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A Theorem of Fermat on Congruent Number Curves

Lorenz Halbeisen and Norbert Hungerbühler

To the memory of S. Srinivasan

Abstract. A positive integer A is called a congruent number if A is the area of a right-angled triangle with three rational sides.
Equivalently, A is a congruent number if and only if the congruent number curve y2 = x3 − A2x has a rational point (x, y) ∈ Q2

with y ̸= 0. Using a theorem of Fermat, we give an elementary proof for the fact that congruent number curves do not contain
rational points of finite order.
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1. Introduction

A positive integer A is called a congruent number if A is the area of a right-angled triangle with
three rational sides. So, A is congruent if and only if there exists a rational Pythagorean tripel (a, b, c)
(i.e., a, b, c ∈ Q, a2 + b2 = c2, and ab ̸= 0), such that ab

2 = A. The sequence of integer congruent
numbers starts with

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, . . .

For example, A = 7 is a congruent number, witnessed by the rational Pythagorean triple(24
5
,
35

12
,
337

60

)
.

It is well-known that A is a congruent number if and only if the cubic curve

CA : y2 = x3 −A2x

has a rational point (x0, y0) with y0 ̸= 0. The cubic curve CA is called a congruent number curve.
This correspondence between rational points on congruent number curves and rational Pythagorean
triples can be made explicit as follows: Let

C(Q) := {(x, y,A) ∈ Q × Q∗ × Z∗ : y2 = x3 −A2x},

where Q∗ := Q \ {0},Z∗ := Z \ {0}, and

P (Q) := {(a, b, c, A) ∈ Q3 × Z∗ : a2 + b2 = c2 and ab = 2A}.

Then, it is easy to check that

ψ : P (Q) → C(Q)

(a, b, c, A) 7→
(A(b+ c)

a
,
2A2(b+ c)

a2
, A

) (1.1)
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is bijective and
ψ−1 : C(Q) → P (Q)

(x, y,A) 7→
(2xA

y
,
x2 −A2

y
,
x2 +A2

y
, A

)
.

(1.2)

For positive integers A, a triple (a, b, c) of non-zero rational numbers is called a rational Pytha-
gorean A-triple if a2 + b2 = c2 and A =

∣∣ab
2

∣∣. Notice that if (a, b, c) is a rational Pythagorean
A-triple, then A is a congruent number and |a|, |b|, |c| are the lengths of the sides of a right-angled
triangle with area A. Notice also that we allow a, b, c to be negative.

It is convenient to consider the curve CA in the projective plane RP 2, where the curve is given by

CA : y2z = x3 −A2xz2.

On the points of CA, one can define a commutative, binary, associative operation “+”, where O, the
neutral element of the operation, is the projective point (0, 1, 0) at infinity. More formally, if P and
Q are two points on CA, then let P#Q be the third intersection point of the line through P and Q
with the curve CA. If P = Q, the line through P and Q is replaced by the tangent in P . Then P +Q
is defined by stipulating

P +Q := O#(P#Q),

where for a point R on CA, O#R is the point reflected across the x-axis. The following figure shows
the congruent number curve CA for A = 5, together with two points P and Q and their sum P +Q.

2

4

6

8

−2

−4

−6

2 4 6−2−4−6

bc
Q

bc
P

bc
P#Q

bcP +Q

More formally, for two points P = (x0, y0) and Q = (x1, y1) on a congruent number curve CA, the
point P +Q = (x2, y2) is given by the following formulas:

• If x0 ̸= x1, then
x2 = λ2 − x0 − x1, y2 = λ(x0 − x2)− y0,

where

λ :=
y1 − y0
x1 − x0

.

• If P = Q, i.e., x0 = x1 and y0 = y1, then

x2 = λ2 − 2x0, y2 = 3x0λ− λ3 − y0, (1.3)

where

λ :=
3x20 −A2

2y0
. (1.4)

Below we shall write 2 ∗ P instead of P + P .
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• If x0 = x1 and y0 = −y1, then P + Q := O. In particular, (0, 0) + (0, 0) = (A, 0) + (A, 0) =
(−A, 0) + (−A, 0) = O.

• Finally, we define O + P := P and P + O := P for any point P , in particular, O + O = O.

With the operation “+”, (CA,+) is an abelian group with neutral element O. Let CA(Q) be the set
of rational points on CA together with O. It is easy to see that

(
CA(Q),+

)
. is a subgroup of (CA,+).

Moreover, it is well known that the group
(
CA(Q),+

)
is finitely generated. One can readily check

that the three points (0, 0) and (±A, 0) are the only points on CA of order 2, and one easily finds
other points of finite order on CA. But do we find also rational points of finite order on CA? This
question is answered by the following

Theorem 1. If A is a congruent number and (x0, y0) is a rational point on CA with y0 ̸= 0, then
the order of (x0, y0) is infinite. In particular, if there exists one rational Pythagorean A-triple, then
there exist infinitely many such triples.

The usual proofs of Theorem 1 are quite involved. For example, Koblitz [Kob93, Ch. I, § 9,
Prop. 17] gives a proof using Dirichlet’s theorem on primes in an arithmetic progression, and in
Chahal [Cha06, Thm. 3], a proof is given using the Lutz-Nagell theorem, which states that rational
points of finite order are integral. However, both results, Dirichlet’s theorem and the Lutz-Nagell
theorem, are quite deep results, and the aim of this article is to provide a simple proof of Theorem 1
which relies on an elementary theorem of Fermat.

2. A Theorem of Fermat

In [Fer1670], Fermat gives an algorithm to construct different right-angled triangles with three rational
sides having the same area (see also Hungerbühler [Hun96]). Moreover, Fermat claims that his
algorithm yields infinitely many distinct such right-angled triangles. However, he did not provide a
proof for this claim. In this section, we first present Fermat’s algorithm and then we show that this
algorithm delivers infinitely many pairwise distinct rational right-angled triangles of the same area.

Fermat’s Algorithm 2. Assume that A is a congruent number, and that (a0, b0, c0) is a rational
Pythagorean A-triple, i.e., A =

∣∣a0b0
2

∣∣. Then

a1 :=
4c20a0b0

2c0(a20 − b20)
, b1 :=

c40 − 4a20b
2
0

2c0(a20 − b20)
, c1 :=

c40 + 4a20b
2
0

2c0(a20 − b20)
, (2.5)

is also a rational Pythagorean A-triple. Moreover, a0b0 = a1b1, i.e., if (a0, b0, c0, A) ∈ P (Q), then
(a1, b1, c1, A) ∈ P (Q).

Proof. Let m := c20, let n := 2a0b0, and let

X := 2mn, Y := m2 − n2, Z := m2 + n2,

in other words,
X = 4c20a0b0, Y = c40 − 4a20b

2
0, Z = c40 + 4a20b

2
0.

Then obviously, X2 + Y 2 = Z2, and since a0, b0, c0 ∈ Q,
(
|X|, |Y |, |Z|

)
is a rational Pythagorean

triple, where the area of the corresponding right-angled triangle is

Ã =

∣∣∣∣XY2
∣∣∣∣ = ∣∣2a0b0c20(c40 − 4a20b

2
0)
∣∣.

Since a20 + b20 = c20, we get c40 = (a20 + b20)
2 = a40 + 2a20b

2
0 + b40 and therefore

c40 − 4a20b
2
0 = a40 − 2a20b

2
0 + b40 = (a20 − b20)

2 > 0.
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So, for

a1 =
X

2c0(a20 − b20)
, b1 =

Y

2c0(a20 − b20)
, c1 =

Z

2c0(a20 − b20)
,

we have a21 + b21 = c21 and

a1b1
2

=
XY

2 · 4c20(a20 − b20)
2

=
2a0b0c

2
0(c

4
0 − 4a20b

2
0)

4c20(a
2
0 − b20)

2
=

2a0b0c
2
0(a

2
0 − b20)

2

4c20(a
2
0 − b20)

2
=

a0b0
2
.

Theorem 3. Assume that A is a congruent number, that (a0, b0, c0) is a rational Pythagorean A-
triple, and for positive integers n, let (an, bn, cn) be the rational Pythagorean A-triple we obtain by
Fermat’s Algorithm from (an−1, bn−1, cn−1). Then for any distinct non-negative integers n, n′, we
have |cn| ̸= |cn′ |.

Proof. Let n be an arbitrary but fixed non-negative integer. Since A =
∣∣anbn

2

∣∣, we have 2A = |anbn|,
and consequently

a2nb
2
n = 4A2. (2.6)

Furthermore, since a2n + b2n = c2n, we have

(a2n + b2n)
2 = a4n + 2a2nb

2
n + b4n = a4n + 8A2 + b4n = c4n,

and consequently we get

c4n − 16A2 = a4n − 8A2 + b4n = a4n − 2a2nb
2
n + b4n = (a2n − b2n)

2 > 0.

Therefore, √
(a2n − b2n)

2 = |a2n − b2n| =
√
c4n − 16A2,

and with (2.5) and (2.6) we finally have

|cn+1| =
c4n + 16A2

2cn
√
c4n − 16A2

.

Now, assume that cn = u
v where u and v are in lowest terms. We consider the following two cases:

u is odd : First, we write v = 2k · ṽ, where k ≥ 0 and ṽ is odd. In particular, cn = u
2k·ṽ . Since cn+1

is rational,
√
c4n − 16A2 ∈ Q. So,

√
c4n − 16A2 =

√
u4 − 16A2v4

v4
=

ũ

v2

for a positive odd integer ũ. Then

|cn+1| =
u4+16A2v4

v4

2uũ
v3

=
ū

2uũv
=

ū

2uũ2kṽ
=

ū

2k+1uũṽ
=

u′

2k+1 · v′

where ū, u′, v′ are odd integers and gcd(u′, v′) = 1. This shows that

cn =
u

2k · ṽ
⇒ |cn+1| =

u′

2k+1 · v′

where u, ṽ, u′, v′ are odd.
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u is even: First, we write u = 2k · ũ, where k ≥ 1 and ũ is odd. In particular, cn = 2k·ũ
v , where v

is odd. Similarly, A = 2l · Ã, where l ≥ 0 and Ã is odd. Then

c4n ± 16A2 =
24k · ũ4 ± 24+2lÃ2v4

v4
,

where both numbers are of the form
22mū

v4
,

where ū is odd and 4 ≤ 2m ≤ 4k, i.e., 2 ≤ m ≤ 2k. Therefore,

|cn+1| =
22mu0 · v3

2 · 2kũ · v4 · 2mu1
=

2m−k−1 · u′

v′
,

where u0, u1, u
′, v′ are odd. Since m < 2k + 1, we have m− k − 1 < k, and therefore we obtain

cn =
2k · ũ
v

⇒ |cn+1| =
2k

′ · u′

v′

where ũ, v, u′, v′ are odd and 0 ≤ k′ < k.
Both cases together show that whenever cn = 2k · u

v , where k ∈ Z and u, v are odd, then |cn+1| =
2k

′ · u′

v′ , where u
′, v′ are odd and k′ < k. So, for any distinct non-negative integers n and n′, |cn| ≠

|cn+1|.

The proof of Theorem 3 gives us the following reformulation of Fermat’s Algorithm:

Corollary 4. Assume that A is a congruent number, and that (a0, b0, c0) is a rational Pythagorean
A-triple, i.e., A =

∣∣a0b0
2

∣∣. Then

a1 =
4Ac0√
c40 − 16A2

, b1 =

√
c40 − 16A2

2c0
, c1 =

c40 + 16A2

2c0
√
c40 − 16A2

,

is also a rational Pythagorean A-triple.

Proof. Notice that c40 − 4a20b
2
0 = c40 − 16A2 and recall that |a20 − b20| =

√
c40 − 16A2.

3. Doubling points with Fermat’s Algorithm

Before we prove Theorem 1 (i.e., that congruent number curves do not contain rational points of finite
order), we first prove that Fermat’s Algorithm 2 is essentially doubling points on congruent number
curves.

Lemma 5. Let A be a congruent number, let (a0, b0, c0) be a rational Pythagorean A-triple, and
let (a1, b1, c1) be the rational Pythagorean A-triple obtained by Fermat’s Algorithm from (a0, b0, c0).
Furthermore, let (x0, y0) and (x1, y1) be the rational points on the curve CA which correspond to
(a0, b0, c0) and (a1, b1, c1), respectively. Then we have

2 ∗ (x0, y0) = (x1,−y1).

Proof. Let (a0, b0, c0) be a rational Pythagorean A-triple. Then, according to (2.5), the rational
Pythagorean A-triple (a1, b1, c1) which we obtain by Fermat’s Algorithm is given by

a1 :=
4c20a0b0

2c0(a20 − b20)
, b1 :=

c40 − 4a20b
2
0

2c0(a20 − b20)
, c1 :=

c40 + 4a20b
2
0

2c0(a20 − b20)
.
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Now, by (1.1), the coordinates of the rational point (x1, y1) on CA which corresponds to the rational
Pythagorean A-triple (a1, b1, c1) are given by

x1 =
a0b0 · (b1 + c1)

2 · a1
=

a0b0 · 2c40
2 · 4c20a0b0

=
c20
4
,

y1 =
2(a0b02 )2(b1 + c1)

a21
=

1

8
(a20 − b20)c0.

Let still (a0, b0, c0) be a rational Pythagorean A-triple. Then, again by (1.1), the corresponding
rational point (x0, y0) on CA is given by

x0 =
b0(b0 + c0)

2
, y0 =

b20(b0 + c0)

2
.

Now, as we have seen in (1.3) and (1.4), the coordinates of the point (x′1, y
′
1) := 2 ∗ (x0, y0) are given

by x′1 = λ2 − 2x0, y
′
1 = 3x0λ− λ3 − y0, where

λ =
3x20 − (a0b02 )2

2y0
=

3b20(b0+c0)2−a20b
2
0

4

b20(b0 + c0)
=

3(b0 + c0)
2 − a20

4(b0 + c0)
=

3(b0 + c0)
2 + (b20 − c20)

4(b0 + c0)
=

(3b20 + 6b0c0 + 3c20) + (b20 − c20)

4(b0 + c0)
=

4b20 + 6b0c0 + 2c20
4(b0 + c0)

=
2b20 + 3b0c0 + c20

2(b0 + c0)
=

(2b0 + c0)(b0 + c0)

2(b0 + c0)
=

(2b0 + c0)

2
.

Hence,

x′1 = λ2 − 2x0 =
(2b0 + c0)

2

4
− b0(b0 + c0) =

(4b20 + 4b0c0 + c20)− (4b20 + 4b0c0)

4
=
c20
4

and

y′1 = 3x0λ− λ3 − y0 =
1

8
(2b20c0 − c30) =

1

8
(b20 − a20)c0,

i.e., x1 = x′1 and y1 = −y′1, as claimed.

With Lemma 5, we are now able to prove Theorem 1, which states that for a congruent number
A, the curve CA : y2 = x3 − A2x does not have rational points of finite order other than (0, 0) and
(±A, 0).

Proof of Theorem 1. Assume that A is a congruent number, let (x0, y0) be a rational point on CA

which y0 ̸= 0, and let (a0, b0, c0) be the rational Pythagorean A-triple which corresponds to (x0, y0)
by (1.2). Furthermore, for positive integers n, let (an, bn, cn) be the rational Pythagorean A-triple we
obtain by Fermat’s Algorithm from (an−1, bn−1, cn−1), and let (xn, yn) be the rational point on CA

which corresponds to the rational Pythagorean A-triple (an, bn, cn) by (1.1).

By the proof of Lemma 5 we know that the x-coordinate of 2 ∗ (xn, yn) is equal to c2n
4 , and by

Theorem 3 we have that for any distinct non-negative integers n, n′, |cn| ̸= |cn′ |. Hence, for all distinct
non-negative integers n, n′ we have

(xn, yn) ̸= (xn′ , yn′),

which shows that the order of (x0, y0) is infinite.
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