Smooth solutions for nonlinear elastic waves with softening - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Smooth solutions for nonlinear elastic waves with softening

Résumé

A new hyperbolic softening model has been proposed for wave propagation in damaged solids [2]. The linear elasticity becomes nonlinear through an additional internal variable. This thermodynamically relevant model yields a dissipative energy. The 3×3 nonlinear hyperbolic system so-obtained is totally linearly degenerate like the well-known Kerr-Debye system. Existence of global smooth solutions is studied here thanks to the Kawashima condition. Moreover, shocks never appear with smooth initial data.
Fichier principal
Vignette du fichier
3LD-smooth-II.pdf (433 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01994898 , version 1 (25-01-2019)
hal-01994898 , version 2 (19-04-2019)

Identifiants

  • HAL Id : hal-01994898 , version 2

Citer

Harold Berjamin, Stéphane Junca, Bruno Lombard. Smooth solutions for nonlinear elastic waves with softening. HYP2018 - 17th International Conference on Hyperbolic PDEs, Alberto BRESSAN, Marha Lewicka, Dehua Wang, Yuxi Zheng, Jun 2018, College Park, United States. pp.304-3011. ⟨hal-01994898v2⟩
347 Consultations
152 Téléchargements

Partager

More