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A new hyperbolic softening model has been proposed for wave propagation in damaged solids [Proc. R. Soc. A, 473 (2017), 20170024]. The linear elasticity becomes nonlinear through an additional internal variable. This thermodynamically relevant model yields a dissipative energy. The 3 × 3 nonlinear hyperbolic system so-obtained is totally linearly degenerate like the well-known Kerr-Debye system. Existence of global smooth solutions is studied here thanks to the Kawashima condition. Moreover, shocks never appear with smooth initial data. Thus, the only possible blow-up of smooth solutions is the blow-up in L ∞ as for ODEs.

Introduction

The system of interest has been introduced in [START_REF] Berjamin | Nonlinear waves in solids with slow dynamics: an internal variable model[END_REF] to model nonlinear wave propagation in solids:

∂ t ε -∂ x v = 0, (1) ρ 0 ∂ t v -∂ x σ = 0, (2) 
∂ t g = 1 τ (W (ε) -φ (g)), (3) 
where the constants are ρ 0 > 0 the density, E > 0 the Young modulus, τ > 0 the relaxation time. The variables are ε > -1 the strain, v the velocity, σ = (1 -g)E ε the stress, W (ε) = 1 2 Eε 2 the strain energy, g an internal variable representing the damage. The system is completed with three initial data at time t = 0: ε 0 (x), v 0 (x), 0 ≤ g 0 (x) < 1.

The storage function φ(g) has to satisfy φ (0) = 0 (to preserve the equilibrium (ε, g) = (0, 0) and to keep g ≥ 0), φ ≥ 0 and φ > 0 (to ensure the stability of constant equilibrium). Moreover, g < 1 is required since for g = 1 the solid is broken. An example of function φ to ensure these constraints is φ(g) = -1 2 γ ln(1 -g 2 ) with γ > 0. The initial-value problem for the system of balance laws (1)-( 3) can be rewritten in vectorial form with c = c(g) = c√ 1 -g and c = E/ρ 0 :

∂ t U + ∂ x F (U ) = G(U ), (4) 
U = (ε, v, g) , F (U ) = (-v, -c 2 ε, 0) , G(U ) = 1 τ (0, 0, W (ε) -φ (g)) .
The nonincreasing total energy E and the internal energy e are:

E := ρ 0 (v 2 /2 + e) = ρ 0 v 2 /2 + (1 -g)W (ε) + φ(g) .

(
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For smooth solutions the dissipation of the energy is

d dt R Edx = - ρ 0 τ R (W (ε) -φ (g)) 2 dx = -ρ 0 τ R (∂ t g) 2 dx ≤ 0. (6) 
It is a partially dissipative system [START_REF] Hanouzet | Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy[END_REF][START_REF] Beauchard | Large time asymptotics for partially dissipative hyperbolic systems[END_REF] which may ensure existence of global smooth solutions [START_REF] Yong | Entropy and global existence for hyperbolic balance laws[END_REF] under the Kawashima condition [START_REF] Shizuta | Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation[END_REF]. In Section 2, the totally linearly degenerate 3 × 3 homogeneous system deduced from (4) is studied. The Kawashima condition for the full system with the source term are directly related to the function φ in Section 3. The comparison with the Kerr-Debye system and the non existence of shock wave for the system (4) are in Section 4. Finally, numerical simulations of smooth solutions for the system (4) conclude the paper in Section 5.

The linearly degenerate homogeneous system

Consider the system (4) with no source: G = 0. The Jacobian matrix of the flux F has three eigenvectors r -, r 0 , r + associated to 3 linearly degenerate eigenvalues: -c, 0, +c in the hyperbolic region g < 1:

A = DF (U ) =   0 -1 0 -c 2 0 ε c2 0 0 0   , r ± =   1 ∓c 0   , r 0 =   ε c2 0 c 2   . (7) 
Many things are known for 2 × 2 totally linearly degenerate system [START_REF] Neves | Ill-posedness of the cauchy problem for totally degenerate system of conservation laws[END_REF][START_REF] Peng | Explicit solutions for 2 × 2 linearly degenerate systems[END_REF]. Less is known for 3 × 3 system except under special conditions as in [START_REF] Li | Entropy solutions for linearly degenerate hyperbolic systems of rich type[END_REF].

The homogeneous version of (3) means simply g ≡ g 0 thus the nonlinear system (1)-( 2) gives a linear wave equation with the variable sound speed c 0 (x) = c 1 -g 0 (x):

∂ 2 t ε -∂ 2 x (c 2 0 (x)ε) = 0. (8) 
Physically, it corresponds simply to the linear elasticity with a varying Young modulus depending only on the space variable x. Then a proof using the Riemann invariants [START_REF] Lax | Hyperbolic partial differential equations[END_REF] of the elastodynamics yields the existence of global smooth solutions:

Proposition 1 (Global smooth solution for the homogeneous system) Let us assume that the initial data at time t = 0: ε 0 (x), v 0 (x) belongs to the space Lip loc (R, R) of locally Lipschitz-functions, g 0 (x) ∈ Lip(R, R), sup R g 0 (x) < 1 and ∂ x g 0 ∈ Lip loc (R, R) . Then the homogeneous hyperbolic system admits a unique global smooth solution (ε, v) with the same regularity in space as the initial data:

ε, v ∈ L ∞ loc ([0, +∞[, Lip loc (R, R)) ∩ C 1 ([0, +∞[, L ∞ loc (R, R)).
A proof using the Riemann invariants of the 2 × 2 system of linear elastodynamics is proposed. They are not Riemann invariants for the full 3 × 3 system, nevertheless some computations are possible involving ∂ x g. Since g(t, x) = g 0 (x) the term ∂ x g is easily controlled by the Lipschitz initial datum g 0 (x). For the system with the source term, the following proof fails because ∂ x g cannot be estimated so easily.

Proof: The dimensionless 3 × 3 nonlinear system is simply rewritten as a linear 2 × 2 system with a variable coefficient:

∂ t ε -∂ x v = 0, ( 9 
) ∂ t v -∂ x [(1 -g 0 (x))ε] = 0, (10) 
or in a short way:

∂ t U + ∂ x F (x, U ) = 0, U = (ε, v) , F (x, U ) = (-v, (g 0 (x) -1)ε) .
Let A and G be the 2 × 2 variable matrices which depend on the space variable x:

A(x) = ∂ U F = 0 -1 g 0 (x) -1 0 , G(x, U ) = ∂ x F = 0 (∂ x g 0 (x)) ε .
The gradient of the Riemann invariants ∇ U z ± = (∓c 0 , 1) are the left eigenvectors of the matrix A. Thus, the Riemann invariants are Z = (z + , z -) . The system ( 9)-( 10) reads:

∂ t U + A(x) ∂ x U = -G(x, U ), ( 11 
) ∂ t z ± ± c 0 ∂ x z ± = -∇ U z ± • G(x, U ) (12) = -(∂ x g 0 ) ε = -(∂ x g 0 ) z --z + 2c 0 g 0 .
Notice that ∇ U z ± , c 0 and g 0 are only functions of x. The function σ is linear with respect to ε, thus Lipschitz with respect to Z.

The system [START_REF] Li | Entropy solutions for linearly degenerate hyperbolic systems of rich type[END_REF] with the variable U has been rewritten with the vector Z for the 2 × 2 system [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF], which variable coefficients are smooth while g 0 < 1. Using the characteristics X ± (t, x) and the Riemann invariants evaluated along the characteristics z ± (X ± (t, x), t), the 2 × 2 linear PDE system (12) becomes a family of the 4 × 4 nonlinear ODE system parametrized by x ∈ R and involving changes of variables:

dX ± dt = ±c 0 (X ± ) = ± 1 -g 0 (X ± ), X ± (0, x) = x, (13) 
dz ± dt = -(∂ x g 0 ) z --z + 2c 0 g 0 (X ± , t), Z(x, 0) = Z 0 (x). ( 14 
)
This system is block triangular. The first two equations ( 13) are decoupled: the characteristics are global smooth functions since g 0 is globally Lipschitz and sup g 0 < 1, so that the function c 0 is also globally Lipschitz. The characteristics have at most an exponential growth with respect to the time t.

Let us turn to the two coupled last equations [START_REF] Peng | Explicit solutions for 2 × 2 linearly degenerate systems[END_REF]. Notice that the coupling involves change of variables between X -and X + : z ∓ (X ± , t) instead of z ± (X ± ). This is classical [6,[START_REF] Goudon | Vanishing pressure in gas dynamics equations[END_REF] and can be managed by a fixed point strategy. Then the global existence follows.

For the full system with a source term the situation is more intricate.

The (SK) condition for the complete system

The famous (SK) condition, defined by Shizuta and Kawashima in [START_REF] Shizuta | Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation[END_REF], yields existence of global smooth solutions near an equilibrium [START_REF] Yong | Entropy and global existence for hyperbolic balance laws[END_REF].

Consider an equilibrium U e of the system (4), that is a constant solution: G(U e ) = 0. The (SK) condition writes at U e :

Ker DG(U e ) ∩ {eigenvectors of DF (U e )} = {0}. ( 15 
)
The equilibrium U e = (ε e , v e , g e ) for the system of interest is given by the equation W (ε e ) = φ (g e ). When g e > 0, there are two equilibrium (ε e , v e , g e ), with ε e = ± 2φ (g e )/E [START_REF] Yong | Entropy and global existence for hyperbolic balance laws[END_REF] and without restriction on v e . When g e = 0 the equilibrium is (0, v e , 0). The linearized source term is a rank one matrix with the equation of the kernel,

τ DG(U e ) =   0 0 0 0 0 0 Eε e 0 -φ (g e )   , E ε e ε = φ (g e ) g.
The eigenvectors r ± of DF (U e ) associated to the eigenvalues ±c e do not belong to Ker DG(U e ). The only problem remains for the eigenvector r 0 in the kernel of DF (U e ).

It also belongs to Ker DG(U e ) if and only if E ε 2 e = (1 -g e )φ (g e ). Replacing the left hand side thanks to [START_REF] Yong | Entropy and global existence for hyperbolic balance laws[END_REF] yields only one equation to check when the (SK) condition is not fulfilled, (0 < g e < 1): 2φ (g e ) = (1 -g e )φ (g e ).

(
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Since φ > 0 the case g e = 0 is excluded. Let us consider the example φ(g) = -1 2 γ ln(1 -g 2 ). A simple computation yields

φ (g) = γ g 1 -g 2 , φ (g) = γ 1 + g 2 (1 -g 2 ) 2 ≥ γ.
Thus, the (SK) condition is fulfilled except when g e = √ 2 -1 0.414. As a consequence of the previous study, with the condition φ (0) = 0 and φ > 0, the (SK) condition is always fulfilled if and only if,

∀g ∈]0, 1[, 2φ (g) < (1 -g)φ (g). ( 18 
)
Lemma 3.1 (Loss of (SK) condition) If lim g→1

(1 -g)φ(g) = 0 then the (SK) condition is not always satisfied.

Proof: Notice that inequality (18) is always satisfied near g = 0 since φ (0) = 0 and φ (0) > 0. Let g 0 belong to ]0, 1[. It suffices to integrate the differential inequality (18) to get for all g ∈]g 0 , 1[,

φ (g) > φ (g 0 ) 1 -g 0 1 -g 2 , then φ(g) > φ(g 0 ) + φ (g 0 ) 1 -g 0 1 -g (g -g 0 ).
Thus lim inf g→1

(1 -g)φ(g) > φ (g 0 )(1 -g 0 ) 2 > 0 and the lemma follows by contradiction.

A family of examples satisfying always the (SK) condition is given by φ(g) = 1 2 γg 2 (1 -g) -α , with α > 1. The condition α > 1 is necessary and sufficient. The proof is direct and needs only to check: φ (0) = 0, φ > 0 on [0, 1[ and (18).

As a direct consequence of (18) and the proof of Lemma 3.1, one gets the following lemma.

Lemma 3.2 (Not (SK) fulfilled on a continuum)

If the (SK) condition is not satisfied on an interval [g 1 , g 2 ] then φ(g) = φ(g 1 ) + φ (g 1 )

1 -g 1 1 -g (g -g 1 ).

4 Comparison with the Kerr-Debye model

In this section we compare the system (1)-( 3) to the Kerr-Debye system well-known in nonlinear optics. In the latter system smooth initial data in the Sobolev space H 2 (R) yield global smooth solutions. The system (1)-( 3) can be rewritten in a similar form as the Kerre-Debye system, except the source term which is modified. This modification prevents from transfering all known results on Kerr-Debye system to our case. In particular, we cannot deduce existence of global solutions. However, other results are known for the modified Kerr-Debye system [START_REF] Carbou | Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation[END_REF] ensuring that no discontinuity can appear in finite time.

The only catastrophe which can occur is a L ∞ blow-up as for the solutions of ODEs [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF].

The Kerr-Debye model

∂ t d + ∂ x h = 0, ( 19 
) ∂ t h + ∂ x e = 0, (20) 
∂ t χ = 1 τ e 2 -χ , (21) 
where d = (1 + χ)e and the initial condition (d, h, χ)(x, 0) = (d 0 , h 0 , χ 0 )(x). With χ 0 ≥ 0 it follows immediatly that χ ≥ 0. The semilinear behavior of solutions of the system is proven in [START_REF] Hanouzet | Comportement semi-linéaire d'un système hyperbolique quasi-linéaire: le modèle de Kerr Debye[END_REF]. That means that a smooth solution is not global only if the solution blows up in sup-norm [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF]. The global existence of all smooth solution is proven in [START_REF] Carbou | Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation[END_REF]. This system is also endowed with a strictly convex partially dissipative energy,

E = d 2 1 + χ + h 2 + χ 2 2 , d dt R Edx = -τ R (∂ t χ) 2 dx ≤ 0 (22)
To prove (22) the system (19)-( 21) is rewritten in variables W = (e, h, χ), to obtain a symmetric system. The semilinear behavior is proven by energy estimates. More precisely

, if W is bounded in L ∞ ([0, T * [×R) then W is also bounded in L ∞ ([0, T * [, H 2 (R))
which is enough to prevent the blow up of the gradient i.e. shock-wave.

Our system rewritten in Kerr-Debye variables

Motivated by the previous results on the Kerr-Debye system, the system (1)-( 3) is rewritten in Kerr-Debye variables:

d = ε, h = -v, d 1 + χ = e = σ = (1 -g)ε =⇒ 1 + χ = 1 1 -g . ( 23 
) Thus, χ t = g t (1 -g) -2 = (1 + χ) 2 g t = (1 + χ) 2 (d 2 /2 -φ ( 
g)) and our system becomes with ρ 0 = 1, E = 1 and τ = 1:

∂ t d + ∂ x h = 0, ( 24 
) ∂ t h + ∂ x e = 0, (25) 
∂ t χ = (1 + χ) 2 d 2 2 -φ (g) = (1 + χ) 4 e 2 2 -ψ (χ), ( 26 
)
where ψ is the increasing function defined by, ψ (χ) = (1+χ) 2 φ 1-(1+χ) -1 . Comparing ( 21) with ( 26), there appears only two changes, the weight (1 + χ) 4 and the function ψ.

Conversely, the Kerr-Debye system can be rewritten in variables (ε, v, g):

∂ t ε = ∂ x v, ∂ t v = ∂ x σ, ∂ t g = (1 -g) 4 ε 2 -φ (g).
Notice that ψ linear -as for the Kerr-Debye system -corresponds to the following choice for φ : φ (g) = g(1 -g). For this choice, g < 1 for all time since χ > 0 for all time.

Unfortunately, this choice is not consistent with the requirement on φ: φ > 0.

Our model can be seen as a nonlinear generalization of the Kerr-Debye system. The nonlinear generalization consists in the nonlinear relaxation with respect to the variable χ. This additional nonlinearity prevents to obtain a global energy estimate for the derivatives of the solutions of ( 1)-(3) as in [START_REF] Carbou | Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation[END_REF].

The mapping, g → χ is increasing, g = 0 ⇔ χ = 0, g = 1 ⇔ χ = +∞. Thus, the constraint on g becomes a condition of no blow up for χ. The equation (26) yields automatically the positivity of χ > 0 and then the constraint g < 1 required by our model.

Moreover, the semilinear behavior for generalized Kerr-Debye systems is known, Theorem 4.1 in [START_REF] Carbou | Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation[END_REF]. Thus, our system enjoys a semilinear behavior. It means that no schock can occur with smooth initial data:

Corollary 1 (No shock) Let ε 0 , v 0 , g 0 belong to H 2 (R) and sup R g 0 < 1 then the solution of the system (1)-( 3) remains in H 2 as soon as it remains in L ∞ .

The solution is then global smooth or blows up. The blow up means that ε or v blow up in L ∞ or g = 1 in finite time.

Let us explain why the [START_REF] Carbou | Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation[END_REF]'s proof does not work for the system (1)-( 2)-(3). To obtain the L ∞ bound with energy estimayes it suffices to get a H 1 bound. The L 2 bound is free with the energy. So, let's go to the estimate on the derivatives. To this purpose, we rewrite the system in variables V = (e, h, χ), (forgetting the /2 in e 2 /2 to avoid fractions)

(1 + χ)∂ t e + ∂ x h = -e∂ t χ = -e((1 + χ) 4 e 2 -ψ (χ)), ( 27 
) ∂ t h + ∂ x e = 0, ( 28 
) ∂ t χ = (1 + χ) 4 e 2 -ψ (χ), (29) 
Multiplying the first two equations by (e, h), integrating in space and after few computations we recover the energy: 

d dt R (1 + χ)e 2 + h 2 + 2ψ(χ) dx = -(1 + χ) -4 R (∂ t χ) 2 dx ≤ 0, (30) 
) 2e∂ t e = ∂ tt χ + ψ (χ)∂ t χ so 2 R (∂ tt χ)e∂ t edx = R (∂ tt χ) 2 dx + R (∂ tt χ)ψ (χ)∂ t χdx, = R (∂ tt χ) 2 dx + 1 2 d dt R ψ (χ)(∂ t χ) 2 dx - 1 2 R ψ (χ)(∂ t χ) 3 dx, since (∂ tt χ)ψ (χ)∂ t χ = ∂ t (ψ (χ)(∂ t χ) 2 /2 -ψ (χ)(∂ t χ) 3 /2.
Adding these equality we have 1 2

d dt R (1 + χ)(∂ t e) 2 + (∂ t h) 2 + 1 2 ψ (χ)(∂ t χ) 2 dx (38) + R e 2 (∂ t e) 2 + 1 2 (∂ tt χ) 2 dx (39) = R ψ (χ)(∂ t e) 2 dx + 1 4 R ψ (χ)(∂ t χ) 3 dx (40) 
Now, the main difficulty appears. It is the cubic term in (40). This term prevents the use of the Groonwall inequality. This term disappeards for the Kerr-Debye system since ψ ≡ 0.

5 Numerical solution for the complete system

The system of balance laws (4) is solved numerically. Following Sec. 4.2 of [START_REF] Berjamin | A finite-volume approach to 1D nonlinear elastic waves: Application to slow dynamics[END_REF], an explicit time-stepping formula is used, which involves the numerical flux of a finite-volume scheme (a flux-limiter method based on the Roe scheme). The initial data is chosen as follows: v 0 (x) is zero, g 0 (x) = g e is constant, while the strain ε 0 (x) = ε e -2V F (kx) has a smooth waveform F (x) = 4 3 √ 3 sin(x) -1 2 sin(2x) 1 0≤x≤2π with fundamental wavelength 2π/k = 0.2 and amplitude V . The domain x ∈ [-5, 5] is discretized with 20 000 points and the Courant number is 0.95. Outflow conditions are implemented at the boundaries of the domain, as presented in Sec. 7.2.1 of [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF]. In this section, the physical constants ρ 0 , E equal one, and τ , γ equal 10 -4 (SI).

Numerical results at the time t = 4.5 are shown in Fig. 1 for ε e = g e = 0. In the small amplitude limit, the solution converges towards the solution obtained for linear elasticity (g ≡ 0), where the initial data is transported at constant speed. As amplitudes are increased, wavefront steepening is observed, along with a diminution of the wave amplitude and of the speed of sound (delay). Nevertheless, the solution keeps smooth. At ε e = ± γ/E and g e = √ 2 -1, the (SK) condition is no longer satisfied. However, the stability of the equilibrium is verified numerically. This is illustrated in Fig. 2, which displays the numerical solution for V = 0.001 at various times. The dynamics of the system seems to be driven by its stable equilibrium points. 
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 21 Figure 1: Equilibrium ε e g e = 0. Numerical solution at = 4.5 for several amplitudes V . (a) Normalized strain ε/V ; (b) normalized velocity v/V and softening g/V 2 .
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 221 Figure 2: Equilibrium ε e γ/E, g e = √ 2 -1. Numerical solution for V = 0.001 at several times. Strain ε (top); softening g (bottom).

  (1 + χ)∂ tt e + 2∂ t e∂ t χ + e∂ tt χ + ∂ t ∂ x h =, (34) ∂ tt h + ∂ t ∂ x e = 0, (35) ∂ tt χ = 2e∂ t e -ψ (χ)∂ t χ. ∂ t e∂ t ∂ x h + ∂ t h∂ t ∂ x e = ∂ x (∂ t e∂ t h).From (33) we have

	Differentiating with respect to t,				
									(36)
	Taking the usual energy estimate by multiplying the first two equations by (∂ t e, ∂ t h) we
	have as in [5]					
	1 2	d dt R	(1 + χ)(∂ t e) 2 + (∂ t h) 2 dx + 2	R	∂ t χ(∂ t e) 2 dx +	R	(∂ tt χ)e∂ t edx = 0,	(37)
	since the term R	∂ t χ(∂ t e) 2 dx =	R	e 2 (∂ t e) 2 dx -	R	ψ (χ)(∂ t e) 2 dx,
	and from (36						
	This yields the L 2 estimate.				
	H 1 bound:					
	We rewrite the system with ∂ t χ in the first equation,
				(1 + χ)∂ t e + e∂ t χ + ∂ x h =,	(31)
						∂ t h + ∂ x e = 0,	(32)
								∂ t χ = e 2 -ψ (χ).	(33)
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