A Theorem of Fermat on Congruent Number Curves - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2019

A Theorem of Fermat on Congruent Number Curves

Résumé

A positive integer $A$ is called a \emph{congruent number} if $A$ is the area of a right-angled triangle with three rational sides. Equivalently, $A$ is a \emph{congruent number} if and only if the congruent number curve $y^2 = x^3 − A^2 x$ has a rational point $(x, y) \in {\mathbb{Q}}^2$ with $y \ne 0$. Using a theorem of Fermat, we give an elementary proof for the fact that congruent number curves do not contain rational points of finite order.
Fichier principal
Vignette du fichier
41Article1.pdf (523.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01983260 , version 1 (16-01-2019)

Identifiants

Citer

Lorenz Halbeisen, Norbert Hungerbühler. A Theorem of Fermat on Congruent Number Curves. Hardy-Ramanujan Journal, 2019, Hardy-Ramanujan Journal, Atelier Digit_Hum, pp.15 -- 21. ⟨10.46298/hrj.2019.5101⟩. ⟨hal-01983260⟩
78 Consultations
804 Téléchargements

Altmetric

Partager

More