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RANDOM MATRICES MEET MACHINE LEARNING:
A LARGE DIMENSIONAL ANALYSIS OF LS-SVM

Zhenyu Liao, Romain Couillet

CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France

ABSTRACT

This article proposes a performance analysis of kernel least
squares support vector machines (LS-SVMs) based on a ran-
dom matrix approach, in the regime where both the dimension
of data p and their number n grow large at the same rate. Un-
der a two-class Gaussian mixture model for the input data, we
prove that the LS-SVM decision function is asymptotically
normal with means and covariances shown to depend explic-
itly on the derivatives of the kernel function. This provides
improved understanding along with new insights into the in-
ternal workings of SVM-type methods for large datasets.

Index Terms— kernel methods, machine learning, ran-
dom matrices, support vector machines

1. INTRODUCTION

One of the salient features of the Big Data paradigm lies in
handling data which are both numerous and large dimen-
sional – in applications such as computer vision and natural
language processing, the number of data n and their dimen-
sion p are classically more than hundreds or even thousands.
The objective of this article is to investigate the performance
of classical non-linear classification methods based on kernel
approaches in the large n, p regime. Kernel methods con-
sist in modifying the data vectors x ∈ Rp for some smartly
chosen ϕ as ϕ(x) ∈ H with H some (possibly infinite di-
mensional) Hilbert space. We shall assume here that the
kernel is radial in the sense that there exists f such that
ϕ(x)Tϕ(y) = f

(
‖x− y‖2/p

)
.1 Our focus is on the pop-

ular classification method known as kernel support vector
machines (SVMs) [1] and more precisely on least-squares
kernel SVMs (LS-SVMs) [2] which have the interesting
feature of offering an explicit decision function for classifi-
cation.2 The performance of SVMs has been widely studied
for small dimensional data [3] or under the assumption of
linearly independent datasets, in the regime where p → ∞

This work is supported by the ANR Project RMT4GRAPH (ANR-14-
CE28-0006).

1As shall be seen later, the division by p here is the necessary normaliza-
tion in the large n, p regime.

2Unlike the standard SVM which is based on the implicit solution to a
quadratic programming problem.

and n fixed [4]. The regime n, p→∞ of central interest here
however has thus far remained open.

Recent breakthroughs in random matrix theory have al-
lowed one to overtake the theoretical difficulty to evaluate
kernel methods posed by the non-linearity of the aforemen-
tioned kernel function f [5, 6]. These tools have notably
been used to assess the performance of the popular Ng-
Weiss-Jordan kernel spectral clustering methods for large
datasets [6]. In this article, following up on [6], we provide a
performance analysis of LS-SVMs, under a two-class Gaus-
sian mixture model of means µ1,µ2 and covariances C1,C2

in the regime where n, p → ∞ and n/p → c0 ∈ (0,∞).
Similar to [6], we find that there exists a critical growth
rate regime (with n and p) of the aforementioned means
and covariances for which a non-trivial asymptotic clas-
sification error rate is obtained. We also notice that, just
as in [6] for kernel spectral clustering, only a very local
aspect of the kernel function drives the classification per-
formance in the large n, p regime. Precisely, we find that
the decision function of LS-SVM converges to a Gaussian
random variable with means and covariances depending ex-
plicitly on the derivatives of the kernel function evaluated at
2 (n1 · trC1 + n2 · trC2) /(np), with n1 and n2 the num-
ber of instances in each class. This brings new insights into
questions such as kernel function selection and parameter
optimization for LS-SVMs with large dimensional data. Be-
cause of space limitation, only proof sketches are provided
for our main results, the complete derivations being available
in an extended version of the article.

Notations: Boldface lowercase (uppercase) characters
stand for vectors (matrices), and scalars non-boldface respec-
tively. 1n is the column vector of ones, and In the n × n
identity matrix. The notation (·)T denotes the transpose op-
erator. The norm ‖ · ‖ is the Euclidean norm for vectors and
the operator norm for matrices.

2. MODEL AND ASSUMPTIONS

Let x1, . . . ,xn ∈ Rp be independent vectors belonging to
two distribution classes C1, C2, with x1, . . . ,xn1 ∈ C1 and
xn1+1, . . . ,xn ∈ C2 (so that class C1 has cardinality n1 and
class C2 has cardinality n2 = n−n1). We assume that xi ∈ Ca



for a ∈ {1, 2} if
xi ∼ N (µa,Ca)

for some µa ∈ Rp and nonnegative definite Ca ∈ Rp×p .
To achieve an asymptotically non-trivial misclassification

rates (i.e., neither 0 nor 1), we show (similar to [6]) that one
needs to work under the following growth rate assumptions:

Assumption 1 (Growth rate). As n → ∞, p
n → c0 > 0,

ni

n → ci > 0 (we shall write c = [c1, c2]
T ). Besides,

1. For µ◦ , n1

n µ1 +
n2

n µ2 and µ◦a , µa − µ , ‖µ◦a‖ =
O(1).

2. For C◦ , n1

n C1+
n2

n C2 and C◦a , Ca−C◦ , ‖Ca‖ =
O(1) and trC◦a = O(

√
n).

3. As n→∞, 2
p trC

◦ → τ > 0.

Let ϕ : Rp → H be a function such that there exists f :
R+ → R+ for which ϕ(xi)Tϕ(xj) = f

(
‖xi − xj‖2/p

)
,

with f satisfying the following assumptions:

Assumption 2 (Kernel function). The function f is a three-
times differentiable function in a neighborhood of τ .

Under this assumption, we define K ∈ Rn×n as the kernel
matrix

K ,

{
f

(
1

p
‖xi − xj‖2

)}n
i,j=1

. (1)

The value τ introduced in Assumption 1 is important since in
the regime where both n, p → ∞, from Assumption 1, for
all pairs i 6= j, ‖xi − xj‖2/p → τ , almost surely, which
makes it possible to perform a Taylor expansion around f(τ)
of f

(
‖xi − xj‖2/p

)
. We shall see that only the local be-

havior of the matrix K around the matrix f(τ)1n1Tn plays a
significant role in the classification of LS-SVMs. As such,
the intractable non-linear kernel matrix K can be (asymptot-
ically) linearized and, in turn, the decision function of LS-
SVMs (which, as shown next, is an explicit function of K)
becomes tractable as n, p→∞.

3. MAIN RESULTS

For x1, . . . ,xn defined previously, let yi = −1 if xi ∈ C1 and
yi = 1 if xi ∈ C2. The objective of LS-SVM is to separate the
classes C1 and C2 in the kernel spaceH, via a “hyperplane” of
the form wTϕ(x) + b = 0, where w and b are the solutions
of the following optimization problem[2]:

argmin
w

J(w, e) = ‖w‖2 + γ

n

n∑
i=1

e2i (2)

such that yi = wTϕ(xi) + b+ ei, i = 1, . . . , n

where γ > 0 is a penalty factor on the square devia-
tions e2i from the hyperplane. The solution of (2) is w =∑n
i=1 αiϕ(xi), where

α = S−1
(
In − 1n1

T
nS−1

1T
nS−11n

)
y = S−1 (y − b1n)

b =
1T
nS−1y

1T
nS−11n

(3)

with S−1 =
(
K+ n

γ In

)−1
, K given by Equation (1), y =

[y1, . . . , yn]
T and α = [α1, . . . , αn]

T .
Given α and b, each new datum x is classified using LS-

SVM, based on the following decision function[2]

g(x) = αTk(x) + b (4)

where k(x) =
[
f
(
‖xj − x‖2/p

)]n
j=1
∈ Rn. More precisely,

x is associated to class C1 if g(x) takes a small value (below
a certain threshold) and to class C2 otherwise.

We are concerned here with assessing the performance of
LS-SVM, under the setting of Assumption 1, as n, p → ∞.
The idea is to study the random variable g(x) in Equation
(4) for x ∈ C1 or x ∈ C2 , which then makes it possible
to evaluate the error rate of classification. Since g(x) is ex-
plicitly defined as a function of K (through α and b), with
K linearizable in the large n, p regime, one can work out an
asymptotic linearization of g(x) as a function of f and the
statistics of the known vectors xi’s. We provide next a sketch
of this derivation.

Let us start by Taylor-expanding S−1. Under the settings
of Section 2, we notice that the leading term f(τ)1n1

T
n in the

Taylor expansion of K (with respect to the operator norm) as
well as n

γ In are of norm O(n). As such, and after a basic
algebraic manipulation,

S−1 =
γ

n

(
In −

γf(τ)

1 + γf(τ)

1n1
T
n

n

)
+O(n−

3
2 ) (5)

and thus the terms making the classification possible are hid-
den in theO(n−

3
2 ) term, which needs to be thoroughly devel-

oped next. From the expansion (5) of S−1, we further have:{
α = γ

n (y − (c2 − c1)1n) +O(n−
3
2 )

b = c2 − c1 +O(n−
1
2 )

(6)

and
k(x) = f(τ)1n +O(n−

1
2 )

so that, similar to S−1, the structural (class) information of
the new data x is carried by the term O(n−

1
2 ) which also

needs to be carefully developed. This is performed following
the technique elaborated in [5, 6].

Putting all the approximations together brings the main
result of the article as follows:

Theorem 1 (Gaussian approximation of g(x)). Let Assump-
tions 1 and 2 hold, and g(x) be defined by (4). Then for
x ∈ Ca, a ∈ {1, 2}, n(g(x)−Ga)→ 0, where

Ga ∼ N (Ea,Vara)



with

Ea =

{
c2 − c1 − 2c2 · c1c2γD , a = 1

c2 − c1 + 2c1 · c1c2γD , a = 2

Vara = 8γ2c21c
2
2 (Va1 + Va2 + Va3 )

and

D = −2f ′(τ)

p
‖µ2 − µ1‖2 +

f ′′(τ)

p2
(tr (C2 −C1))

2

+
2f ′′(τ)

p2
tr
(
(C2 −C1)

2
)

(7)

Va1 =
(f ′′(τ))

2

p4
(tr (C2 −C1))

2
trC2

a

Va2 =
2 (f ′(τ))

2

p2
(µ2 − µ1)

T
Ca (µ2 − µ1)

Va3 =
2 (f ′(τ))

2

np2

(
trC1Ca

c1
+

trC2Ca

c2

)
Theorem 1 states that the problem of classification using

LS-SVM is asymptotically equivalent to a simple threshold-
ing to separate two monovariate Gaussian random variables,
the means and covariances of which depend on the (normal-
ized) inter-class mean-deviation, traces of class covariances
and the derivatives of the kernel function f at τ , when both
n, p → ∞. Letting Q(x) = 1

2π

∫∞
x

exp(−t2/2)dt, we have
in particular the following immediate corollary of Theorem 1:

Corollary 1 (Asymptotic error rates). Under the setting of
Theorem 1, for ξn possibly depending on n,

P(g(x) > ξn | x ∈ C1)−Q
(
ξn − E1√

Var1

)
→ 0 (8a)

P(g(x) < ξn | x ∈ C2)−Q
(
E2 − ξn√

Var2

)
→ 0. (8b)

Note here the importance of a proper setting of the func-
tion f . For instance, if f ′(τ) = 0, the term µ2 −µ1 vanishes
from the mean and variance of Ga, meaning that the classifi-
cation of LS-SVM will not rely (at least asymptotically and
under the key Assumption 1) on differences in means. Simi-
larly, if f ′′(τ) = 0, all terms of covariance matrices vanish in
Ea but remain in Vara.

Remark 1 (Dominant bias). From Theorem 1, we have D =
O(n−1), which means that Ea = c2− c1+O(n−1). As such,
from Corollary 1, it appears natural to set ξn = c2−c1, rather
than ξn = 0 as one would naturally do (because if c2−c1 > 0
then P(g(x) > 0 | x ∈ C1)→ 1 and P(g(x) < 0 | x ∈ C2)→
0). It has been shown in[7] through a Bayesian approach that
this phenomenon is due to b, which is also referred to as the
“bias term”, that depends on the prior class probabilities.

One may notice in Theorem 1 that in the case when
Var1 = Var2, the performance of classification depends on

deviation in means, which is proportional to D as defined
in (7). To achieve optimal classification performance, we
thus need f(τ), f ′′(τ) > 0 and f ′(τ) < 0. Coinciden-
tally, it is naturally the case with the popular Gaussian kernel
f(x) = exp

(
−x/2σ2

)
, but not necessarily for other kernel

functions. For the second-order polynomial kernel given by
f(x) = ax2+bx+c, we shall have the following constraints:

Corollary 2 (Polynomial kernels). Under the setting of The-
orem 1, with f(x) = ax2 + bx + c, the following conditions
are necessary to maximize | E1 − E2 | while ensuring f > 0,

1. f(τ) > 0, f ′(τ) < 0, f ′′(τ) > 0

2. (f ′(τ))
2
< 2f(τ)f ′′(τ).

The corollary above may give us some inspiration in the
choice of kernel functions.

A particularly surprising outcome of Theorem 1 is that,
when trC1 = trC2 and one chooses f in such a way that
f ′(τ) = 0, then Vara = 0 while Ea may remain non-zero,
thereby ensuring a vanishing error rate, i.e., the second left-
hand side terms of (8a) and (8b) equal zero. Figure 1 corrob-
orates this finding for C1 = Ip and {C2}i,j = .4|i−j|.
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Fig. 1. Performance of LS-SVM, c0 = 1/4, c1 = c2 =
1/2, γ = 1, polynomial kernel with f(τ) = 4, f ′′(τ) =
2. x ∈ N (µa,Ca), with µ1 = µ2 = 0p, C1 = Ip and
{C2}i,j = .4|i−j|.

Remark 2 (Dominant deviation in means). A direct result
from Theorem 1 is that, in the case when ‖µ2−µ1‖2 is largely
dominant over tr (C2 −C1) /

√
p and tr

(
(C2 −C1)

2
)
/p,

e.g., tr (C2 −C1) = o(
√
p) and tr

(
(C2 −C1)

2
)
= o(p)

while ‖µ2 − µ1‖2 = O(1), then Ea − (c2 − c1) and
√
Vara

are (asymptotically) proportional to f ′(τ), which makes the
choice of kernel function of little importance (if f ′(τ) 6= 0).

Remark 3 (Insignificance of γ). The parameter γ appears as
a scale factor of both Ea−(c2 − c1) and

√
Vara which, along

with Corollary 1 and Remark 1, indicates the (asymptotic)
independence of γ in the error rates P(g(x) > c2 − c1 | x ∈
C1) and P(g(x) < c2 − c1 | x ∈ C2).



4. SIMULATIONS

We complete this article by demonstrating that our results,
which apply theoretically only to Gaussian xi’s, show a be-
havior unexpectedly close to theory when applied to real-
world datasets. Here, we consider the classification problem
with a training set of n1 = n2 = 128 vectorized images
of size p = 784 from the popular MNIST dataset[8] (num-
bers 1 and 7, as shown in Figure 2). Then a test set of size
ntest = 128 × 2 is used to evaluate the performance of LS-
SVM. Means and covariances are empirically obtained from
the full set of 13 007 MNIST images (6 742 images of number
1 and 6 265 of number 7).

Fig. 2. Samples from the MNIST database, without and with
0dB noise.

Figure 3 shows that, despite the obvious non-Gaussianity
of the MNIST data, the distribution of the decision function
g(x) is surprisingly close to its Gaussian approximation Ga.
When added a 0dB Gaussian white noise, the two agree with
each other even better, in an almost perfect match, especially
in the overlapping areas from which the classification error
rates are computed.
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g(x)x∈C1 histogram

g(x)x∈C2 histogram

Gaussian approximation G1

Gaussian approximation G2

(a) with 0dB noise

−0.1 0 0.1

(b) without noise

Fig. 3. Gaussian approximation of g(x), n = 256, p =
784, c1 = c2 = 1/2, γ = 1, Gaussian kernel with σ2 = 1,
MNIST data (numbers 1 and 7) without and with 0dB noise.

In Figure 4, we evaluate the performance of LS-SVM as
the function of the noise level (in dB), for Gaussian kernel
f(x) = exp

(
−x/2σ2

)
with σ2 = 1 in subfigure (a), and

σ2 = 10 in (b). Surprisingly, we face the situation where
there is little difference in the performance of LS-SVM with
different values of σ, which likely comes from the fact that
the difference in means ‖µ2−µ1‖ is so large that it becomes
predominant over the covariances as mentioned in Remark 2.
This is numerically confirmed in Table 1.
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(a) σ2 = 10
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(b) σ2 = 1

Fig. 4. Performance of LS-SVM, n = 256, p = 784, c1 =
c2 = 1/2, γ = 1,Gaussian kernel, MNIST data.

Without noise With 0dB noise
‖µ2 − µ2‖2 429 178

(tr (C2 −C1))
2
/p 63 11

tr
(
(C2 −C1)

2
)
/p 35 6

Table 1. Empirical estimation of (normalized) differences in
means and covariances of MNIST data.

5. CONCLUDING REMARKS

In this article, under a random matrix growth regime, we reex-
hibit the bias c2− c1 in the decision function threshold of LS-
SVM already identified in [7], and find out how information
is retrieved from the means and covariances of data from two
different classes, as well as the influence of the kernel func-
tion f . This notably allows us to have a deeper understanding
of the mechanism into play and in particular the impact of
the choice of the kernel function as well as some theoretical
limits of the method.

The extension of the present work to the asymptotic per-
formance analysis of the classical SVM requires more efforts
since, there, the decision function g(x) depends implicitly
(through the solution to a quadratic programming problem)
rather than explicitly on the underlying kernel matrix K. A
possible approach is to bound precisely the solution of the
optimization problem with two random variables whose dif-
ference will asymptotically vanish as n, p → ∞, similar to
the method devised in [9] for the random matrix analysis of
robust estimators of scatter. Also, while the theoretical formu-
las of Theorem 1 are simple, applications to practical datasets
sometimes reveal larger discrepancies than observed in Fig-
ures 3 and 4. These are likely due to a too strong Gaussianity
assumption on the input data, along with an important need
for n and p to be significantly larger than in classical ran-
dom matrix applications for the asymptotic results to be ac-
curate. Nonetheless, in classical applications of signal pro-
cessing such as radar and sonar, the system models are of-
ten based on (practically validated) Gaussian models, which
provides the possibility of applying our theoretical results in
real-world engineering problems.
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