computing

‖u′ε‖2Lp(S1) −
2

p
λ ‖uε‖2−pLp(S1)

∫
S1
|uε|p log

(
|uε|

‖uε‖Lp(S1)

)
dσ

= ε2 (λ∗1 − λ)‖v‖2L2(S1) + o(ε2)

where uε = 1 + ε v and v is an optimal function for the minimization problem
corresponding to λ?1. This completes the proof of Theorem 1.

3. Further results and consequences. In this section we collect a list of results
which go beyond the statement of Theorem 1. Let us start with an alternative
proof of this result which paves the route to an improved interpolation inequality,
compared to inequality (1).

3.1. The parabolic point of view. As in [7], the method of Section 2.3 can
be rephrased using a parabolic evolution equation in the framework of the carré
du champ method. The elliptic computations of Section 2.3 can be interpreted as
a special case corresponding to stationary solutions. Here we shall consider the
1-homogenous p-Laplacian flow

∂u

∂t
=
‖u′‖2−pLp(S1)

‖u‖2−pLp(S1)

u2−p
(
Lpu+ (1 + q − p) |u

′|p

u

)
. (8)

The main originality compared to previous results based on the carré du champ
method is that a nonlocal term involving the norms ‖u′‖Lp(S1) and ‖u‖Lp(S1) has to
be introduced in order to obtain a linear estimate of the entropy, defined as

e(t) :=
‖u‖2Lp(S1) − ‖u‖

2
Lq(S1)

p− q
if p 6= q, in terms of the Fisher information

i(t) := ‖u′‖2Lp(S1) .

If u is a positive solution of (8), we first observe that

d

dt

∫
S1
uq dσ = q

‖u′‖2−pLp(S1)

‖u‖2−pLp(S1)

∫
S1
u1+q−p

(
Lpu+ (1 + q − p) |u

′|p

u

)
dσ = 0 .

Hence ‖u‖2Lq(S1) does not depend on t and we may assume without loss of generality

that ‖u‖2Lq(S1) = 1. After an integration by parts,

e′ =
d e

dt
= 2
‖u′‖2−pLp(S1)

p− q

∫
S1
u

(
Lpu+ (1 + q − p) |u

′|p

u

)
dσ = − 2 i
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if p 6= q. A similar computation shows that e′ = − 2 i is also true when p = q,
provided we define the entropy by

e(t) :=
2

p
‖u‖2−pLp(S1)

∫
S1
|u|p log

(
|u|

‖u‖Lp(S1)

)
dσ

in that case, with i := ‖u′‖2Lp(S1) as before.

One more derivation along the flow shows that

i′ =
d i

dt
= − 2

‖u′‖2(2−p)
Lp(S1)

‖u‖2−pLp(S1)

∫
S1

(
Lpu

)
u2−p

(
Lpu+ (1 + q − p) |u

′|p

u

)
dσ .

Using an integration by parts, we have∫
S1

(
Lpu

)
u2−p |u′|p

u
dσ =

(p− 1)2

2 p− 1

∫
S1

|u′|2p

up
dσ ≥ 0 .

With the help of Lemma 1, we conclude that

i′ ≤ − 2λ1 i− 2 (1 + q − p) (p− 1)2

2 p− 1

‖u′‖2(2−p)
Lp(S1)

‖u‖2−pLp(S1)

∫
S1

|u′|2p

up
dσ ≤ − 2λ1 i . (9)

Let us explain why this computation provides us with a second proof of Theorem 1.

A positive solution of (8) is such that i(t) ≤ i(0) e− 2λ1 t for any t ≥ 0 and thus
limt→+∞ i(t) = 0. We will see next that limt→+∞ e(t) = 0. As ‖u‖2Lq(S1) = 1, for

each n ∈ N, there exists xn ∈ [0, 2π) such that u(xn, n) = 1, hence

|u(x, n)− 1| = |u(x, n)− u(xn, n)| ≤ C ‖u′(·, n)‖Lp(S1)

implying that |‖u(·, n)‖Lp(S1) − 1| → 0 as n → ∞. Since limt→∞ e(t) exists, our
claim follows. After observing that

d

dt
(i− λ1 e) ≤ 0 and lim

t→+∞

(
i(t)− λ1 e(t)

)
= 0 ,

we conclude that i − λ1 e ≥ 0 at any t ≥ 0 and, as a special case, at t = 0,
for an arbitrary initial datum. This is already a sketch of an alternative proof of
Theorem 1. Because of its connection with the flow (8), the inequality i ≥ λ1 e can
be considered as an entropy – entropy production inequality : see for instance [1].

So far, this second proof of Theorem 1 is formal as we did not establish the
existence of the solutions to the parabolic problem nor the regularity which is needed
to justify all steps. To make the proof rigorous, here are the main steps that have
to be done:

1. Regularize the initial datum to make it as smooth as needed and bound it from
below by a positive constant, and from above by another positive constant.

2. Regularize the operator by considering for instance the operator

u 7→ (p− 1)
(
ε2 + |u′|2

) p
2−1

u′′

for an arbitrarily small ε > 0.
3. Prove estimates of the various norms based on the adapted (for ε > 0) equation

and on entropy estimates as above, and establish that these estimates can be
obtained uniformly in the limit as ε→ 0.

4. Get inequalities (with degraded constants for ε > 0) and recover an entropy
– entropy production inequality by taking the limit as ε→ 0.
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5. Conclude by density on the inital datum, in order to prove the result in the
Sobolev space of Theorem 1.

Details are out of the scope of the present paper. None of these steps is extremely
difficult but lots of care is needed. Regularity and justification of the integrations
by parts is a standard issue in this class of problems, see for instance the comments
in [14, page 694]. Up to these technicalities which are left to the reader, this
completes the second proof of Theorem 1.

3.2. An improvement of the interpolation inequality. The parabolic ap-
proach provides an easy improvement of (1) and (2). Let us consider the func-
tion Ψp,q defined by

Ψp,q(z) = z +
(p− 1)2

2 p− 1

1 + q − p
p− q

(
z − 1

p− q
log
(
1 + (p− q) z

))
if p 6= q ,

Ψp,p(z) = z +
(p− 1)2

2 (2 p− 1)
z2 if p = q .

The function Ψp,q is defined on R+, convex and such that Ψp,q(0) = 0 and Ψ′p,q(0) =
1. The flow approach provides us with an improved version of Theorem 1.

Theorem 2. Assume that p ∈ (2,+∞) and q > p − 1. For any function u ∈
W1,p(S1) \ {0}, the following inequalities hold:

‖u′‖2Lp(S1) ≥ λ1 ‖u‖2Lq(S1) Ψp,q

(
1

p− q
‖u‖2Lp(S1) − ‖u‖

2
Lq(S1)

‖u‖2Lq(S1)

)
if p 6= q, and

‖u′‖2Lp(S1) ≥ λ1 ‖u‖2Lp(S1) Ψp,p

(
2

p

∫
S1

|u|p

‖u‖pLp(S1)

log

(
|u|

‖u‖Lp(S1)

)
dσ

)
if p = q.

Proof. In the computations of Section 3.1, (9), we dropped the term
∫
S1
|u′|2p
up dσ.

Actually, the Cauchy-Schwarz inequality(∫
S1
|u′|p dσ

)2

=

(∫
S1
u

p
2 · u−

p
2 |u′|p dσ

)2

≤
∫
S1
up dσ

∫
S1

|u′|2p

up
dσ

can be used as in [2] to prove that∫
S1

|u′|2p

up
dσ ≥

(∫
S1 |u

′|p dσ
)2∫

S1 u
p dσ

=
ip

‖u‖pLp(S1)

with i = ‖u′‖2Lp(S1) and, after recalling that e′ = − 2 i, we deduce from (9) that

e′′ + 2λ1 e
′ + 2κ

i e′

1 + (p− q) e
≥ 0

with κ = (p−1)2

2 p−1 (1 + q − p). Here we assume that p 6= q and ‖u‖Lq(S1) = 1 so that

‖u‖2Lp(S1) = 1 + (p − q) e by definition of e. Using the standard entropy – entropy

production inequality i− λ1 e ≥ 0, we deduce that

e′′ + 2λ1

(
1 + κ

e

1 + (p− q) e

)
e′ ≥ 0 ,
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that is,
d

dt
(i− λ1 Ψp,q(e)) ≤ 0 ,

and the result again follows from limt→+∞
[
i(t)− λ1 Ψp,q

(
e(t)
)]

= 0 if ‖u‖Lq(S1) =
1. The general case is obtained by replacing u by u/‖u‖Lq(S1) = 1 while the case
p = q is obtained by passing to the limit as q → p.

We notice that the equality in (1) can be achieved only by constants because

i− λ1 e ≥ λ1

(
Ψp,q(e)− e

)
≥ 0

and Ψp,q(z)− z = 0 is possible if and only if z = 0. This explains why the infimum
of i− λ1 e, i.e., the infimum of Qλ1 and Qλ1 , is achieved only by constant functions.

In the case p = q, let us notice that the improved interpolation inequality of
Theorem 2 can be written as

‖u′‖2Lp(S1) ≥
2λ1

p
‖u‖2−pLp(S1)

∫
S1
|u|p log

(
|u|

‖u‖Lp(S1)

)
dσ

×

(
1 +

(p− 1)2

p (2 p− 1)

∫
S1

|u|p

‖u‖pLp(S1)

log

(
|u|

‖u‖Lp(S1)

)
dσ

)
.

In the case p 6= q, let us notice that the improved interpolation inequality of
Theorem 2 can be written as

‖u′‖2Lp(S1) ≥ λ1Kp,q
(
e[u]
) ‖u‖2Lp(S1) − ‖u‖

2
Lq(S1)

p− q
,

where

Kp,q(s) :=
Ψp,q(s)

s
and e[u] :=

‖u‖2Lp(S1) − ‖u‖
2
Lq(S1)

(p− q) ‖u‖2Lq(S1)

,

for any function u ∈W1,p(S1) \ {0}. There is essentially no improvement for func-
tions u such that e[u] is small because lims→0+ Kp,q(s) = 1 , but s 7→ Kp,q(s) is
monotone increasing and lims→+∞Kp,q(s) = 1 + κ.

3.3. Keller-Lieb-Thirring estimates. The nonlinear interpolation inequalities
(3) and (6) can be used to get estimates of the ground state energy of Keller-Lieb-
Thirring type as, for instance, in [8]. We are interested in the extension of the p = 2
case. In the case q > p, the question is to decide whether the quotient

u 7→
‖u′‖2Lp(S1) −

(∫
S1 V |u|

p dσ
)2/p

‖u‖2Lp(S1)

can be bounded from below uniformly in u for a given potential V , in terms of an
integral quantity depending only on V . In the case p = 2 this quotient is simply

the Rayleigh quotient associated with the Schrödinger operator − d2

dx2 − V and its
minimizer is, when it exists, the ground state. As in the case p = 2, we obtain a
lower bound when p 6= 2 in a setting which is in one-to-one correspondance with
the interpolation inequality (1). Let us give details.

In the range 2 < p < q, by applying Hölder’s inequality, we find that∫
S1
V |u|p dσ ≤ ‖V ‖

L
q

q−p (S1)
‖u‖pLq(S1) .
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We can rewrite (3) as

‖u′‖2Lp(S1) − µ ‖u‖
2
Lq(S1) ≥ −λ ‖u‖

2
Lp(S1)

with µ = ‖V ‖2/p
L

q
q−p (S1)

and λ = λ(µ) computed as the inverse of the function λ 7→

µ(λ), according to Proposition 1. As a consequence of Propositions 1 and 2, we
have the following estimate on the ground state energy.

Corollary 1. Assume that 2 < p < q. With the above notations, for any function

V ∈ L
q

q−p (S1) and any u ∈W1,p(S1), we have the estimate

‖u′‖2Lp(S1) −
(∫

S1
V |u|p dσ

)2/p

≥ −λ
(
‖V ‖2/p

L
q

q−p (S1)

)
‖u‖2Lp(S1) .

Moreover,

µ

(
‖V ‖2/p

L
q

q−p (S1)

)
= ‖V ‖2/p

L
q

q−p (S1)
if ‖V ‖2/p

L
q

q−p (S1)
≤ λ1

q − p
and in that case, the equality is realized if and only if V is constant.

If p > 2 and p− 1 < q < p, there is a similar estimate, which goes as follows. By
applying Hölder’s inequality, we find that∫

S1
|u|q dσ =

∫
S1
V −

q
p V

q
p |u|q dσ ≤

(∫
S1
V −

q
p−q dσ

)1− q
p
(∫

S1
V |u|p dσ

) q
p

so that ∫
S1
V |u|p dσ ≥ ‖V −1‖−1

L
q

p−q (S1)
‖u‖pLq(S1) .

We can rewrite (6) as

‖u′‖2Lp(S1) + µ ‖u‖2Lq(S1) ≥ λ(µ) ‖u‖2Lp(S1)

with µ = ‖V −1‖−2/p

L
q

p−q (S1)
and λ = λ(µ), according to Proposition 3. As a conse-

quence of Propositions 3 and 4, we have the following estimate on the ground state
energy.

Corollary 2. Assume that p > 2 and p − 1 < q < p. With the above notations,

for any function V such that V −1 ∈ L
q

p−q (S1) and any u ∈ W1,p(S1), we have the
estimate

‖u′‖2Lp(S1) +
(∫

S1
V |u|p dσ

)2/p

≥ λ
(
‖V −1‖−2/p

L
q

p−q (S1)

)
‖u‖2Lp(S1) .

Moreover,

λ

(
‖V −1‖−2/p

L
q

p−q (S1)

)
= ‖V −1‖−2/p

L
q

p−q (S1)
if ‖V −1‖−2/p

L
q

p−q (S1)
≤ λ1

p− q
and in that case, the equality is realized if and only if V is constant.

4. Numerical results. Equation (4) involves non-local terms, which raises a nu-
merical difficulty. However, using the homogeneity and a scaling, it is possible to
formulate an equivalent equation without non-local terms and use it to perform
some numerical computations.
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4.1. A reparametrization. A solution of (4) can be seen as 2π-periodic solution
on R. By the rescaling

u(x) = K f

(
T

2π
(x− x0)

)
, (10)

we get that f solves

−
(
T

2π

)p
‖u′‖2−pLp(S1)K

p−1Lp f+λ ‖u‖2−pLp(S1)K
p−1fp−1 = µ(λ) ‖u‖2−qLq(S1)K

q−1 fq−1 .

We can adjust T so that (
T

2π

)p
‖u′‖2−pLp(S1) = λ ‖u‖2−pLp(S1)

and K so that

Kq−p µ(λ) ‖u‖2−qLq(S1) = λ ‖u‖2−pLp(S1) .

Altogether, this means that the function f now solves

− Lp f + fp−1 = fq−1 (11)

on R and is T -periodic. Equations (4) and (11) are actually equivalent.

Proposition 5. Assume that p ∈ (2,+∞) and q > p − 1. If u > 0 solves (4) and
f is given by (10) with x0 ∈ R,

T = 2π λ
1
p

‖u′‖1−
2
p

Lp(S1)

‖u‖1−
2
p

Lp(S1)

and K =

(
λ

µ(λ)

‖u‖q−2
Lq(S1)

‖u‖p−2
Lp(S1)

) 1
q−p

,

then f solves (11) and it is T -periodic. Reciprocally, if f is a T -periodic positive
solution of (11), then u given by (10) is, for an arbitrary x0 ∈ R, and an arbitrary
K > 0, a 2π-periodic positive solution of (4) with

λ =

(
T

2π

)2 ‖f‖p−2
Lp(0,T )

‖f ′‖p−2
Lp(0,T )

and

µ(λ) = λT
2
q−

2
p

‖f‖q−2
Lq(0,T )

‖f‖p−2
Lp(0,T )

=

(
T

2π

)2

T
2
q−

2
p

‖f‖q−2
Lq(0,T )

‖f ′‖p−2
Lp(0,T )

.

Proof. To see that u(x) = f(T x /(2π)) solves (4), it is enough to write (11) in terms
of u and use the change of variables to get that

‖u′‖Lp(S1) =
1

2π
T 1− 1

p ‖f ′‖Lp(0,T ) , ‖u‖Lp(S1) = T−
1
p ‖f‖Lp(0,T ) ,

and ‖u‖Lq(S1) = T−
1
q ‖f‖Lq(0,T ) .

Notice that on S1, we use the uniform probability measure dσ, while on [0, T ] we
use the standard Lebesgue measure. We can of course translate u by x0 ∈ R or
multiply it by an arbitrary K > 0 (or an arbitrary K ∈ R if we relax the positivity
condition).

Proposition 2 and Proposition 5 have a straightforward consequence on the period
of the solutions of (11).
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Corollary 3. Assume that 2 < p < q. If f is a non-constant periodic solution
of (11) of period T , then

T > 2π

√
λ1

q − p
‖f ′‖

p
2−1

Lp(0,T )

‖f‖
p
2−1

Lp(0,T )

.

A similar result also holds in the case p > 2 and p− 1 < q < p.

4.2. A Hamiltonian reformulation. Assume that 2 < p < q. Eq. (11) can be
reformulated as a Hamiltonian system by writing f = X and

Y = |X ′|p−2X ′ ⇐⇒ X ′ = |Y |
p

p−1−2 Y ,

Y ′ = |X|p−2X − |X|q−2X .
(12)

The energy

H(X,Y ) = (p− 1) |Y |
p

p−1 +
p

q
|X|q − |X|p

is conserved and positive solutions are determined by the condition minH = p
q−1 ≤

H < 0. Hence a shooting method with initial data

X(0) = a and Y (0) = 0

provides all positive solutions (up to a translation) if a ∈ (0, 1]. For clarity, we shall
denote the corresponding solution by Xa and Ya. Some solutions of the Hamiltonian
system and the corresponding vector field are shown in Fig. 1.

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

Figure 1. The vector field (X,Y ) 7→ (|Y |
p

p−1−2 Y, |X|p−2X −
|X|q−2X) and periodic trajectories corresponding to a = 1.35
(with positive X) and a = 1.8 (with sign-changing X) are shown
for p = 2.5 and q = 3. The zero-energy level is also shown.
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The numerical computation of the branches. Assume that 2 < p < q and let
us consider the solution of

−Lp fa + fp−1
a = fq−1

a , f ′a(0) = 0 , fa(0) = a .

We learn from the Hamiltonian reformulation that H
(
fa(r), |f ′a(r)|p−2 f ′a(r)

)
is

independent of r, where H(X,Y ) = (p − 1) |Y |
p

p−1 + p V (X) where V (X) :=
1
q |X|

q− 1
p |X|

p. Since we are interested only in positive solutions, it is necessary that

H(a, 0) < 0, which means that we can parametrize all non-constant solutions by
a ∈ (0, 1). Let b(a) ∈

(
1, (q/p)1/(q−p)) be the other positive solution of V (b) = V (a).

If Ta denotes the period of fa, then we know that f ′a is positive on the interval
(0, Ta/2) and can compute it using the identity H

(
fa(r), |f ′a(r)|p−2 f ′a(r)

)
= V (a)

as

f ′a(r) =

(
p

p− 1

(
V (a)− V

(
fa(r)

))) 1
p

.

This allows to compute Ta as

Ta = 2

∫ Ta/2

0

dr =

∫ b(a)

a

(
p

p− 1

(
V (a)− V

(
X
)))− 1

p

dX .

See Fig. 2.

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

Figure 2. The period Ta of the solution of (12) with initial
datum X(0) = a ∈ (0, 1) and Y (0) = 0 as a function of a for p = 3
and q = 5. We observe that lima→0 Ta = +∞ and lima→1 Ta = 0.

With the same change of variables X = fa(r), we can also compute∫ Ta

0

|f ′a|p dr = 2

∫ b(a)

a

(
p

p− 1

(
V (a)− V

(
X
)))1− 1

p

dX ,∫ Ta

0

|fa|p dr =

∫ b(a)

a

Xp

(
p

p− 1

(
V (a)− V

(
X
)))− 1

p

dX ,∫ Ta

0

|fa|q dr =

∫ b(a)

a

Xq

(
p

p− 1

(
V (a)− V

(
X
)))− 1

p

dX .

Using Proposition 5, we can obtain the plot (λ, µ(λ)) as a curve parametrized by
a ∈ (0, 1). See Fig. 3. Similar results also hold in the case p > 2 and p− 1 < q < p.
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0
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0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Left: the branch λ 7→ µ(λ) for p = 3 and q = 5. Right:
the curve λ 7→ λ−µ(λ). In both cases, the bifurcation point λ = λ?1
is shown by a vertical line.

5. Concluding remarks and open questions. A major difference with the case
p = 2 is that the 1-homogenous p-Laplacian flow (8) involves a nonlocal term, for
homogeneity reasons. This is new and related with the fact that inequality (1) is
2-homogenous. To get rid of this constraint, one should consider inequalities with
a different homogeneity, but then one would be in trouble when Taylor expanding
at order two around the constants, and the framework should then be entirely
different. Instead of using a 1-homogenous flow, one could use a non 1-homogenous
flow as in [7], but one cannot expect that this would significantly remove the most
important difficulty, namely that λ?1 is a natural threshold for the perturbation of
the constants.

In Lemma 1, we cannot replace λ1 by λ?1, as it is shown in the Appendix: see the
discussion of the optimal constant in (5). On the other hand, in the computation of
i′ in Section 3.1, the term that we drop:

∫
S1 u
−p |u′|2p dσ, is definitely of lower order

in the asymptotic regime as t → +∞. Actually, in (5), if we consider u = 1 + ε v
and investigate the limit as ε → 0+, it is clear that the inequality of Lemma 1
degenerates into the Poincaré-Wirtinger inequality∫

S1
(Lp v)2 dσ ≥ λ1 ‖v′‖2(p−1)

Lp(S1) ∀ v ∈W2,p(S1) ,

where λ1 is not the optimal constant, as can be checked by writing the Euler-
Lagrange equation for an optimal w = |v′|p−2 v. Altogether, it does not mean that
one cannot prove that the optimal constant Λp,q in Theorem 1 is equal to λ?1 using
the carré du champ method, but if this can be done, it is going to be more subtle
than the usual cases of application of this technique.

Finally let us point that it is a very natural and open question to ask if there
is an analogue of the Poincaré estimate of Lemma 1 if p ∈ (1, 2). If yes, then we
would also have an analogue of Theorem 1 with 1 < p < 2. Notice that this issue is
not covered in [13].

Appendix A. Considerations on some inequalities of interest. We assume
that p > 1. In this appendix we collect some observations on the various inequalities
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which appear in this paper and how the corresponding optimal constants are related
to each other.

• Spectral gap associated with Lp . On S1, L−1
p (0) is generated by the constant

functions and there is a spectral gap, so that we have the Poincaré inequality∫
S1
|u′|p dσ ≥ Λ1

∫
S1
|u|p dσ ∀u ∈W1,p(S1) such that

∫
S1
|u|p−2 u dσ = 0 .

(13)
The optimal constant Λ1 is characterized by solving the Cauchy problem

Lpu+ |u|p−2 u = 0 with u(0) = 1 and u′(0) = 0

and performing the appropriate scaling so that the solution is 2π-periodic, as follows.
Let φp(s) = |s|p/p and denote by p′ = p/(p− 1) the conjugate exponent. Since the

ODE can be rewritten as:
(
φ′p(u

′)
)′

+ φ′p(u) = 0, we can introduce v = φ′p(u
′) and

observe that (u, v) solves the system

u′ = φ′p′(v) , v′ = −φ′p(u) , u(0) = 1 , v(0) = 0 .

The Hamiltonian energy φp(u)+φp′(v) = 1/p is conserved and a simple phase plane
analysis shows that the solution is periodic, with a period which depends on p and
is sometimes denoted by 2πp in the literature. Then the function x 7→ fp(x) :=
u(πp x/π) is 2π-periodic and solves

Lp fp + Λ1 |fp|p−2 fp = 0 with Λ1 =

(
π

πp

)p
.

See [11, 12] for more results on Λ1 and related issues.
For any function u ∈ W1,p(S1), t 7→

∫
S1 |t+ u|p dσ is a convex function which

achieves its minimum at t = 0 if
∫
S1 |u|

p−2 u dσ = 0. As a consequence, we get that

Λ1 = min
u∈W1,p(S1)

max
t∈R

‖u′‖pLp(S1)

‖t+ u‖pLp(S1)

and

λ1 = inf
v∈W1

‖v′‖2Lp(S1)

‖v‖2Lp(S1)

≤ Λ
2
p

1 .

On the other hand, the optimal function fp is in W1 by uniqueness of the solution
to the ODE. Indeed we know that fp changes sign and for any x0 ∈ R such that
fp(x0) = 0, then x 7→ − fp(2x0 − x) is also a solution, which coincides with fp.
Hence we have that

λ1 = Λ
2
p

1 .

Alternatively, λ1 is the optimal constant in the inequality

‖v′‖2Lp(S1) ≥ λ1 ‖v‖2Lp(S1) ∀ v ∈ W1 . (14)

Notice that the zero average condition
∫
S1 |u|

p−2 u dσ = 0 in (13) differs from the

condition
∫
S1 v dσ = 0 in (14), but that the two inequalities share the same optimal

functions.
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• The inequality on L2(S1). Here we consider the inequality

‖v′‖2Lp(S1) ≥ λ
?
1 ‖v‖2L2(S1) ∀ v ∈ W1 , (15)

with optimal constant λ?1. Since dσ is a probability measure, then ‖u‖2Lp(S1) −
‖u‖2L2(S1) has the same sign as (p − 2) and we have equality if and only if u is

constant, so that, for any p 6= 2, we have (p − 2)
(
λ?1 − λ1

)
≥ 0 as already noted

in the introduction. If p = 2, we have of course λ?1 = λ1 as the two inequalities
coincide. If p 6= 2, one can characterize λ?1 by solving the Cauchy problem

Lpu+ u = 0 with u(0) = 1 and u′(0) = 0

and performing the appropriate scaling so that the solution is 2π-periodic, as it has
been done above for Λ1. We can also introduce v = φ′p(u

′) and observe that (u, v)
solves the system

u′ = φ′p′(v) , v′ = −u , u(0) = 1 , v(0) = 0 ,

so that trajectories differ from the ones associated with fp. This proves that λ?1 6= λ1

if p 6= 2. See Appendix B for further details.

• A more advanced interpolation inequality. In the proof of Lemma 1, we establish
on W1,p(S1) the inequality

‖u′‖2Lp(S1) ‖u‖
p−2
Lp(S1) ≥ λ1

∫
S1
|u|p−2 v2 dσ with v = u− ū , ū =

∫
S1
u dσ (16)

in the case p > 2. This inequality is optimal because equality is achieved by u = fp.
We can in principle consider the inequality

‖u′‖2Lp(S1) ‖u‖
p−2
Lp(S1) − µ1

∫
S1
|u|p−2 v2 dσ ≥ 0 ∀u ∈W1,p(S1)

with optimal constant µ1 and v = u− ū, for some appropriate notion of average ū
which is not necessarily given by ū =

∫
S1 u dσ. With the standard definition of ū,

we have shown in Lemma 1 that µ1 = λ1. Any improvement on the estimate of µ1

(with an appropriate orthogonality condition), i.e., a condition such that fp is not
optimal and µ1 > λ1, would automatically provide us with the improved estimate

Λp,q ≥ µ1

in Theorem 1. As a consequence of Theorem 1, we know anyway that µ1 ≤ λ?1.
Inspired by the considerations on Λ1, let us define

µ1 = min
u∈W1,p(S1)

max
t∈R

‖u′‖2Lp(S1) ‖u‖
p−2
Lp(S1)∫

S1 |u|p−2 |u− t|2 dσ
.

An elementary optimization on t shows that the optimal value is t = ūp with

ūp :=

∫
S1 |u|

p−2 u dσ∫
S1 |u|p−2 dσ

.

By considering again fp, we see that actually µ1 = λ1, which proves the inequality

‖u′‖2Lp(S1) ‖u‖
p−2
Lp(S1) ≥ λ1

∫
S1
|u|p−2 |u− ūp|2 dσ ∀u ∈W1,p(S1) (17)

for an arbitrary p > 2. As a consequence of (17), we recover (5). By keeping track
of the equality case in the proof, we obtain that fp realizes the equality in (5), which
proves again that the constant λ1 is optimal in (5).
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Appendix B. Computation of the constants λ1 and λ?1. Any critical point
associated with λ1 solves

−Lpu = λ
p
2
1 |u|p−2 u on S1 ≈ [0, 2π) .

The function f such that

u(x) = f

(
T1 x

2π

)
x ∈ [0, T1) ,

(
T1

2π

)p
= λ

p
2
1

is a T1-periodic solution of

−Lp f = |f |p−2 f .

Moreover, by homogeneity and translation invariance, we can assume that f(0) = 1
and f ′(0) = 0. An analysis in the phase space shows that f has symmetry properties
and that the energy is conserved and such that (p− 1) |f ′|p + |f |p = 1, so that

T1 = 4

∫ 1

0

(
p− 1

1−Xp

) 1
p

dX .

Hence we conclude (see Fig. 4) that

λ1 =

(
2

π

∫ 1

0

(
p− 1

1−Xp

) 1
p

dX

)2

.

Similarly, a critical point associated with λ?1 solves

−‖u′‖2−pLp(S1) Lpu = λ?1 u on S1 ≈ [0, 2π) .

With no loss of generality, by homogeneity we can assume that ‖u′‖2−pLp(S1) = λ?1 so

that u can be considered as 2π-periodic solution on R of −Lpu = u. By translation
invariance, we can also assume that u′(0) = 0 but the value of u(0) = a > 0 is
unknown. The function f such that

u(x) = a f
(
a

2
p−1 x

)
is still a periodic solution of

−Lp f = f ,

with now f(0) = 1 and f ′(0) = 0, of period

T ?1 = 2π a
2
p−1 .

The energy 2
p (p− 1) |f ′|p + |f |2 = 1 is conserved, so that

T ?1 = 4

∫ 1

0

(
2

p

p− 1

1−X2

) 1
p

dX and a
2
p−1 =

2

π

∫ 1

0

(
2

p

p− 1

1−X2

) 1
p

dX .

By computing

‖u′‖pLp(S1) = 4 a3− 2
p

∫ T?
1 /4

0

|f ′|p dx
2π

=
2

π
a3− 2

p

∫ 1

0

(
2

p

p− 1

1−X2

) 1
p−1

dX ,

we obtain (see Fig. 4) that

λ?1 = ‖u′‖2−pLp(S1) =

(
2

π

∫ 1

0

(
2

p

p− 1

1−X2

) 1
p−1

dX

)2
p−1(

2

π

∫ 1

0

(
2

p

p− 1

1−X2

) 1
p

)3− 2
p

.



INTERPOLATION, p-LAPLACIAN AND RIGIDITY 19

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4. The curves p 7→ λ1 (dotted) and p 7→ λ?1 (plain) differ.
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