A Theorem of Fermat on Congruent Number Curves - Archive ouverte HAL Access content directly
Journal Articles Hardy-Ramanujan Journal Year : 2019

A Theorem of Fermat on Congruent Number Curves

Abstract

A positive integer $A$ is called a \emph{congruent number} if $A$ is the area of a right-angled triangle with three rational sides. Equivalently, $A$ is a \emph{congruent number} if and only if the congruent number curve $y^2 = x^3 − A^2 x$ has a rational point $(x, y) \in {\mathbb{Q}}^2$ with $y \ne 0$. Using a theorem of Fermat, we give an elementary proof for the fact that congruent number curves do not contain rational points of finite order.
Fichier principal
Vignette du fichier
41Article1.pdf (523.84 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01983260 , version 1 (16-01-2019)

Identifiers

Cite

Lorenz Halbeisen, Norbert Hungerbühler. A Theorem of Fermat on Congruent Number Curves. Hardy-Ramanujan Journal, 2019, Hardy-Ramanujan Journal, Atelier Digit_Hum, pp.15 -- 21. ⟨10.46298/hrj.2019.5101⟩. ⟨hal-01983260⟩

Collections

INSMI
45 View
566 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More