Random matrices meet machine learning: A large dimensional analysis of LS-SVM - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Random matrices meet machine learning: A large dimensional analysis of LS-SVM

Zhenyu Liao
  • Fonction : Auteur
Romain Couillet

Résumé

This article proposes a performance analysis of kernel least squares support vector machines (LS-SVMs) based on a random matrix approach, in the regime where both the dimension of data p and their number n grow large at the same rate. Under a two-class Gaussian mixture model for the input data, we prove that the LS-SVM decision function is asymptotically normal with means and covariances shown to depend explicitly on the derivatives of the kernel function. This provides improved understanding along with new insights into the internal workings of SVM-type methods for large datasets.
Fichier principal
Vignette du fichier
couillet_randomRMT4LSSVM.pdf (283.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01957749 , version 1 (19-05-2020)

Identifiants

Citer

Zhenyu Liao, Romain Couillet. Random matrices meet machine learning: A large dimensional analysis of LS-SVM. The 42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2017), 2017, New Orleans, United States. ⟨10.1109/icassp.2017.7952586⟩. ⟨hal-01957749⟩
96 Consultations
140 Téléchargements

Altmetric

Partager

More