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Harold Berjamin ∗, Stéphane Junca †, Bruno Lombard ‡
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Abstract

A new hyperbolic softening model has been proposed for wave propagation in
damaged solids [Proc. R. Soc. A, 473 (2017), 20170024]. The linear elasticity be-
comes nonlinear through an additional internal variable. This thermodynamically
relevant model yields a dissipative energy. The 3 × 3 nonlinear hyperbolic system
so-obtained is totally linearly degenerate like the well-known Kerr-Debye system.
Existence of global smooth solutions is studied here thanks to the Kawashima con-
dition. Moreover, shocks never appear with smooth initial data. Thus, the only
possible blow-up of smooth solutions is the blow-up in L∞ as for ODEs.
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1 Introduction

The system of interest has been introduced in [2] to model nonlinear wave propagation in
solids:

∂tε− ∂xv = 0, (1)

ρ0∂tv − ∂xσ = 0, (2)

∂tg =
1

τ
(W (ε)− φ′(g)), (3)

where the constants are ρ0 > 0 the density, E > 0 the Young modulus, τ > 0 the
relaxation time. The variables are ε > −1 the strain, v the velocity, σ = (1 − g)E ε the
stress, W (ε) = 1

2
Eε2 the strain energy, g an internal variable representing the damage.

The system is completed with three initial data at time t = 0: ε0(x), v0(x), 0 ≤ g0(x) < 1.
The storage function φ(g) has to satisfy φ′(0) = 0 (to preserve the equilibrium

(ε, g) = (0, 0) and to keep g ≥ 0), φ′ ≥ 0 and φ′′ > 0 (to ensure the stability of con-
stant equilibrium). Moreover, g < 1 is required since for g = 1 the solid is broken. An
example of function φ to ensure these constraints is φ(g) = −1

2
γ ln(1− g2) with γ > 0.

The initial-value problem for the system of balance laws (1)-(3) can be rewritten in
vectorial form with c = c(g) = c̄

√
1− g and c̄ =

√
E/ρ0:

∂tU + ∂xF (U) = G(U), (4)

U = (ε, v, g)>, F (U) = (−v,−c2ε, 0)>, G(U) =
1

τ
(0, 0,W (ε)− φ′(g))

>
.

The nonincreasing total energy E and the internal energy e are:

E := ρ0(v
2/2 + e) = ρ0

(
v2/2 + (1− g)W (ε) + φ(g)

)
. (5)

For smooth solutions the dissipation of the energy is

d

dt

∫
R
Edx = −ρ0

τ

∫
R

(W (ε)− φ′(g))
2
dx = −ρ0τ

∫
R

(∂tg)2 dx ≤ 0. (6)

It is a partially dissipative system [8, 1] which may ensure existence of global smooth
solutions [16] under the Kawashima condition [15].

In Section 2, the totally linearly degenerate 3× 3 homogeneous system deduced from
(4) is studied. The Kawashima condition for the full system with the source term are
directly related to the function φ in Section 3. The comparison with the Kerr-Debye
system and the non existence of shock wave for the system (4) are in Section 4. Finally,
numerical simulations of smooth solutions for the system (4) conclude the paper in Section
5.

2 The linearly degenerate homogeneous system

Consider the system (4) with no source: G = 0. The Jacobian matrix of the flux F has
three eigenvectors r−, r0, r+ associated to 3 linearly degenerate eigenvalues: −c, 0,+c in
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the hyperbolic region g < 1:

A = DF (U) =

 0 −1 0
−c2 0 ε c̄2

0 0 0

 , r± =

 1
∓c
0

 , r0 =

ε c̄20
c2

 . (7)

Many things are known for 2×2 totally linearly degenerate system [13, 14]. Less is known
for 3× 3 system except under special conditions as in [11].

The homogeneous version of (3) means simply g ≡ g0 thus the nonlinear system (1)-(2)
gives a linear wave equation with the variable sound speed c0(x) = c̄

√
1− g0(x):

∂2t ε− ∂2x(c20(x)ε) = 0. (8)

Physically, it corresponds simply to the linear elasticity with a varying Young modulus
depending only on the space variable x. Then a proof using the Riemann invariants [9]
of the elastodynamics yields the existence of global smooth solutions:

Proposition 1 (Global smooth solution for the homogeneous system)
Let us assume that the initial data at time t = 0: ε0(x), v0(x) belongs to the space
Liploc(R,R) of locally Lipschitz-functions, g0(x) ∈ Lip(R,R), supR g0(x) < 1 and ∂xg0 ∈
Liploc(R,R) . Then the homogeneous hyperbolic system admits a unique global smooth
solution (ε, v) with the same regularity in space as the initial data:

ε, v ∈ L∞loc([0,+∞[, Liploc(R,R)) ∩ C1([0,+∞[, L∞loc(R,R)).

A proof using the Riemann invariants of the 2 × 2 system of linear elastodynamics
is proposed. They are not Riemann invariants for the full 3 × 3 system, nevertheless
some computations are possible involving ∂xg. Since g(t, x) = g0(x) the term ∂xg is easily
controlled by the Lipschitz initial datum g0(x). For the system with the source term, the
following proof fails because ∂xg cannot be estimated so easily.

Proof: The dimensionless 3 × 3 nonlinear system is simply rewritten as a linear 2 × 2
system with a variable coefficient:

∂tε− ∂xv = 0, (9)

∂tv − ∂x[(1− g0(x))ε] = 0, (10)

or in a short way:

∂tU + ∂xF (x, U) = 0, U = (ε, v)>, F (x, U) = (−v, (g0(x)− 1)ε)>.

Let A and G be the 2× 2 variable matrices which depend on the space variable x:

A(x) = ∂UF =

(
0 −1

g0(x)− 1 0

)
, G(x, U) = ∂xF =

(
0

(∂xg0(x)) ε

)
.
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The gradient of the Riemann invariants ∇Uz± = (∓c0, 1) are the left eigenvectors of the
matrix A. Thus, the Riemann invariants are Z = (z+, z−)>. The system (9)-(10) reads:

∂tU + A(x) ∂xU = −G(x, U), (11)

∂tz± ± c0 ∂xz± = −∇Uz± ·G(x, U) (12)

= − (∂xg0) ε

= − (∂xg0)
z− − z+
2c0 g0

.

Notice that ∇Uz±, c0 and g0 are only functions of x. The function σ is linear with respect
to ε, thus Lipschitz with respect to Z.

The system (11) with the variable U has been rewritten with the vector Z for the 2×2
system (12), which variable coefficients are smooth while g0 < 1. Using the characteristics
X±(t, x) and the Riemann invariants evaluated along the characteristics z±(X±(t, x), t),
the 2 × 2 linear PDE system (12) becomes a family of the 4 × 4 nonlinear ODE system
parametrized by x ∈ R and involving changes of variables:

dX±
dt

= ±c0(X±) = ±
√

1− g0(X±), X±(0, x) = x, (13)

dz±
dt

= −
(

(∂xg0)
z− − z+
2c0 g0

)
(X±, t), Z(x, 0) = Z0(x). (14)

This system is block triangular. The first two equations (13) are decoupled: the charac-
teristics are global smooth functions since g0 is globally Lipschitz and sup g0 < 1, so that
the function c0 is also globally Lipschitz. The characteristics have at most an exponential
growth with respect to the time t.

Let us turn to the two coupled last equations (14). Notice that the coupling involves
change of variables between X− and X+: z∓(X±, t) instead of z±(X±). This is classical
[6, 7] and can be managed by a fixed point strategy. Then the global existence follows.

�

For the full system with a source term the situation is more intricate.

3 The (SK) condition for the complete system

The famous (SK) condition, defined by Shizuta and Kawashima in [15], yields existence
of global smooth solutions near an equilibrium [16].

Consider an equilibrium Ue of the system (4), that is a constant solution: G(Ue) = 0.
The (SK) condition writes at Ue:

Ker DG(Ue) ∩ {eigenvectors of DF (Ue)} = {0}. (15)

The equilibrium Ue = (εe, ve, ge) for the system of interest is given by the equation
W (εe) = φ′(ge). When ge > 0, there are two equilibrium (εe, ve, ge), with

εe = ±
√

2φ′(ge)/E (16)
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and without restriction on ve. When ge = 0 the equilibrium is (0, ve, 0).
The linearized source term is a rank one matrix with the equation of the kernel,

τ DG(Ue) =

 0 0 0
0 0 0
Eεe 0 −φ′′(ge)

 , E εe ε = φ′′(ge) g.

The eigenvectors r± of DF (Ue) associated to the eigenvalues ±ce do not belong to
Ker DG(Ue). The only problem remains for the eigenvector r0 in the kernel of DF (Ue).
It also belongs to Ker DG(Ue) if and only if E ε2e = (1 − ge)φ′′(ge). Replacing the left
hand side thanks to (16) yields only one equation to check when the (SK) condition is
not fulfilled, (0 < ge < 1):

2φ′(ge) = (1− ge)φ′′(ge). (17)

Since φ′′ > 0 the case ge = 0 is excluded.
Let us consider the example φ(g) = −1

2
γ ln(1− g2). A simple computation yields

φ′(g) = γ
g

1− g2
, φ′′(g) = γ

1 + g2

(1− g2)2
≥ γ.

Thus, the (SK) condition is fulfilled except when ge =
√

2− 1 ' 0.414.
As a consequence of the previous study, with the condition φ′(0) = 0 and φ′′ > 0, the

(SK) condition is always fulfilled if and only if, ∀g ∈]0, 1[,

2φ′(g) < (1− g)φ′′(g). (18)

Lemma 3.1 (Loss of (SK) condition)
If lim

g→1
(1− g)φ(g) = 0 then the (SK) condition is not always satisfied.

Proof: Notice that inequality (18) is always satisfied near g = 0 since φ′(0) = 0 and
φ′′(0) > 0. Let g0 belong to ]0, 1[. It suffices to integrate the differential inequality (18)
to get for all g ∈]g0, 1[,

φ′(g) > φ′(g0)

(
1− g0
1− g

)2

, then φ(g) > φ(g0) + φ′(g0)
1− g0
1− g

(g − g0).

Thus lim inf
g→1

(1 − g)φ(g) > φ′(g0)(1 − g0)2 > 0 and the lemma follows by contradiction.

�

A family of examples satisfying always the (SK) condition is given by φ(g) = 1
2
γg2(1− g)−α,

with α > 1. The condition α > 1 is necessary and sufficient. The proof is direct and
needs only to check: φ′(0) = 0, φ′′ > 0 on [0, 1[ and (18).

As a direct consequence of (18) and the proof of Lemma 3.1, one gets the following
lemma.

Lemma 3.2 (Not (SK) fulfilled on a continuum)
If the (SK) condition is not satisfied on an interval [g1, g2] then

φ(g) = φ(g1) + φ′(g1)
1− g1
1− g

(g − g1).
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4 Comparison with the Kerr-Debye model

In this section we compare the system (1)-(3) to the Kerr-Debye system well-known in
nonlinear optics. In the latter system smooth initial data in the Sobolev space H2(R)
yield global smooth solutions. The system (1)-(3) can be rewritten in a similar form as the
Kerre-Debye system, except the source term which is modified. This modification prevents
from transfering all known results on Kerr-Debye system to our case. In particular, we
cannot deduce existence of global solutions. However, other results are known for the
modified Kerr-Debye system [5] ensuring that no discontinuity can appear in finite time.
The only catastrophe which can occur is a L∞ blow-up as for the solutions of ODEs [12].

The Kerr-Debye model

∂td+ ∂xh = 0, (19)

∂th+ ∂xe = 0, (20)

∂tχ =
1

τ

(
e2 − χ

)
, (21)

where d = (1 + χ)e and the initial condition (d, h, χ)(x, 0) = (d0, h0, χ0)(x). With χ0 ≥ 0
it follows immediatly that χ ≥ 0. The semilinear behavior of solutions of the system is
proven in [4]. That means that a smooth solution is not global only if the solution blows
up in sup-norm [12]. The global existence of all smooth solution is proven in [5]. This
system is also endowed with a strictly convex partially dissipative energy,

Ẽ =
d2

1 + χ
+ h2 +

χ2

2
,

d

dt

∫
R
Ẽdx = −τ

∫
R

(∂tχ)2 dx ≤ 0 (22)

To prove (22) the system (19)-(21) is rewritten in variables W = (e, h, χ), to obtain a
symmetric system. The semilinear behavior is proven by energy estimates. More precisely,
if W is bounded in L∞([0, T ∗ [×R) then W is also bounded in L∞([0, T ∗ [, H2(R)) which
is enough to prevent the blow up of the gradient i.e. shock-wave.

Our system rewritten in Kerr-Debye variables

Motivated by the previous results on the Kerr-Debye system, the system (1)-(3) is rewrit-
ten in Kerr-Debye variables:

d = ε, h = −v, d

1 + χ
= e = σ = (1− g)ε =⇒ 1 + χ =

1

1− g
. (23)

Thus, χt = gt(1− g)−2 = (1 + χ)2gt = (1 + χ)2(d2/2 − φ′(g)) and our system becomes
with ρ0 = 1, E = 1 and τ = 1:

∂td+ ∂xh = 0, (24)

∂th+ ∂xe = 0, (25)

∂tχ = (1 + χ)2
(
d2

2
− φ′(g)

)
= (1 + χ)4

e2

2
− ψ′(χ), (26)
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where ψ′ is the increasing function defined by, ψ′(χ) = (1+χ)2φ′
(
1−(1+χ)−1

)
. Comparing

(21) with (26), there appears only two changes, the weight (1 + χ)4 and the function ψ.
Conversely, the Kerr-Debye system can be rewritten in variables (ε, v, g):

∂tε = ∂xv, ∂tv = ∂xσ, ∂tg = (1− g)4ε2 − φ′(g).

Notice that ψ′ linear – as for the Kerr-Debye system – corresponds to the following choice
for φ′: φ′(g) = g(1 − g). For this choice, g < 1 for all time since χ > 0 for all time.
Unfortunately, this choice is not consistent with the requirement on φ: φ′′ > 0.

Our model can be seen as a nonlinear generalization of the Kerr-Debye system. The
nonlinear generalization consists in the nonlinear relaxation with respect to the variable χ.
This additional nonlinearity prevents to obtain a global energy estimate for the derivatives
of the solutions of (1)-(3) as in [5].

The mapping, g 7→ χ is increasing, g = 0 ⇔ χ = 0, g = 1 ⇔ χ = +∞. Thus,
the constraint on g becomes a condition of no blow up for χ. The equation (26) yields
automatically the positivity of χ > 0 and then the constraint g < 1 required by our model.

Moreover, the semilinear behavior for generalized Kerr-Debye systems is known, The-
orem 4.1 in [5]. Thus, our system enjoys a semilinear behavior. It means that no schock
can occur with smooth initial data:

Corollary 1 (No shock) Let ε0, v0, g0 belong to H2(R) and supR g0 < 1 then the solution
of the system (1)-(3) remains in H2 as soon as it remains in L∞.

The solution is then global smooth or blows up. The blow up means that ε or v blow up
in L∞ or g = 1 in finite time.

Let us explain why the [5]’s proof does not work for the system (1)- (2)- (3). To obtain
the L∞ bound with energy estimayes it suffices to get a H1 bound. The L2 bound is free
with the energy. So, let’s go to the estimate on the derivatives. To this purpose, we
rewrite the system in variables V = (e, h, χ), (forgetting the /2 in e2/2 to avoid fractions)

(1 + χ)∂te+ ∂xh = −e∂tχ = −e((1 + χ)4e2 − ψ′(χ)), (27)

∂th+ ∂xe = 0, (28)

∂tχ = (1 + χ)4e2 − ψ′(χ), (29)

Multiplying the first two equations by (e, h), integrating in space and after few computa-
tions we recover the energy:

d

dt

∫
R

(
(1 + χ)e2 + h2 + 2ψ(χ)

)
dx = −(1 + χ)−4

∫
R

(∂tχ)2 dx ≤ 0, (30)

This yields the L2 estimate.
H1 bound:
We rewrite the system with ∂tχ in the first equation,

(1 + χ)∂te+ e∂tχ+ ∂xh =, (31)

∂th+ ∂xe = 0, (32)

∂tχ = e2 − ψ′(χ). (33)
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Differentiating with respect to t,

(1 + χ)∂tte+ 2∂te∂tχ+ e∂ttχ+ ∂t∂xh =, (34)

∂tth+ ∂t∂xe = 0, (35)

∂ttχ = 2e∂te− ψ′′(χ)∂tχ. (36)

Taking the usual energy estimate by multiplying the first two equations by (∂te, ∂th) we
have as in [5]

1

2

d

dt

∫
R

(
(1 + χ)(∂te)

2 + (∂th)2
)
dx+ 2

∫
R
∂tχ(∂te)

2dx+

∫
R
(∂ttχ)e∂tedx = 0, (37)

since the term ∂te∂t∂xh+ ∂th∂t∂xe = ∂x (∂te∂th). From (33) we have∫
R
∂tχ(∂te)

2dx =

∫
R
e2(∂te)

2dx−
∫
R
ψ′(χ)(∂te)

2dx,

and from (36) 2e∂te = ∂ttχ+ ψ′′(χ)∂tχ so

2

∫
R
(∂ttχ)e∂tedx =

∫
R
(∂ttχ)2dx+

∫
R
(∂ttχ)ψ′′(χ)∂tχdx,

=

∫
R
(∂ttχ)2dx+

1

2

d

dt

∫
R
ψ′′(χ)(∂tχ)2dx− 1

2

∫
R
ψ′′′(χ)(∂tχ)3dx,

since (∂ttχ)ψ′′(χ)∂tχ = ∂t(ψ
′′(χ)(∂tχ)2/2− ψ′′′(χ)(∂tχ)3/2.

Adding these equality we have

1

2

d

dt

∫
R

(
(1 + χ)(∂te)

2 + (∂th)2 +
1

2
ψ′′(χ)(∂tχ)2

)
dx (38)

+

∫
R

(
e2(∂te)

2 +
1

2
(∂ttχ)2

)
dx (39)

=

∫
R
ψ′(χ)(∂te)

2dx+
1

4

∫
R
ψ′′′(χ)(∂tχ)3dx (40)

Now, the main difficulty appears. It is the cubic term in (40). This term prevents the
use of the Groonwall inequality. This term disappeards for the Kerr-Debye system since
ψ′′′ ≡ 0.

5 Numerical solution for the complete system

The system of balance laws (4) is solved numerically. Following Sec. 4.2 of [3], an explicit
time-stepping formula is used, which involves the numerical flux of a finite-volume scheme
(a flux-limiter method based on the Roe scheme). The initial data is chosen as follows:
v0(x) is zero, g0(x) = ge is constant, while the strain ε0(x) = εe − 2V F (kx) has a
smooth waveform F (x) = 4

3
√
3

(
sin(x)− 1

2
sin(2x)

)
10≤x≤2π with fundamental wavelength

2π/k = 0.2 and amplitude V . The domain x ∈ [−5, 5] is discretized with 20 000 points
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and the Courant number is 0.95. Outflow conditions are implemented at the boundaries
of the domain, as presented in Sec. 7.2.1 of [10]. In this section, the physical constants
ρ0, E equal one, and τ , γ equal 10−4 (SI).

Numerical results at the time t = 4.5 are shown in Fig. 1 for εe = ge = 0. In the
small amplitude limit, the solution converges towards the solution obtained for linear
elasticity (g ≡ 0), where the initial data is transported at constant speed. As amplitudes
are increased, wavefront steepening is observed, along with a diminution of the wave
amplitude and of the speed of sound (delay). Nevertheless, the solution keeps smooth.

(a)

4 4.2 4.4 4.6 4.8
−1

−0.5

0

0.5

1

x

ε/
V

Linear

V = 0.003

V = 0.01

V = 0.03

(b)

4 4.2 4.4 4.6 4.8
−1

0

1

v
/
V

4 4.2 4.4 4.6 4.8
0

100

200

300

x
g
/
V

2

Figure 1: Equilibrium εe = ge = 0. Numerical solution at t = 4.5 for several amplitudes
V . (a) Normalized strain ε/V ; (b) normalized velocity v/V and softening g/V 2.

At εe = ±
√
γ/E and ge =

√
2− 1, the (SK) condition is no longer satisfied. However,

the stability of the equilibrium is verified numerically. This is illustrated in Fig. 2, which
displays the numerical solution for V = 0.001 at various times. The dynamics of the
system seems to be driven by its stable equilibrium points.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.8

0.9

1

1.1

1.2
×10−2

ε

t = 0

t = 2

t = 4

0 0.5 1 1.5 2 2.5 3 3.5 4
0.414

0.415

0.416

x

g

Figure 2: Equilibrium εe =
√
γ/E, ge =

√
2 − 1. Numerical solution for V = 0.001 at

several times. Strain ε (top); softening g (bottom).
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